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ABSTRACT

The present study reports detailed statistics for velocity and transfer rates of heavy par-

ticles dispersed in turbulent boundary layers. The dataset is used to analyze the effects of

gravity and lift on particle dispersion and deposition in a systematic way. Statistics were

obtained performing Direct Numerical Simulation (DNS) of particle-laden turbulent flow

in a vertical channel. Six values for the particle timescale (the particle Stokes number,

St) ranging three orders of magnitude were considered to analyze the deposition process

as the controlling mechanism was shifting from turbulent diffusion to inertia-moderated

crossing trajectories. For the particle timescales examined, gravity and lift do not influ-

ence the qualitative behavior of particles even though velocity profiles and deposition co-

efficients are modified in a non-monotonical fashion, reaching an optimum for St ≥ 25.

Physical mechanisms for the different behavior are discussed. Raw data and statistics ob-

tained from the present DNS are made available at http://cfd.cineca.it (mirror site:

http://158.110.32.35/download/database) and can be used to test simple models

and closure equations for multiphase RANS and Large Eddy simulations.
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1. INTRODUCTION

Transport and deposition of solid particles, droplets or aerosols suspended in turbulent gas

flow occur in many industrial devices. Examples include filters, risers and downers, pneu-

matic conveying systems and micro-contamination control facilities. Accurate prediction of

particle deposition rate is crucial to design cost-effective industrial processes (Soldati, 2003)

and to optimize engineering devices operating with particle-laden flows.

State-of-the-art modelling of particle deposition rate is assessed against experimental data

obtained in diverse flow conditions. Considering the variety of test conditions and probing

systems, the uncertainty associated with these experimental data is inevitably large, as

shown in Fig. 1. This figure is taken from the paper by Young and Leeming (1997) and

collects a large number of measurements of particle deposition rate for fully-developed tur-

bulent flow in a circular pipe, as a function of particle response time. Variables are plotted

in non-dimensional form (identified by subscript + according to the notation used by Young

and Leeming, 1997). The deposition velocity is defined as:

Vdep+ =
J

ρmuτ

, (1)

where J is the deposition mass flux, ρm is the mean particle density in the pipe and uτ is

the shear velocity (defined as uτ =
√

τw/ρ, where τw is the wall shear stress and ρ is the gas

density). The non-dimensional particle response time is defined as:

τp+ = τp

u2
τ

ν
=

ρpd
2
p

18ρν

u2
τ

ν
, (2)

where ν is the kinematic viscosity of the gas, ρp is the particle material density and dp is

the particle diameter. The deposition curves of Fig. 1 have been hystorically divided into

three regimes: the diffusional deposition regime (in which particle transport to the wall may

be modelled by gradient diffusion, namely by ‘turbulent diffusion’ in the core of the flow

and Brownian diffusion in the proximity of the wall); diffusion-impaction regime (in which

the interaction between particles and turbulent eddies produces an increase of several orders

of magnitude in the deposition rate); and the inertia-moderated regime (in which gradient
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diffusion takes little or no part since particles can acquire sufficient momentum from the

large eddies in the turbulent core to reach the wall directly).

From Fig. 1, uncertainty in the value of Vdep+ is apparent and the spread of the measure-

ments spans about two orders of magnitude for particles in the diffusion-impaction regime

(from τp+ = 0.2 to τp+ = 23). This experimental uncertainty is connected to several rea-

sons. One may be associated to the different circumstances under which each experiment

was performed and to the different experimental methods used for sampling and diagnostics.

Others are associated with the intrinsic complexity of turbulent transfer phenomena, which

are correlated to a wide range of flow scales depending on the different mechanisms govern-

ing the interaction between particles and turbulent structures. Due to this complexity, most

practical flows are commonly simulated using simplified models (Elghobashi and Abou-Arab,

1983; Soldati and Andreussi, 1996; Young and Leeming, 1997; Sergeev et al., 2002 to name

a few). Our simulations were motivated by the need for reliable and accurate sets of data

that can be used to validate closure relations of either theoretical or engineering models

(e.g. Reynolds-averaged two-fluid Eulerian models). The need for this type of data can be

extended also to commercial softwares for computational fluid dynamics. In our experience,

these softwares, usually exploited for high-Reynolds-number flows in complex geometries, in

the RANS mode fail predictions of multiphase flows due to the lack of appropriate physical

models for particle dispersion, resuspension and deposition. In this paper, data are provided

in the form of velocity and deposition statistics for the dispersed phase.

Another goal is to evaluate quantitatively the effects of gravity and lift on particle dis-

persion, since these effects may become as important as those due to particle inertia and to

fluid turbulence. Previous experimental (Friedlander and Johnstone, 1957; Liu and Agarwal,

1974; Kaftori et al., 1995a, 1995b; Niño and Garcia, 1996; Righetti and Romano, 2004) and

computational studies (McLaughlin, 1989, Brooke et al., 1994; Uijttewaal and Oliemans,

1996; van Haarlem et al., 1998; Zhang and Ahmadi, 2000; Narayanan et al., 2003; Marchi-

oli et al., 2003) showed that particle distribution in wall-bounded turbulent flows is made

highly non-homogeneous by the coupled action of turbulence and particle inertia. However,

particles under the influence of a potential field (e.g. gravity) become disengaged from fluid
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turbulence and rapidly travel through fluid eddies sampling flow velocities that are more

and more decorrelated. The well-known crossing-trajectory effect (Csanady, 1963; Wells

and Stock, 1983; Maxey, 1987) is a reasonable explanation for this behavior.

In homogeneous turbulence, the crossing-trajectory effect is known to control the gravi-

tational settling of heavy particles: these particles fall from one eddy to another at a rate

faster than the average eddy-decay rate, lose velocity correlation more rapidly and disperse

less (Wells and Stock, 1983). In the present study, which is part of a broader effort (as

documented in Soldati, 2005), we use DNS to single out the effect of gravity for the case

of non-homogeneous turbulence. We will also analyze the inclusion of the lift force term

in the particle equation of motion. The influence of the lift force in determining the build-

up of particle concentration in the viscous sublayer is modulated by gravity, which acts to

increase/decrease the slipd velocity between particles and fluid: thus, the model chosen to

reproduce the effect of lift may have a considerable impact on the prediction of particle

deposition.

To the best of our knowledge, very few studies are available which analyze in a systematic

way the effects of gravity and/or lift on particle transfer and deposition. In addition, analyzes

are not systematic and report data which are difficult to compare. For our purposes, the

reference work is the numerical experiment by Uijttewaal & Oliemans (1996), where both

effects for inertial particles in vertical pipe flow were considered. It was shown that, when

drag and gravity are the only forces acting, particles with response time larger than the

integral timescale of near-wall turbulence structures have higher deposition rate in upward

flow (where gravity acts against the mean flow) than in downward flow (where gravity acts

along the mean flow direction) or flow with zero gravity. Similar results were obtained by

Zhang and Ahmadi (2000) for particles dispersed in channel flow.

Regarding the lift force, Uijttewaal and Oliemans (1996) modelled the corresponding term

in the particle equation of motion using a simplified expression valid for a particle in a shear

flow away from walls (Saffman, 1965; McLaughlin, 1991). As demonstrated by subsequent

studies (see Wang et al., 1997 and Kurose and Komori, 1999 among others), this model is

inaccurate for deposition near solid boundaries and high particle Reynolds numbers: more
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general derivations are thus needed to improve the accuracy of predictions.

