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Modeling and Simulation: trend

• Every field of science and engineering has seen an increasing demand for and use
of modeling & simulation over the last two decades or so. Why?

Look for more demanding problems and, in turn, create capabilities to solve them.
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• Every field of science and engineering has seen an increasing demand for and use
of modeling & simulation over the last two decades or so. Why?

Cost vs year (left), # transistors vs year (right); (web).

Look for more demanding problems and, in turn, create capabilities to solve them.
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Modeling and Simulation: Why?

• Cost: generally much cheaper than experiments.

• Feasibility: often more simple to setup than a real experiment.

• Safety: they can be safer than conducting real-world experiments. For example,
simulating nuclear devices, extreme climate or natural events.

• Flexibility: they allow to freely change the configuration of target parameters.

• Speed: simulations are (generally) conducted faster than experiments. Also
accounting for preparation and setup time.
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Towards Exascale

• 1 exaFlops (1e18) calculations per second, supposedly arriving by 2023-2024.

• As of June 2018:
• Summit (USA): 187 PFlops
• Sunway TaihuLight (China): 125 PFlops
• Sierra (USA): 120 PFlops
• Tianhe-2 (MilkyWay-2) (China): 54 PFlops

• Opportunities: simulations at an unprecedented length and time scales.
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State-of-the-art simulations

Landing of Boeing 777 (NASA)[SC17]

Simulation of quadcopter (NASA)[SC17]

Meteoroid Airburst (NASA)[SC17]
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Background and Motivation

• Predictive modeling & simulation is becoming crucial for science but...

George E. P. Box, 1919 - 2013 (statistician)

“Remember that all models are essentially wrong; the practical
question is how wrong do they have to be to not be useful.”

• Can we trust a simulation?
1 Verification: predictions are consistent with the underlying mathematical model.
2 Validation: are we building the right “tool”? i.e. agreement with experiments.
3 Prediction: how reliable are the predictions?

• Models with complex physics + many parameters: small uncertainties/errors
in the model/parameters can strongly affect the predictions.

• Key role when high-fidelity/risk assessment is of central importance.

• Uncertainty Quantification (UQ): quantifying/characterizing uncertainty.
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UQ is important for...

• Chaotic systems : sensitivity to initial conditions

• Boundary conditions/initial conditions
• can be very complex to set for non trivial systems.

• Large Eddy Simulation (LES): subgrid scale models.

• Combustion
• not much confidence on reaction rates (κi).

• Materials
• e.g. physical parameters, microstructure, isotropy, etc.

• Molecular dynamics: interatomic potentials
• Plasma physics

• e.g. physical parameters, poorly understood high-temperature kinematics
• Multi-physics/multi-scale simulations

• subsystems interactions, information propagation, a mix of all of the above.
• climate models are the representative example.

• ...
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Example of why correlations matter

• Consider φ(x, y, t; a, b):

ẋ(t) = a2 − b2

ẏ(t) = ab + 0.01 sin(x)

• a, b are model parameters:

(a, b) ∼ N ([2 1],Cov)

• Two cases:
Uncorrelated parameters:

Cov =

[
0.6 0.0
0.0 1.45

]
Correlated parameters:

Cov =

[
0.6 −0.9
−0.9 1.45

]
• Same marginal densities.

• What is the impact of the correlation?
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Example: results

• Sample the joint PDFs: {(ai, bi)
U,C}n

i=1

• Compute trajectories from
(x0 = 1, y0 = 0.5).

• Two sets of predictions: {(xj, yj)
U,C
∣∣
T}n

j=1

• Estimate the joint PDFs.

• Model predictions are substantially different.
• Correlation has large impact.

• Especially important for more complicated
and non-linear systems.
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Forward Propagation

? F. Rizzi, H. Najm, B. Debusschere, K. Sargsyan, M. Salloum, H. Adalsteinsson and O. Knio -
Part I – SIAM Multiscale Modeling & Simulation, 10(4), 1428-1459.

? F. Rizzi, H. Najm, B. Debusschere, K. Sargsyan, M. Salloum, H. Adalsteinsson and O. Knio -
Part II – SIAM Multiscale Modeling & Simulation, 10(4), 1460-1492.