Starting from this background, we will focus on a fully-developed turbulent flow in a

vertical channel. The present study adds to works cited above since it was designed to

be a homogeneous source of data covering a broad range of situations and providing: (i)

accurate numerical procedure (fully-resolved pseudo-spectral DNS); (ii) wide spectrum of

particle timescales; (iii) larger particle samples to ensure adequate statistical convergence

of the results; (iv) accurate particle statistics. In particular, we have chosen values of the

particle time scale ranging from the diffusion-impaction regime to the inertia-moderated

regime. This choice enabled us to discriminate among the different mechanisms of particle

dispersion and is justified in the frame of previous analyzes (Picciotto et al., 2005a; 2005b)

which showed that this range includes particles that are the most responsive to the boundary

layer flow structures. For each particle timescale, particle samples ten times larger than those

used by Uijttewaal and Oliemans (1996) were considered.

2. METHODOLOGY

2.1. Channel Flow Simulation

Particles are dispersed in a pressure-driven fully-developed turbulent flow of air, assumed

to be incompressible and Newtonian (density ρ = 1.3 kg m−1, kinematic viscosity ν =

15.7×10−6 m2s−1). The flow is bounded by two infinite flat parallel walls with origin of the

coordinate system located at the channel centerline and the x, y and z axes pointing in the

streamwise, spanwise and wall-normal directions respectively. Periodic boundary conditions

are imposed on the fluid velocity field both in x and y; no-slip boundary conditions are

enforced at the walls. We assume that particle number density and particle size are both

small, and that there is no feedback of the particles onto the gas flow.

Three different flow configurations were considered: no gravity, vertical downward and

vertical upward, hereinafter labeled as G0, Gd and Gu respectively (see Fig. 2). The G0

configuration may be of interest for space-type applications which require accurate mea-

surements of turbulence-induced preferential distribution of particles under micro-gravity
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conditions.

The flow field was calculated by integrating the mass and momentum balance equations

in dimensionless form (obtained using the channel half-width, h, and the shear velocity, uτ):

∇ · u = 0, (3)

∂u

∂t
= −u · ∇u +

1

Re
∇2u−∇p + δ1,i, (4)

where u is the dimensionless fluid velocity vector, p is the fluctuating kinematic pressure,

δ1,i is the mean dimensionless pressure gradient that drives the flow and Reτ = uτh/ν is the

shear Reynolds number. Eqs. 3 and 4 are solved using a pseudo-spectral method. Details

of the numerical method can be found elsewhere (Lam and Banerjee, 1992).

Calculations are performed on a computational domain of 1885 × 942 × 300 wall units

in x, y and z discretized with 128 × 128 × 129 nodes. The Reynolds number of the flow is

Re = 2100 based on the bulk velocity ub = 1.65 m s−1. The corresponding shear Reynolds

number is Reτ = 150, which gives uτ = 0.11775 m s−1: the rationale for considering

a single value is that, in small Reynolds number wall turbulence and in the case of heavy

particles, the Reynolds number of the flow has little effect on particles and particle timescale

normalized to wall variables may be used as the representative Stokes number. Current direct

numerical simulations at higher Reynolds number (Reτ = 360, see Portela et al., 2002) do

not show strong differences. Effects of the Reynolds number might perhaps be observable

for higher shear Reynolds numbers which, however, are currently beyond the capabilities of

our laboratory.

The time step used is ∆t+ = 0.045 in wall time units: the statistics of the flow field (some

of which are shown in Section 3.2) have been presented before in Giusti et al. (2005) and

were collected up to t+ = 1192 and are consistent with previous simulations (Kim et al.,

1987; Lyons et al., 1991).

2.2. Discrete Particle Tracking

Pointwise, rigid, spherical particles are injected into the flow at concentration low enough

to neglect particle collisions. The effect of particles onto the turbulent field is also neglected
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(one-way coupling assumption). Even though the accumulation process can produce local

peaks of particle number density near the wall, it was shown that turbulence structures

seem to modify only from a quantitative viewpoint (Kaftori et al., 1995a; 1995b; Pan and

Banerjee, 1996).

Particle motion is described by a set of ordinary differential equations for particle velocity

and position at each time step. For particles much heavier than the fluid (ρp/ρ ≃ 769),

Elghobashi and Truesdell (1992) have shown that the only significant forces are Stokes drag

and buoyancy and that Basset force can be neglected being an order of magnitude smaller.

Brownian diffusion becomes important for particles smaller than those considered in this

study (Soltani and Ahmadi, 1995) and was also neglected.

For the purposes of the present analysis, we decided to include the effect of the lift force in

the equations of particle motion. Uijttewaal & Oliemans (1996), Rouson & Eaton (2002), and

Marchioli et al. (2003) showed that, for small particles, the lift force term becomes formally

of the same order in particle radius as other terms we neglected in the more complete

equation of motion derived by Maxey & Riley (1983). In this situation, the lift force is

small compared to the particle drag in the same direction and modifies slightly deposition

statistics from a quantitative (yet not qualitative) viewpoint. For larger particles, however,

the lift force may have non-negligible effects on the rate of particle accumulation near the

wall, particularly in presence of a solid boundary (Wang and Squires, 1996).

With the above simplifications the following Lagrangian equation for the particle velocity

is obtained (Maxey and Riley, 1983):

dv

dt
= −

3

4

CD

dp

(

ρ

ρp

)

|v − u|(v − u) + CL

ρ

ρp

[(u− v) × ω] +

(

1 −
ρ

ρp

)

g . (5)

In Eq. 5, v is particle velocity, u and ω are fluid velocity and vorticity at particle position,

and dp is particle diameter. CD = 24
Rep

(1+0.15Re0.687
p ) is the corrected Stokes drag coefficient,

which depends on the particle Reynolds number Rep = dp|v − u|/ν: the correction for CD

is necessary when Rep does not remain small.

In the lift force term, the coefficient CL is a function of the particle Reynolds number

and of the dimensionless parameter Srp = |(u− v) × ω| dp/|u − v|2. We calculated CL as
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(McLaughlin, 1991, Kurose and Komori, 1999; Giusti et al., 2005):

CL











































= CLMcL
=

[

5.816
(

Srp

2 Rep

)0.5

− 0.875Srp

2

]

3
4 Srp

J(ǫ)
2.255

for Rep < 1 ,

= CLMcL

5−Rep

4
+ CLKK

Rep−1
4

for 1 < Rep < 5 ,

= CLKK
=

[

K0

(

Srp

2

)0.9

+ K1

(

Srp

2

)1.1
]

3
4 Srp

for Rep > 5 .

(6)

In Eq. 6, CLMcL
indicates the coefficient calculated using the formula by McLaughlin

(1991). The function J(ǫ) is also reported in McLaughlin (1991), the variable ǫ being

defined as ǫ = (Srp/Rep)
0.5. J(ǫ) is a correction factor added by McLaughlin (1991) to

the expression of the lift force model reported by Saffman (1965) to extend its validity to

situations where the hypothesis of negligible Rep is not ensured. The coefficient CLKK
is

calculated as in Kurose and Komori (1999), K0 and K1 being tabulated values depending

on Rep. The coefficient CL, used to calculate the lift force acting on particles, is set equal

to CLMcL
for low particle Reynolds numbers (Rep < 1) and equal to CLKK

for high particle

Reynolds numbers (Rep > 5). Following Giusti et al. (2005), a linear interpolation between

the coefficients CLMcL
and CLKK

is used to calculate CL for intermediate values of particle

Reynolds number (1 < Rep < 5).

The last term on the R.H.S. of Eq. 5 includes the gravitational acceleration in vector

form, g. Gravity is introduced in this study by giving g a non-dimensional absolute value

g+ = gν/u3
τ = 0.0943.

A Lagrangian particle tracking routine coupled with the DNS code was developed to cal-

culate particles paths in the flow field. The routine uses sixth-order Lagrangian polynomials

to interpolate fluid velocities at particle position; with this velocity the equations of particle

motion are advanced in time using a fourth-order Runge-Kutta scheme. The performance

of the interpolation scheme is comparable to that of spectral direct summation and to that

of an hybrid scheme which exploits sixth-order Lagrangian polynomials in the streamwise

and spanwise directions and Chebychev summation in the wall-normal direction. For the

simulations presented here, six sets of 105 particles were considered, spanning three orders

of magnitude of their response time, τp. Here, the non-dimensional particle response time,
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obtained using wall variables as in Eq. 2, corresponds to the particle Stokes number:

St = τp+ =
τpu

2
τ

ν
. (7)

In the present study, we have selected St = 0.2, 1, 5, 15, 25 and 125. Table 1 summarizes

the complete set of parameters relevant to the simulations of particle dispersion, including

the non-dimensional values of the stationary average settling velocity of the particles, V +
s ,

and the corresponding values of the particle Reynolds number, Re+
p . Table 1 groups a total

number of 36 cases (6 particle sets in 3 flow configurations with and without lift), which

represent a complete and homogeneous source of data covering a large target parameter

space.

At the beginning of the simulation, particles are distributed homogeneously over the

computational domain and assume a uniform distribution. Their initial velocity is set equal

to that of the fluid in the particle initial position. Upon release, particles need to adapt

to the flow and to forget their initial conditions: typically, it takes a few particle response

times before reliable statistics can be gathered. Statistics were computed over the interval

∆t+ = 450 starting at time t+ = 742, which corresponds to nearly six non-dimensional

response times of the larger particles (St = 125).

Periodic boundary conditions are imposed on particles in both streamwise and spanwise

directions. Elastic reflection is applied when the particle centre is less than a distance

dp/2 from the wall. Even in case of elastic reflection the behavior of the dispersed phase

is characterized by a long transient during which wallward net fluxes of particles occur

(Portela et al., 2002; Picciotto et al., 2005b). At steady state, the flux of particles toward

the wall must be balanced by the flux in the opposite direction returning the particles to

the bulk of the flow. However, it is not obvious that a non-trivial statistically steady state

can be achieved for all particle sizes. In the case of large particles, whose mean free path

is comparable with or larger than the size of near-wall region, a mechanism for such a flux

can be provided by elastic wall collision of particles having large wall-normal velocity. In

the case of particles with small mean free path, the interaction with the wall will resemble

an absorbing-wall condition rather than an elastic-bouncing condition (Portela et al., 2002),
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and the statistically steady state might be trivial: empty bulk flow and densely populated

near-wall region.

Note that the data sets obtained assuming perfectly reflecting walls can be used to extract

subsets of data for the case of perfectly absorbing walls simply by tagging time and location

of the particle upon impact.

2.3. Calculation of Statistics

The aim of this study is to provide accurate statistics for benchmarking and model val-

idation. We will be mostly interested in providing statistics for particle velocities. How-

ever, since particle distribution is evolving and will require long times to reach steady state

(Portela et al., 2002), statistics influenced by particle distribution will not be at steady state.

Elaborating, we have Tl < ∆t+ << TL, where Tl ≃ τp represents the time scale taken by the

particle to reach a condition of local equilibrium with the surrounding fluid and TL repre-

sents the time scale required to reach a statistically-steady particle concentration. Statistics

like particle concentration and wall-normal particle velocity (which will be shown in Sec-

tions 3 and 4) scale with TL and simulation times much longer than ∆t+ are thus required

to compute their steady-state values. Statistics like the streamwise particle velocity, the

particle rms velocity components and the deposition coefficient (shown in Sections 3 and 4

as well) scale with Tl: for these quantities, simulation times comparable to ∆t+ are sufficient

to compute steady-state values.

3. EFFECTS OF GRAVITY ON PARTICLE STATISTICS

This section features some of the statistics obtained from the simulations with different

gravity set ups and no lift force acting on particles. These statistics are the most relevant

to single out the effect of gravity on the processes of particle dispersion, deposition and

preferential distribution.
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3.1. Particle Number Density Profiles

To quantify the macroscopic evolution of particle accumulation and deposition at the wall,

we have monitored the time behavior of the particle number density, np, as function of the

wall-normal coordinate, z+. Starting from the initial uniform distribution of particles, num-

ber density profiles were computed at different times of the simulation binning the channel

height into Nb = 129 slabs through Chebyshev polynomials and counting the proportion

of particles that fell within each slab, i.e. by averaging over the streamwise and spanwise

directions. Fig. 3 shows the instantaneous particle number density profiles at times t+ = 675

(Figs. 3a to 3m, left column) and t+ = 1125 (Figs. 3b to 3n, right column). For convenience,

particle number density is normalized by its initial value. Symbols are as follows: plus signs

refer to channel flow without gravity (case G0), black boxes refer to vertical downward flow

(case Gd) and empty circles refer to vertical upward flow (case Gu). A logarithmic scale is

used to expand the near-wall region and to capture the different behavior of particle transfer.

Consider that, in dimensionless wall units (see Table 1), particles of the five dimensions in-

vestigated touch the wall when their center is one particle radius far from the wall, namely at

z+ = 0.034, z+ = 0.0765, z+ = 0.171, z+ = 0.293, z+ = 0.3825 and z+ = 0.855 respectively

(the last point of the plot). For the larger particles, these impact distances may encompass

several grid points (five in the case of the St = 125 particles).

As already observed by Picciotto et al. (2005b) for the same flow and particle parameters,

near-wall accumulation in the no-gravity configuration (when only drag acts on particles)

builds up over time due to particle interaction with the local turbulent flow structure. Pro-

files develop a peak within one viscous unit from the wall and the peak value, indicated

as nmax
p hereinafter, increases with particle inertia up to St = 25: at this Stokes number,

particles respond maximally to the near-wall flow structures and the largest concentration

at the wall occurs (Figs. 3i and 3l). A further increase of particle inertia corresponds to

a smaller concentration at the wall (see Figs. 3m and 3n, relative to the St = 125 parti-

cles). This trend is qualitatively maintained when gravity is applied in the two vertical flow

configurations; quantitative differences in the profiles become significant only for the larger
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particles and depend on the orientation of gravity with respect to the mean flow.

Profiles shown in Fig. 3 were computed under a statistically-developing condition for

the particle concentration: typically, the deposition process is very slow and a considerable

amount of time is required to achieve a stationary distribution of particles over the channel

cross-section. The rate of convergence toward a stationary particle distribution is visualized

in Fig. 4, where the time-behavior of nmax
p (normalized to its initial value) is shown for

particles with different inertia. The steep monotonic increase of nmax
p indicates that the

deposition process is actually far from a statistically-steady state (Portela et al., 2002).

Profiles do not differ significantly from each other for the smaller particles (Figs. 4a-c)

while interesting differences (both qualitative and quantitative) are observed for the larger

particles. After an initial transient of about 600 t+, gravity reduces the concentration peak

of the St = 15 and St = 25 particles in both upflow and downflow (Figs. 4d and 4e,

respectively). In contrast, gravity increases the concentration peak of the St = 125 particles

in upflow, but has little effect in downflow (Figs. 4f). Since no lift force model is applied in

these cases, differences in particle behavior can be established solely by particle-turbulence

interaction in combination with the crossing-trajectory effect.