? F. Rizzi, Ph.D. thesis, The Johns Hopkins University, Baltimore, MD.
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Background and Motivation: MD overview

• 1957: seminal work in molecular dynamics (MD).
(Alder and Wainwright)

• 1964: first MD simulation based on a realistic
potential (Lennard-Jones): liquid Ar (Rahman).

• 1974: first MD simulation of liquid water.
(Stillinger and Rahman)
. . .

MD simulation of Na Cl in water.

• MD is useful and cheap (vs. experiments).

• Industrial/academic applications: liquids, solids,
proteins and nucleic acids (DNA, RNA).

• As every simulation technique, MD is an
approximation method with a few weaknesses...

MD snapshot of DNA (Biophys. group, UIUC)
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Background and Motivation: MD overview

• Classical MD simulation (Frenkel,2001; Allen & Tildesley,1987):

d2r(i,t)
dt2 =

f(i,t)
mi

f(i,t) = −∇riΦ(r(1,t), . . . , r(N,t)) i = 1, . . . ,N

• Φ is the potential (or force-field), defined before starting the simulation.

• Φ should be tailored to the target application.

• Reliability depends on the accuracy of Φ.

• Continuous development of potentials and experience over the years.

• MD potential represents an important source of uncertainty.
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Potential Uncertainty for Water

• Water is the most investigated liquid.

• “Looks” simple...but it is not!

• Behavior of liquid water is quite different
from other similar liquids: 41 “anomalies”!

• More that 50 water models have been developed!

% NO existing model is able to reproduce with good accuracy all its properties.

% Many sources of uncertainty to consider:
potential form and parameters, thermal noise, molecular geometry, etc...
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Potential Uncertainty for Water

• Review of MD water models Guillot(2002) and Wallqvist(2007).

Acronym Date Type Sites Reference
SPC 1981 rigid 3 (Berendsen,1981)

TIP3P 1981 rigid 3 (Jorgensen,1983)
SPC/F 1985 flexible 3 (Toukan,1985)

SPC/FP 1991 flexible,polarizable 3 (Zhu,1991)
NSPCE 1998 rigid 3 (Errington,1998)
SPC/Fw 2006 flexible 3 (Wu,2006)

BF 1933 rigid 4 (Bernal,1933)
RWK 1982 flexible 4 (Reimers,1982)
TIP4P 1983 rigid 4 (Jorgensen,1983)

PTIP4P 1991 polarizable 4 (Sprik,1991)
TIP4P/FQ 1994 polarizable 4 (Rick,1994)
TIP4P-Ew 2004 rigid 4 (Horn,2004)

TIP4P/2005 2005 rigid 4 (Abascal,2005)
ST2 1973 rigid 5 (Stillinger,1974)

TIP5P 2000 rigid 5 (Mahoney,2000)
TIP5P-Ew 2004 rigid 5 (Rick,2004)

NvdE 2003 rigid 6 (Nada,2003)

Table: Reduced list of water models developed since 1933.
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Potential Uncertainty for Water

a Most water models use Lennard-Jones (LJ)
potential to describe Van der Waals forces.

ΦLJ(r) = 4ε
{(σ

r

)12
−
(σ

r

)6
}

◦ Different models involve different values of
the LJ parameters ε, σ.

b Rigid or flexible molecule.

c H2O geometry: from 3-site to 6 sites models.
...

• Discussion holds for several other systems:
potential and parameters are important
sources of uncertainty to consider.

O

H H

O

H H

O

H H

O

H H
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q /3o

q /3o
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+ + + +

+ + + +

-

3-site 4-site

5-site 6-site
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Ab Initio MD versus Classical MD

• 1984: ab initio MD by Car and Parrinello.
Full quantum mechanical electronic structure
problem is solved “on-the-fly” to compute forces.
√

No need for the potential.

X Large computational cost, small-size systems.

X Practical time scales on the order of picosec.

Ab initio simulation of protein folding.
Isosurface of electrostatic potential -, +
due to the instantaneous configuration.
Source: Pietro Faccioli, Univ. TN, Italy

• Classical MD:
X Need potential.
√

Systems of order 106 atoms with current supercomputers.
√

Practical time-scales on the order of nanosec/microsec.