3.2. Statistics of Particle Velocity

In the previous paragraph we quantified the effect of gravity on particle accumulation at

the wall. Here, we will analyze the statistics of particle velocity for each flow configuration

with no lift force model. A similar statistical analysis, yet focused on the effect of particle

inertia, can be found in Picciotto et al. (2005a). In that work, a comparative study of particle

and fluid velocity statistics for channel flow without gravity was proposed to show that

the inertial filtering causes a lag in the particle-to-fluid relative velocity in the streamwise

direction and affects particle wallward drift velocity in the wall-normal direction. Of course,

applying gravity introduces further modifications to the mean velocity profiles.

To compute the mean particle velocities shown in this section the following steps were

taken. First, we divided the channel height into Nb wall-parallel bins. The bth bin has
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thickness:

∆z+
b =

Reτ

2

[

1 − cos

(

π ·
b − 1

Nb − 1

)]

,

which is equal to the wall-normal distance between two neighbouring grid points and de-

creases toward the wall to provide a relatively large number of small bins where the flow

conditions change rapidly. Then, at each time step we determined the bin containing the

particle and we computed the local instantaneous mean particle velocity within each bin.

Finally, we averaged the instantaneous values over time from t+ = 742 to t+ = 1192. Fig. 5

shows the mean particle streamwise velocity, v+
1 , as a function of the wall-normal coordinate,

z+, for each particle timescale and each gravity set up. Also shown is the mean streamwise

velocity of the fluid (solid line). Modifications to the particle velocity profiles gradually ap-

pear as particle inertia increases. While the profiles for the smaller particles overlap almost

perfectly (Figs. 5a-b), those relative to the St = 5 particles (Fig. 5c) are slightly shifted from

each other: when gravity is applied, v+
1 decreases in upflow (Gu, open circles) and increases

in downflow (Gd, black boxes). As expected, this trend is enhanced for the larger particles

(Figs. 5d-f) and has consequences for the direction of the lift force, whose effect on particles

will be analyzed in Section 4. On average, particles in upflow lag the fluid - close to the

wall they actually fall down - so that the lift force is directed toward the channel centerline

leading to a decreased deposition; particles in downflow lead the fluid and they are likely to

be propelled toward the wall contributing to an increased deposition.

Fig. 6 shows the profiles of the mean particle wall-normal velocity, v+
3 , as a function of the

wall-normal coordinate, z+. Symbols are the same as in Fig. 4. Recall that the wall-normal

velocity is directed toward the wall if negative and away from the wall if positive. When

gravity is omitted from the equation of motion (case G0), particles are characterized by a

mean drift velocity directed toward the wall which increases up to St = 25 and then decreases

(Picciotto et al., 2005b). Applying gravity affects slightly the smaller particles as shown in

Figs. 6(a-c): v+
3 is characterized by relatively small values, that produce scattered data

points and make the curves a bit ragged. Differences become more relevant and interesting

to comment for the larger particles. The drift velocity for the St = 15 and the St = 25
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particles (Figs. 6d and 6e, respectively) tends to decrease even though profiles maintain

their qualitative behavior. From a quantitative viewpoint, the drift velocity of the St = 25

particles is smaller in downflow than in upflow, where more slight reductions occur for

30 < z+ < 100. Modifications on the wall-normal velocity profiles of the St = 125 particles

(Fig. 6f) are both quantitative and qualitative. As already mentioned, v+
3 remains negative -

i.e. directed toward the wall - throughout the channel height when gravity is not applied, and

the corresponding profile develops a single peak not far from the wall (roughly at z+ ≃ 40

in wall units). When gravity is applied (cases Gd and Gu), profiles acquire a wavy shape

and v+
3 becomes positive - i.e. directed away from the wall - outside the buffer layer, where

a further local peak is observed. In downflow (black squares), the region of positive v+
3 is

much larger than the region of negative v+
3 , the cross-over occurring at z+ ≃ 50. In upflow

(open circles), the region of negative v+
3 is predominant as the cross-over point shifts toward

the channel centerline, at z+ ≃ 100.

The presence of mean particle drift velocities oriented in opposite directions can be ex-

plained in connection with the mechanisms governing particle transfer to the wall or away

from the wall. It is not our object to focus on these mechanisms and the reader is referred to

the paper by Marchioli and Soldati (2002) for further details. Here, we just recall that parti-

cle transfer is controlled by two types of momentum-carrying events, both displaying strong

spatial coherence: in-sweeps of high-momentum fluid directed toward the wall and ejections

of low-momentum fluid directed away from the wall. On average, particles are either driven

to the wall by the in-sweeps or entrained away from the wall by the ejections; the efficiency

of this process depends on the presence of particles in regions where the transfer mechanisms

can entrain them (Marchioli and Soldati, 2002). In the specific case of downflow, particles

lead the fluid (see Figs. 5d 5e and 5f for instance) and move along straight paths stepping

from one eddy to another. During this motion, particles tend to occupy flow regions of high

streamwise velocity, where ejections are more likely to occur. In contrast, particles in upflow

lag the fluid and preferentially sample regions of low streamwise velocity, which typically

indicate the occurrence of in-sweeps.

To complete the statistical analysis of particle motion under the influence of gravity, it
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is useful to evaluate the particle turbulence intensities. Figs. 7 and 8 show the root mean

square (rms) of particle velocity along the streamwise direction, v+,rms
1 , and the wall-normal

direction, v+,rms
3 , respectively. Profiles for the fluid are also shown (dashed lines). Comparing

both figures, we observe that: (i) particle velocity rms is higher than that of the fluid in

the streamwise direction (with the exception of the St = 125 particles) and lower in the

wall-normal direction, this behavior being mostly due to particle inertia rather than gravity

as explained in Portela et al. (2002) and in Picciotto et al. (2005a); (ii) the rms profiles

overlap almost perfectly for the smaller particles (St = 0.2, 1 and 5) and the inclusion of

gravity appears significant only for St ≥ 15 producing quantitative changes which do not

modify particle behavior from a qualitative viewpoint.

Focusing on the streamwise velocity fluctuations (Fig. 7), we observe that all profiles

develop a peak at z+ ≃ 15, which experiences a monotonic increase up to St = 25 (Figs. 7a-

e) followed by a decrease for the St = 125 particles. This behavior can be better appreciated

in the close-up view included in each diagram. As shown in Fig. 7f, these particles are

affected by gravity in different ways depending on the flow configuration: in upflow, their

streamwise velocity fluctuations are always smaller than in the no-gravity flow and reach the

peak value closer to the wall (at z+ ≃ 5 roughly); in downflow, smaller fluctuations occur

only outside the buffer layer (z+ > 30) or in proximity of the viscous sublayer (z+ < 10)

whereas the peak value shifts away from the wall. In contrast, gravity appears to enhance

the inertial filtering of particle wall-normal velocity fluctuations (Fig. 8), which are most

important for transport, concentration distribution and deposition at the wall. This filtering

effect is particularly evident in the center of the channel and becomes more pronounced as

particle inertia increases, yet it does not seem to depend on the direction of gravity.

Particle velocity profiles shown in Fig. 5 give rise to high particle Reynolds numbers,

which depend on the wall-normal direction. Fig. 9 shows the behavior of the particle

Reynolds number, Rep, along the wall-normal ccordinate, z+, for all flow configurations and

all particle sets considered. For high values of Rep, the validity of the lift force model used

in Eq. 5 should be ensured by the coefficient of Eq. 6. However, Rep depends highly on

the particle response time, τp (Uijttewaal and Oliemans, 1996). For instance, particles with
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large response time will have Rep > 1. In this case, due to the non-linear drag coefficient

accounting for high Rep (see Eq. 5), the actual particle response time will be smaller than

τp: Rep = 10 already leads to a 40% reduction.

Applying gravity causes an increase in the velocity difference between particles and fluid

due to sedimentation of the large particles resulting in an even larger Rep. Fig. 9 shows

that this increase occurs throughout the channel height for all particle sizes. The increase of

Rep for downflow (case Gd) is smaller than for upflow (case Gu) in the center of the channel.

This happens because, in this region, particles in downflow lead the fluid while particles in

upflow lag the fluid with an even higher velocity. For downflow, the near-wall increase of

Rep results from an increased velocity difference in the streamwise direction and is larger

than in upflow, where the smaller upward particle velocities correspond better to the small

near-wall fluid velocities.

A detailed statistical analysis of particle motion was also provided by Uijttewaal and Olie-

mans (1996) to characterize particle deposition in vertical pipe flows. However, comparison

with the present results is rather difficult due to differences in the shear Reynolds numbers

of the flow (Reτ = 360, higher than in our simulations) and in the particle Stokes numbers

(some results are shown for St = 5120 particles only).

3.3. Particle Deposition Rates

The tendency of particles to deposit at the wall produces the concentration profiles shown

in Fig. 3. Here we will examine the rate at which particles deposit, also known as deposition

velocity. Virtually all the experimental data on the deposition rate have been obtained

in turbulent pipe flow. However, because deposition is mainly controlled by the near-wall

turbulence, calculations for channel flow, non-dimensionalised with respect to wall variables,

give similar results to pipe flow and provide a suitable tool for model validation.

Following Cousins and Hewitt (1968), the deposition rate of non-interacting particles is

proportional to the ratio between the mass flux of particles at the deposition surface, J ,

and the mean bulk concentration of particles, C. According to this definition, the constant
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of proportionality, defined as the deposition coefficient kd, can be calculated through the

following turbulent transport equation:

J = −kd · C . (8)

Given the initial number N0 of particles released in the channel, we discretized the non-

dimensional flux of particles, J+, and mean bulk concentration, C+, as follows:

J+ =
1

A+
d

·
dNdep(t

+)

dt+
=

1

L+W+
·
∆Ndep(t

+)

∆t+
, (9)

C+ =
N0 − Ndep(t

+)

V +
=

N0 − Ndep(t
+)

L+W+z+
dep

, (10)

where Ndep(t
+) is the number of particles deposited at time t+, A+

d = L+W+ is the area of

deposition and V + = L+W+z+
dep is the corresponding occupied volume. Here, L+ and W+

represent the non-dimensional length and width of the channel, whereas z+
dep = d+

p is the

distance from the wall at which we assume a particle deposits.

To reproduce the condition of perfectly absorbing wall imposed by Uijttewaal and Olie-

mans (1996), particles are labelled as deposited even if they are subsequently re-entrained

in the core region of the channel. We identify the deposition surface precisely at z+
dep to

separate the core region of the channel from the deposition region. In this region, J+ and

C+ are obtained from Eqs. 9 and 10 by counting the number of particles ∆Ndep deposited

during subsequent time intervals ∆t+ (equal to 2.25 viscous time units in this study). Upon

substitution of Eqs. 9 and 10 into Eq. 8, we obtain the following expression for the deposition

coefficient:

k+
d = −

∆Ndep(t
+) d+

p

∆t+[N0 − Ndep(t+)]
. (11)

Table 2 reports the non-dimensional values of the deposition coefficient, k+
d , as function of

particle Stokes number. For the range of Stokes numbers considered, sampling intervals of

450 wall time units (from t+ = 742 to t+ = 1192) were sufficient for obtaining converged

deposition velocities, i.e. increases in the sampling interval did not appreciably change the

deposition rate. The same values are also shown in the bi-logarithmic plot of Fig. 10 to

visualize the trend. For comparison purposes, in Fig. 10 we also include the experimental
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results already shown in Fig. 1 together with two empirical correlations between deposition

coefficient and particle response time proposed by Liu & Agarwal (1974) - k+
d = 6.00·10−4St2,

boldface solid line - and by McCoy & Hanratty (1977) - k+
d = 3.25 ·10−4St2, boldface dashed

line. Both correlations show that, when scaled in wall units, the deposition rate can be

correlated with the square of the response time for Stokes numbers varying from about 0.2

to 23. However, the large spread in experimental data on which the correlations are based

indicates an uncertainty in the constant of proportionality, which can be estimated to be

roughly 50% (van Haarlem et al., 1998). Uncertainty in estimates of the deposition rate

is expected to affect also numerical data, particularly in the case of particles with small

inertia: as St decreases, there are fewer depositing particles and it is difficult to obtain

accurate values of the deposition rates. It is further difficult to estimate accurately the

uncertainty of calculation of the deposition rate since the number of simulations required

to obtained precise ensemble averages is quite expensive. As a consequence, there is little

quantitative agreement among authors on the accurate value of deposition rates.

Results shown in Fig. 10 are qualitatively consistent with previous findings (Friedlander

and Johnstone, 1957; Liu and Agarwal, 1974; Uijttewaal and Oliemans, 1996; Zhang and

Ahmadi, 2000; Marchioli et al., 2003). A monotonic increase of the deposition coefficient

with inertia is observed up to St = 25 for all flow configurations considered. For larger

St, the deposition coefficient reaches a saturation level and becomes roughly independent

of particle response time. It is clear from Fig. 10 that DNS calculations yield deposition

rates which are in fair agreement with those obtained from the empirical correlations for

5 < St < 25, while the deposition coefficient for the St = 0.2 and the St = 1 particles is

much less than the experimental values. Overall, these values suggest that the deposition

rate increases quadratically with particle response time whereas DNS predicts a dependence

larger than St2. This result is in agreement with those reported by Wang and Squires (1996)

and by Wang et al. (1997).

Gravity does not modify the maximum value of deposition, which still occurs around

St = 25 (Picciotto, et al., 2005b), yet it changes the quantitative value of k+
d . For the smaller

particles (St = 0.2), k+
d is increased by gravity in downflow and reduced in upflow. However,
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these changes occur on very small values - O(10−5÷10−6). For intermediate Stokes numbers

(1 < St < 15), modifications due to gravity remain small and become important only for

the larger Stokes numbers, which correspond to particles with large settling velocities. For

these particles, maxima are smaller in downflow (case Gd, open squares) than in flow with

no gravity (case G0, open circles) and in upflow (case Gu, open triangles). As pointed out

by Uijttewaal and Oliemans (1996), the reduced deposition coefficient in downward flow is

likely due to the crossing trajectory effect, which makes the motion of large-inertia particles

less correlated to the local turbulent flow field.

4. EFFECTS OF LIFT ON PARTICLE STATISTICS

In this Section the effects of lift on particle statistics are discussed. The lift force is ex-

pected to produce significant changes in particle behavior in turbulent shear flows (McLaugh-

lin, 1991; Kurose and Komori, 1999). However, prediction of these changes is affected by

the model used for the lift term in the equation of motion for the particles: results will

differ depending on the model employed (Wang and Squires, 1996). In the present study, we

used the model proposed by McLaughlin (1991) and later improved by Kurose & Komori

(1999). Results are presented in the same fashion as done for Section 3: first, we will anal-

yse the effect of lift on particle velocity statistics; then particle number density and particle

deposition rates with and without lift will be compared for the different gravity set ups.

Statistics were computed averaging over a time span of 450 wall units (which correspond to

3.6 non-dimensional response times of the larger particles considered in this study) starting

from t+ = 742.