• Nano(micro) seconds: ideal time-scale to explore atomistic systems.

⇒ Feasible time scales still makes classical MD the preferred setting.
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Forward Propagation in MD

• Focus on MD simulations of liquid water at ambient conditions.

• How uncertainties in a set of potential parameters affect MD predictions.

ObservationsParameters

Francesco Rizzi UQ for Predictive Modeling & Simulation



Background and Motivation UQ Forward Propagation Conclusions

Forward Problem

• Consider a generic computational model (ODEs/PDEs):

Observations: G(H)Parameters: H
φ

• Forward problem = uncertainty definition + propagation.

• Aleatoric (intrisic) uncertainty:
• Physical variability in the system or its environment: e.g. fabrication processes.
• Not strictly due to lack of knowledge.
• It cannot be avoided/reduced.

• Epistemic (parametric) uncertainty:
• Uncertainty solely due to lack of knowledge: e.g. turbulence models.
• E.g. missing/partial information, simplifications in the model formulation, etc.
• It can be reduced and is usually important.

• Propagation: characterize the impact on target model observables.
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Forward Problem for Intensive Simulations

• Assume φ is expensive, i.e. we can afford limited number of runs.

• Propagation methods:
1 “Pure sampling”: Monte Carlo, importance or adaptive sampling.

X Require many runs, yields limited information, slow convergence.

2 “Local methods”: Taylor series, perturbation method.
X Local variability of an output with respect to inputs.
X Only local information, no PDFs of G can be obtain.

3 “Functional methods”: polynomial chaos expansion (PCe).
X “Global” representation with respect to the input space.
X Allows estimation of PDFs and moments of observable (G) easily and efficiently.
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PCe: one uncertain input, one output

• Forward model: G(x, t, h) = φ(x, t; h); h = parameter; G = observable.

• Suppose uncertainty on h in the form:

h = µ+ σ ξ, p(ξ) = N (0, 1)

• h is a RV⇒ output G(x, t, h) be considered as a RV.

• Wiener (1938): if G has finite variance, it can be expressed as a spectral
expansion of the uncertain variable (or “germ”) ξ:

G(x, t, ξ) =

∞∑

`=0

c`(x, t)︸ ︷︷ ︸
deterministic

ψ`(ξ)︸ ︷︷ ︸
stochastic

• ψ`(ξ) are Hermite polynomials: ψ0 = 1, ψ1 = ξ, ψ2 = ξ2 − 1, ...

• The basis form a complete set of orthogonal functions in prob space:

< ψk, ψ` >=
∫
ψk ψ` p(ξ)dξ = hkδk`
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PCe: moments of the target output variable

• PCe: G(x, t, ξ) =
∑∞

`=0 c`(x, t)︸ ︷︷ ︸
deterministic

ψ`(ξ)︸ ︷︷ ︸
stochastic

• PC coefficients fully determine the expansion.

• Orthogonal Polynomials:
E[ψ0] =

∫
Ω
ψ0 p(ξ)dξ =

∫
Ω

1 p(ξ)dξ = 1

E[ψk] =
∫

Ω
ψk p(ξ)dξ =

∫
Ω
ψk 1 p(ξ)dξ = 0, k >= 1

• The moments of G can be directly computed:

E[G] =

∫

Ω

G p(ξ)dξ =

∫

Ω

[ ∞∑

l=0

cl(x, t)Ψl(ξ)

]
p(ξ)dξ = c0

Var(G) = E[(G− c0)2] =

∞∑

`=0

c2
` < ψ2

` >

• We can also easily reconstruct PDF(G) since PCe is very cheap to evaluate.
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PCe: multiple uncertain inputs, different germs

• Let G(x, t,H) = φ(x, t; H), with H = {h1, . . . , hm} being a vector of parameters.

• Parametrize uncertainty:
H = f(ξ)

where ξ = {ξ1, . . . , ξm} are i.i.d. standard RVs.

• Framework holds for various germs, not only Gaussian.

G(x, t, ξ) =
∞∑

`=0

c`(x, t)Ψ`(ξ)

• ξ1, ..., ξm ∼ U [−1, 1] =⇒ Ψl(ξ) are Multivariate Legendre polynomials.