4.1. Statistics of Particle Velocity

Fig. 11 shows the mean particle streamwise velocity, v+
1 , for each gravity set up and all

particle time scales. As expected, profiles for the smaller particles (St = 0.2, Figs. 11a-c;

and St = 1, Figs. 11d-f) are almost unaffected by the lift force. Modifications gradually

appear as particle inertia increases, due to the larger velocity slip between particles and fluid
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(see Fig. 5). This is particularly evident in the upflow/downflow configurations. Consider

for instance the St = 5 particles: their streamwise velocity does not change when the lift

force is applied in the no-gravity flow (Fig. 11g), yet the same velocity component starts to

increase in the near-wall region (z+ < 10) when lift and gravity act in tandem (Figs. 11h-i).

A similar qualitative behavior is observed for the three larger particles, whose streamwise

velocity profiles are weakly modified by lift in the simulations without gravity (Figs. 11l,

11o and 11r).

More evident modifications for these particles occur in vertical channel flow. In downflow,

lift accelerates the St = 15 and the St = 25 particles everywhere except very close to the

wall, in a thin fluid slab one wall unit thick where velocity profiles collapse onto each other

(Figs. 11m and 11p, respectively). The reason for this behavior is not completely clear and

deserves further investigation. In upflow (Figs. 11n and 11q), lift weakly slows the particles

for z+ > 10 and increases their streamwise velocity for z+ < 10: in this near-wall fluid

slab, v+
1 remains positive even at the wall and particles are actually able to move upward.

For the larger particles (St = 125), the velocity profile is not modified by lift in downflow

(Fig. 11s); in contrast, applying lift in upflow (Fig. 11t) prevents the monotonic decrease of

particle streamwise velocity near the wall producing an increase for z+ < 3. This behavior

can be explained considering the large velocity slip existing between particles of this size

and the fluid: negative slip, due to particle velocity being lower than that of the fluid (as

occurs in upflow), generates a repelling lift force directed away from the wall. On average,

this repelling lift force prevents particles from reaching the wall unless they are entrained by

strongly coherent in-sweeps (Marchioli and Soldati, 2002). Particles brought to the wall by

in-sweeps end up in regions of higher-than-mean streamwise velocity. As particles adapt to

the new fluid environment, they tend to sample preferentially high-speed near-wall regions

(Kim et al., 1987).

Fig. 12 shows the particle wall-normal velocity, v+
3 . The velocity profiles shown in Figs.

12a-f are characterized by very small values around zero. The scatter in the data points,

making the profiles a bit ragged, is likely due to the number of particles on which the

calculation is based and to the time span chosen for averaging. Note that particles with small
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inertia (the St = 0.2 particles in particular) are characterized by small mean values of v+
3 ; the

instantaneous values of v+
3 , however, scale with the wall-normal velocity fluctuations and can

be orders of magnitude larger than the mean. We also remind that all statistics presented

in this paper are relative to a statistically-developing condition for particle concentration:

thus, the behavior of the wall-normal particle velocity just described is strongly dependent

on the time interval over which profiles are computed. In the present study, profiles were

computed from t+ = 742 to t+ = 1192. This early time interval allowed us to evaluate

the evolution of the particle wall-normal velocity far from the condition of statistically-

steady particle concentration, when profiles necessarily tend toward a zero value whatever

the particle inertia.

In the no-gravity flow, lift appears to increase the drift of particles to the wall up to St = 5,

yet producing small modifications on the profiles for both the St = 0.2 particles (Fig. 12a)

and the St = 1 particles (Fig. 12d). For larger particle timescales and particularly for

St = 25 (Fig. 12o), the effect is opposite and leads to a significant reduction of v+
3 . When

also gravity is applied in either downflow or upflow, the presence of the velocity slip in the

streamwise direction together with the lift force produces both quantitative and qualitative

changes. For the downflow case, characterized by positive slip, these changes lead to an

increase of particle drift velocity toward the wall, as profiles all shift toward the negative

values (Figs. 12b to 12s along the central column). Completely different results are obtained

for the upflow case (Figs. 12c to 12t along the right-hand column), in which lift acts to

push particles away from the wall. It is apparent that lift reduces the average wall-normal

velocity to very small values (close to zero) throughout the channel height. This occurs

for all particles timescales with the exception of St = 125 (Fig. 12t). In this latter case,

the shape of the velocity profile is maintained from a qualitative viewpoint: a quantitative

reduction of the drift velocity still occurs, particularly in the range 20 < z+ < 60, but it is

less dramatic.

The lift force is expected to modify the turbulent velocity fluctuations of the dispersed

phase, as well. For sake of brevity, we do not show the statistics here (raw data are available

on-line for interested readers): we only mention that significant quantitative modifications
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are observed in the range 5 < St < 25 at the “top” of the deposition curve, where the lift

force is felt most strongly.

4.2. Particle Number Density Profiles

The effect of the lift force on particle number density, np, is shown in Fig. 13. In the

absence of gravity, lift tends to increase the peak of particle number density at the wall

up to St = 5 (Figs. 13a, 13d and 13g); a result which is in agreement with the increase

in the wall-normal velocity observed in Fig. 12 for the same range of particle timescales.

Also in agreement with the results of Fig. 12 is the reduced accumulation for the larger

particles. Specifically, for the St = 15 particles (Fig. 13l) and for the St = 25 particles

(Fig. 13o), this reduction occurs within 5 wall units from the wall, where a cross-over point

is located. For larger distances from the wall, particle number density becomes larger when

lift is applied. Profiles look qualitatively similar for the St = 125 particles (Fig. 13r), yet

with smaller quantitative modifications. As for the statistics of particle velocity, the most

interesting changes are observed for the two vertical flow configurations. First, lift tends

to “pack” particles in downflow right at the wall (the last point in each profile), where a

huge increase of particle number density is generated: this increase is roughly O(102) for the

St = 1 particles (Fig. 13e) and for the St = 5 particles (Fig. 13h); it is O(10) for St > 15

(Figs. 13m, 13p and 13s, respectively). Second, the negative velocity slip occurring in

upflow induces a repelling lift that acts to reduce wall accumulation (Figs. 13c to 13t in the

right-hand column): in particular, this reduction leads to thin near-wall regions completely

depleted of particles for the two smaller timescales (see Figs. 13c and 13f, where the value

of np at the last point in the plot drops to zero). The lift force also appears to shift the

number density peak toward the center of the channel. Consider the three larger particle

sets, for instance: gravity alone generates a peak right at the wall, which moves at z+ ≃ 5

when lift is applied (Figs. 13n, 13q and 13t).

The particle number density distributions for the cases without lift are produced by the

occurrence of particle fluxes toward and away from the wall (Marchioli and Soldati, 2002)
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which, in turn, are governed by different deposition mechanisms. These mechanisms are

summarized in the schematic of Fig. 14a (Narayanan et al., 2003; Portela et al., 2002),

where the log-law profile for the fluid velocity is also shown: (1) turbophoresis, a manifesta-

tion of the skewness in the velocity distribution of the particles (Reeks, 1983) which explains

the tendency of the particles to drift from the bulk flow toward the near-wall accumulation

region; (2) impaction deposition, representing the fraction of the turbophoretic drift which

coasts through the accumulation region and deposits directly; and (3) ‘diffusion’ deposition,

which removes particles from the accumulation region due to the residual turbulent fluctu-

ations at the accumulation region. A fourth mechanism is due to turbulent diffusion, which

acts to smooth the concentration gradients in the accumulation region. When the lift force

is acting on the particles, it increases the turbophoretic drift in the downflow case (Fig. 14b)

by increasing the particle wall-normal velocity (see Fig. 12, diagrams in the central column)

so that particle deposition by impaction is favoured. On the contrary, the effect of lift in

upflow (Fig. 14c) reduces the particle wall-normal drift velocity (see Fig. 12, diagrams in the

right-hand column) and acts like an additional turbulent diffusion which removes particles

away from the near-wall region. Note that, for visualization purposes, the particle number

density profiles used in the sketches of Fig. 14b and Fig. 14c are those relative to the St = 5

particles.

4.3. Particle Deposition Rates

Table 3 reports the non-dimensional values of the deposition coefficient, k+
d , for all flow

configurations as function of particle Stokes number, St. The same values are also shown

in the bi-logarithmic plot of Fig. 15 to visualize the trend. When particles are not subject

to gravity (Fig. 15a), lift reduces the deposition coefficient for St = 0.2 and increases it for

the intermediate timescales, particularly for St = 5. When particles are subject to gravity

the deposition velocity may either increase or decrease depending on the direction of the

shear-induced lift force. If gravity is in the flow direction (i.e. downflow, Fig. 15b), lift

is toward the wall since the heavy particles lead the fluid. Therefore, the deposition rate
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increases. If gravity is in the opposite direction (i.e. upflow, Fig. 15c), the lift force tends to

move the particles away from the wall and the deposition rate decreases. From a qualitative

viewpoint, similar variations of the deposition velocity were observed by Zhang and Ahmadi

(2000) for heavy particles (ρp/ρf = 103 and 2 · 103) with Stokes numbers up to St = 10

in vertical channel flow at Reτ = 125. However, these authors computed the deposition

velocity during the first 100 time wall units of the simulation using samples of 8192 particles

per Stokes number. These differences make the quantitative comparison very difficult.

In downflow (Fig. 15b), lift enhances particle deposition rate up to St = 25: in particular,

k+
d increases by roughly two orders of magnitude in the range 0.2 ≤ St ≤ 5. In upflow (Fig.

15c), a reduction for 0.2 ≤ St ≤ 1 and an increase for St = 5 is observed. Whichever

is the flow configuration, however, the qualitative behavior of the particle deposition rate

does not undergo a radical modification because of the lift force. As shown in Fig. 15, the

trend of each deposition curve with respect to the particle Stokes number is maintained, this

being particularly true for the larger particles (St = 125). Although leading the fluid in the

near-wall region, the motion of these particles is not much affected while travelling across

the relatively thin near-wall layer (Uijttewaal and Oliemans, 1996).

In our opinion, the results just discussed provide useful information to develop engineering

models for prediction of deposition rates and concentration distribution in wall-bounded

flows. Recalling the deposition mechanisms illustrated in Fig. 14, the time derivative of

particle concentration in the accumulation region can be expressed by the following volume

flux balance equation:

dC

dt
= Φin − Φout = ∆Φ ≥ 0 , (12)

where Φin is the total volume flux of particles entering the accumulation region either from

the core region of the flow (due to turbophoresis) or from the wall (due to turbulent diffusion)

and Φout is the total volume flux of particles exiting the accumulation region either toward

the core region of the flow (due to re-entrainment by ejection events) or toward the wall (due

to diffusional deposition). Clearly, the condition dC/dt = ∆Φ = 0 holds at steady state.
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According to Eq. 11, one can write:

∆Φ =
dJ

dz
= kd

dC

dz
, (13)

and the deposition coefficient, kd, must be computed considering the different deposition

mechanisms by which it is modified. For particles in the diffusion-impaction regime, in par-

ticular, diffusion deposition and impaction deposition appear the most important competing

mechanisms (Marchioli et al., 2003; Narayanan et al. 2003). From a practical engineering

viewpoint, it is of importance to develop deposition models capable of accounting for both

mechanisms. A rather simple model of this kind has been developed by Soldati and An-

dreussi (1996) basing on the assumption of diffusion and impaction acting in parallel. Thus,

the total deposition coefficient is given by:

kd = VIkI + (1 − VI)kD , (14)

where VI represents the volume fraction of particles depositing by impaction, kI is the

impaction deposition coefficient and kD is the diffusion deposition coefficient. The present

DNS database could be used to evaluate the quantities on the right-hand side of Eq. 14 and

to estimate the quantitative modifications they undergo due to lift.

5. CONCLUSIONS

In this paper, we address the problem of quantifying the effects of gravity and lift on

particle dispersion and deposition in wall-bounded turbulent flows. To this aim, detailed

statistics of particle velocity and deposition rates were obtained from direct numerical sim-

ulation of fully-developed channel flow at low Reynolds number. Different flow configura-

tions (flow with no gravity, vertical downflow and vertical upflow) and several values of the

particle Stokes number, namely the particle timescale, were considered to cover a broad

range of situations. The data resulting from this study apply to dilute dispersed systems

and can hardly be obtained by experiments. They are made available as ASCII files at

http://cfd.cineca.it (mirror site: http://158.110.32.35/download/database) for

possible use in validation of engineering models for particle dispersion.
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Results put forth in this paper show first the influence of gravity on particle wall accu-

mulation and on particle deposition rate via the crossing-trajectory effect. In particular, it

is observed that quantitative modifications on the statistics become relevant starting from

particles with St ≃ 25, a value which can be roughly viewed as threshold to discriminate

between “small” and “large” particles. In the case of small particles, gravity has little effect

on their average settling velocity, which tends to remain smaller than the average turbulent

fluctuating velocities. More generally, the impact of gravity on the motion of these small

particles is rather weak and leads to negligible quantitative modifications of the statistics.

In the case of large particles, velocity correlations along the particle trajectories tend to

decrease due to the crossing-trajectory effect and particle motion becomes disengaged from

fluid turbulence. This leads to quantitative changes in the accumulation process, which also

depend on the gravity setup being considered, and to modified statistics of particle velocity.

Results obtained for the deposition coefficient are fully representative of this behavior.

The present datasets also include particle velocity and deposition statistics that quantify

the effect of the lift force on particles. Neglecting this effect can become very stringent since

the lift force can modify particle accumulation rates under given conditions (Uijttewaal and

Oliemans, 1996; Marchioli et al., 2003). For instance, it can reduce wall accumulation in

an upward pipe flow for particle timescales in the range 3.8 < St < 27.9 (Marchioli et al.,

2003). The accuracy of the model used to reproduce the effect of the lift force in the particle

equation of motion is also important. In the present study, a model accounting for linear

shear flow conditions and high particle Reynolds numbers is used, which is more appropriate

for simulations of wall-bounded turbulent shear flows than the Saffman formula.

Present results demonstrate that lift may have a significant effect on the mean particle

drift velocity toward the wall (which is modified throughout the channel height) and, in

turn, on particle accumulation in the near-wall region. This effect becomes more and more

evident as the particle timescale is increased and is observed in each flow configuration.

Evaluation of the deposition rate indicates that changes due to lift will be quantitatively

different depending on the particle timescale. Specifically, the rate at which particles with

St > 25 deposit is almost unaffected by lift whereas smaller particles will either increase or

26



decrease their deposition rate depending on the orientation on gravity with respect to the

mean flow.

The accumulation of particles in the near-wall region indicates that gravity and lift modify

the statistics of the dispersed phase mostly from a quantitative viewpoint, in agreement with

the conclusion that the non-homogeneity of particle distribution is primarily a result of the

dynamic interaction occuring between particles and near-wall turbulent structures. In this

respect, all other forces acting on particles appear to simply superpose and, eventually,

merge their effects. As the non-homogeneity of particle distribution builds up over time,

regions in which the dilute system assumption locally breaks down may appear. The present

results would be of limited value in these regions. However, because of the relatively small

volume fraction occupied by the particles, their effect on turbulence is expected to be rather

small in the time span within which statistics were computed.
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TABLE CAPTIONS

Table 1 : Parameters relevant to the simulations of particle dispersion. Superscript +

identifies non-dimensional variables. Note that, in the present study, St = τ+
p =

τp/τf by definition.