• ξ1, ..., ξm ∼ N [0, 1] =⇒ Ψl(ξ) are Multivariate Hermite polynomials.

• ...can be generalized to other probability distributions.

• How to compute the coefficients? Use orthogonality of basis functions!
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Orthogonality

• The orthogonality of the basis functions yields:

c` =
1

〈Ψ`,Ψ`〉

∫

Ω

G(ξ)Ψ`(ξ)pf (ξ)dξ, ` = 0, . . . ,P,

where Ω is the support of ξ, and <> denotes the inner product.

1 Intrusive Spectral Projection (ISP):
• Galerkin procedure to the governing equations: original governing equations are

replaced with equations for the PC coefficients.
• Not applicable in the absence of a deterministic forward model.

2 Non-Intrusive Spectral Projection (NISP):
• No reformulation of the governing equations.
• Based on independent sampling of G and ξ to compute the projection integral.
• Numerical integration, collocation methods, least-square fitting.
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NISP approach

• Gauss quadrature with n nodes along each dimension yields:

c` =

n∑

i1=1

n∑

i2=1

. . .

n∑

im=1

G(ξi1 , ξi2 , . . . , ξim)
Ψ`(ξi1 , ξi2 , . . . , ξim)

〈Ψ`,Ψl〉




m∏

q=1

wiq


 , ` = 0, ...,P

• {ξj}n
j=1: nodes

• {wj}n
j=1: weights

• G(ξi1 , ξi2 , . . . , ξim) is the observable value

• Regularity of G with respect to ξ.

• Feasible for low-dimensional problems.

• Sparse tensorization approaches can
mitigate the curse of dimensionality, but
issues may arise due to negative weights in
the corresponding quadrature rules.
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54 3 Non-Intrusive Methods

Q
(1)
k f which includes the nodes of Q

(1)
k′<kf . In fact, the weights in ∆

(1)
k f are

differences in weights with the lower level quadrature rule for nested families.

To build sparse cubature, we introduce the multi-index l = (l1, . . . , lN) ∈
NN and define

|l| =

N∑

i=1

li. (3.26)

Using this multi-index notation, the sparse cubature formula at level l corre-
sponds to

Q
(N)
l f ≡

∑

|l|≤l+N−1

(
∆

(1)
l1

⊗ . . . ⊗ ∆
(1)
lN

)
f. (3.27) ni:cub:sparse

This definition results in a coarser tensorization compared to the product
form in (3.21), which in terms of differences has for expression

Q
(N)
l f ≡

∑

max l≤l

(
∆

(1)
l1

⊗ . . . ⊗ ∆
(1)
lN

)
f, max l ≡ max{l1, . . . , lN}. (3.28) ni:prod:sum

The product cubature then consists in a summation over an hypercube in the
multi-index space, while the sparse cubature in (3.27) reduces to a summation
over the simplex |l| < l. This is illustrated for the two-dimensional case
(N = 2) and l = 4 in Figure 3.5, where also provided are the product and
sparse grids of nested Fejèr nodes.

l 2

l 1

Fig. 3.5 Comparison of product and sparse tensorizations in the construction of
cubature formulas with level l = 4 for numerical integration in N = 2 dimensions.

The left plots shows the indexes in the summation of differences formulas ∆
(N)
k using

the product form in (3.28) (squares) and Smolyak’s method in (3.27) (triangle). The
resulting grids for the Fejèr nested quadratures are compared in the center (product
form) and right (sparse grid) plots. fig:ni:sum

It is seen that the sparse cubature involves a significantly reduced number
of points. In higher dimension, the ratio of number of nodes for product and
sparse cubature increases. More information concerning the construction of
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NISP details

• Procedure:

1 Construct the quadrature grid.

2 Each node ξ(i) corresponds to a set of
driving parameters, H(i): H(i) = f(ξ(i))

3 Forward model yields: Gi = φ(H(i)).

4 Collect {Gi}N
i=1 and evaluate quadrature

integral for each PC coefficient.
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Foward Problem for MD: Computational System

• Isothermal, isobaric MD simulations of liquid
water: T = 298 K, P = 1 atm.