Table 2 : Deposition coefficient, k+
d , as function of particle Stokes number, St (simu-

lations without lift). Statistics are time averaged from t+ = 742 to t+ = 1192.

Table 3 : Deposition coefficient, k+
d , as function of particle Stokes number, St, for

simulations with lift. Statistics are time averaged from t+ = 742 to t+ = 1192.
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FIGURE CAPTIONS

Figure 1 : Particle deposition from fully-developed turbulent pipe flow: a summary of

experimental data (courtesy of Young and Leeming, 1997).

Figure 2 : Flow configurations: no-gravity flow (G0), vertical downflow (Gd, gravity

directed along the positive x-axis) and vertical upflow (Gu, gravity directed along

the negative x-axis).

Figure 3 : Instantaneous particle number density, np, as a function of wall distance,

z+, at t+ = 675 (left column) and at t+ = 1125 (right column). (a-b) St = 0.2,

(c-d) St = 1, (e-f) St = 5, (g-h) St = 15, (i-l) St = 25, (m-n) St = 125. Symbols:

+ no gravity; � downflow; © upflow.

Figure 4 : Maximum value of particle number density at the wall, nmax
p , as function

of time, t+. (a) St = 0.2, (b) St = 1, (c) St = 5, (d) St = 15, (e) St = 25, (f)

St = 125. Symbols: + no gravity; � downflow; © upflow.

Figure 5 : Mean streamwise velocity, v+
1 , as a function of wall distance, z+. Statistics

are time averaged from t+ = 742 to t+ = 1192. (a) St = 0.2, (b) St = 1, (c)

St = 5, (d) St = 15, (e) St = 25, (f) St = 125. Solid line: fluid. Symbols: + no

gravity; � downflow; © upflow.

Figure 6 : Mean wall-normal velocity, v+
3 , as a function of wall distance, z+. Statistics

are time averaged from t+ = 742 to t+ = 1192. (a) St = 0.2, (b) St = 1, (c)

St = 5, (d) St = 15, (e) St = 25, (f) St = 125. Solid line: fluid. Symbols: + no

gravity; � downflow; © upflow.

Figure 7 : Root mean square of particle streamwise velocity, v+,rms
1 , as a function of

wall distance, z+. Statistics are time averaged from t+ = 742 to t+ = 1192. (a)

St = 0.2, (b) St = 1, (c) St = 5, (d) St = 15, (e) St = 25, (f) St = 125. Dashed

line: fluid. Symbols: + no gravity; � downflow; © upflow.
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Figure 8 : Root mean square of particle wall-normal velocity, v+,rms
3 , as a function of

wall distance, z+. Statistics are time averaged from t+ = 742 to t+ = 1192. (a)

St = 0.2, (b) St = 1, (c) St = 5, (d) St = 15, (e) St = 25, (f) St = 125. Dashed

line: fluid. Symbols: + no gravity; � downflow; © upflow.

Figure 9 : Mean particle Reynolds number, Rep, as a function of wall distance, z+.

(a) St = 0.2, (b) St = 1, (c) St = 5, (d) St = 15, (e) St = 25, (f) St = 125.

Symbols: + no gravity; � downflow; © upflow.

Figure 10 : Deposition coefficient, k+
d , as function of particle Stokes number, St.

Statistics are time averaged from t+ = 742 to t+ = 1192. Symbols: © no

gravity; � downflow; △ upflow.

Figure 11 : Mean streamwise velocity, v+
1 , as a function of wall distance, z+. Statistics

are time averaged from t+ = 742 to t+ = 1192. (a-c) St = 0.2, (d-f) St = 1,

(g-i) St = 5, (l-n) St = 15 (o-q) St = 25, (r-t) St = 125. Symbols: + no gravity,

H no gravity with lift; � downflow, ▽ downflow with lift; © upflow, N upflow

with lift.

Figure 12 : Mean wall-normal velocity profiles, v+
3 , as a function of wall distance, z+.

Statistics are time averaged from t+ = 742 to t+ = 1192. (a-c) St = 0.2, (d-f)

St = 1, (g-i) St = 5, (l-n) St = 15 (o-q) St = 25, (r-t) St = 125. Symbols: + no

gravity, H no gravity with lift; � downflow, ▽ downflow with lift; © upflow, N

upflow with lift.

Figure 13 : Instantaneous particle number density profiles, np, as a function of wall

distance, z+. Statistics are calculated at t+ = 1125. (a-c) St = 0.2, (d-f) St = 1,

(g-i) St = 5, (l-n) St = 15 (o-q) St = 25, (r-t) St = 125. Symbols: + no gravity,

H no gravity with lift; � downflow, ▽ downflow with lift; © upflow, N upflow

with lift.

Figure 14 : Near-wall driving mechanisms, responsible for particle concentration
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build-up in the near-wall accumulation region (a) and effect of lift on particle

concentration in the case of downflow (b) and in the case of upflow (c).

Figure 15 : Particle deposition coefficients, k+
d , as a function of the Stokes number,

St. Statistics are time averaged from t+ = 742 to t+ = 1192. No gravity (a);

vertical downward (b); vertical upward (c). Symbols: + no gravity, H no gravity

and lift; � downflow, ▽ downflow and lift; © upflow, N upflow with lift.

35



TABLES

St = τ+
p τp (s) d+

p dp (µm) V +
s = g+St Re+

p =
V +

s d+
p

ν+

0.2 2.265 · 10−4 0.068 9.12 0.019 1.4 · 10−3

1 1.133 · 10−3 0.153 20.4 0.094 0.014

5 5.660 · 10−3 0.342 45.6 0.472 0.161

15 1.698 · 10−2 0.586 78.2 1.416 0.829

25 2.832 · 10−2 0.765 102 2.360 1.805

125 1.415 · 10−1 1.71 228 11.79 20.158

Table 1 - “Influence of gravity and lift...” - Marchioli et al.
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St = τ+
p k+

d |G0
k+

d |Gu k+
d |Gd

0.2 0.333E − 05 0.190E − 05 0.666E − 05

1 0.200E − 04 0.167E − 04 0.266E − 04

5 0.349E − 02 0.284E − 02 0.276E − 02

15 0.410E − 01 0.380E − 01 0.292E − 01

25 0.799E − 01 0.750E − 01 0.415E − 01

125 0.110E + 00 0.701E − 01 0.301E − 01

Table 2 - “Influence of gravity and lift...” - Marchioli et al.
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St = τ+
p k+

d |G0
k+

d |Gu k+
d |Gd

0.2 0.126E − 05 0.000E + 00 0.236E − 03

1 0.300E − 04 0.333E − 05 0.680E − 02

5 0.168E − 01 0.614E − 02 0.704E − 01

15 0.968E − 01 0.455E − 01 0.747E − 01

25 0.120E + 00 0.761E − 01 0.614E − 01

125 0.122E + 00 0.557E − 01 0.314E − 01

Table 3 - “Influence of gravity and lift...” - Marchioli et al.
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Figure 1 - “Influence of gravity and lift...” - Marchioli et al.
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Figure 12 - “Influence of gravity and lift...” - Marchioli et al.
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Figure 13 - “Influence of gravity and lift...” - Marchioli et al.
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Figure 14 - “Influence of gravity and lift...” - Marchioli et al.
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Figure 15 - “Influence of gravity and lift...” - Marchioli et al.
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