• Domain: periodic cubic box of volume
∼ 64 nm3 with 1728 molecules.

• Water molecule: four-site rigid model (TIP4P):
widely used for liquid water.

• Potential: Lennard-Jones + Coulombic interaction.
• Simulations: MPI-C++ code adapted from LAMMPS (lammps.sandia.gov).
• Long simulation time to ensure steady state and proper time-averaged observables.
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Forward Problem: Parametric Uncertainty

Introduce parametric uncertainty on three potential parameters: σ, ε, d

ε and σ in the LJ potential:

ΦLJ = 4ε
{(σ

r

)12
−
(σ

r

)6
}

The distance, d, from the oxygen to the
massless point where negative charge is

placed in the TIP4P model.
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Formulation

• Parametric uncertainty (PU) expressed as (values extracted from literature):

ε(ξ1) = 0.1470 + 0.043 ξ1 (kcal/mol)
σ(ξ2) = 3.1506 + 0.021 ξ2 (Å) where {ξi}3

i=1 ∼ U(−1, 1)

d(ξ3) = 0.1400 + 0.035 ξ3 (Å)

• MD intrinsic noise (IN): single sample, {εj, σj, dj}, yields multiple predictions
of the target observable, Gj

1, Gj
2, . . ., Gj

n.

• PU + IN⇒ non-deterministic, noisy MD predictions of the water observables.

• Account for PU and IN using PCe:

G ≈ M(ξ1, ξ2, ξ3) ≡
P∑

k=0

ckΨk(ξ1, ξ2, ξ3)

? G: quantity at steady-state averaged over m MD realizations (and time).

? c = {c0, . . . , cP}: deterministic PC coefficients; Ψk(ξ): multi-d Legendre poly.
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NISP implementation

• “Non-intrusive spectral projection” exploits the orthogonality of the basis functions:

ck =
1

〈Ψk,Ψk〉

∫ +1

−1

∫ +1

−1

∫ +1

−1
G(ξ1, ξ2, ξ3)Ψk(ξ1, ξ2, ξ3)

1
8

dξ1dξ2dξ3, k = 0, ...,P.

• Gauss-Legendre (GL) quadrature: regularity with respect to ξ is assumed.
k

1 Quadrature grid: fully tensorized 7-node grid.

2 Each quadrature point yields specific set of
parameters:

ε(ξ
(i)
1 ) = 0.1470 + 0.043 ξ(i)

1 ,

σ(ξ
(i)
2 ) = 3.1506 + 0.021 ξ(i)

2 ,

d(ξ(i)
3 ) = 0.1400 + 0.035 ξ(i)

3 ,

3 4 realizations of the MD system at each node.

4 G: mean of steady-state values of G:
G(ξ(i)) = mean(G(i)

1 ,G(i)
2 ,G(i)

3 ,G(i)
4 )
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Response surface

• Recall: ε(ξ1), σ(ξ2), d(ξ3)

• Result: G ≈∑P
k=0 ckΨk(ξ1, ξ2, ξ3)

• Rapidly decaying PC spectrum.

• Linear and cubic response surface.

• Potential uncertainty has large impact.

Linear Cubic
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PDF of Water Density

• Recall: ε(ξ1), σ(ξ2), d(ξ3)

• G ≈∑P
k=0 ckΨk(ξ1, ξ2, ξ3)

• Reconstruct the PDF of the observable.

(ε, σ, d)
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Conclusions

• UQ is important for simulations where high-fidelity and risk assessment are key.

• It is being used in science and engineering increasingly more.

• Two main parts: forward and inverse problem.

• Bayesian inference provides a suitable setting for inverse problems since it
accounts for all the noise present in the data.

• Parameters’ correlation can be a key information, but it is often neglected.

• The push towards exascale is turning the paradigm of how we do simulations:
• from single, deterministic runs,
• to stochastic frameworks and ensembles of runs.

• Very active field of research.

• Exciting future to see how UQ will be applied to multi-physics problems.
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Questions?

• How to approach inference in high-dimensional parameter spaces?
• How about when the forward problem is very expensive?
• What if you don’t need UQ?
• ...
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