
J. Fluid Mech. (2025), vol. 1010, A35, doi:10.1017/jfm.2025.334

Large-eddy simulation of the flow over a realistic
riverine geometry

Gianmarco D’Alessandro
1,2

, Cristian Marchioli
3

and Ugo Piomelli
2

1School of Science, Engineering and Technology, RMIT University Vietnam, Ho Chi Minh City, Vietnam
2Department of Mechanical and Materials Engineering, Queen’s University, Kingston, ON, Canada
3Department of Engineering and Architecture, University of Udine, Udine, Italy
Corresponding author: Gianmarco D’Alessandro, gianmarco.dalessandro@rmit.edu.vn

(Received 2 May 2024; revised 30 December 2024; accepted 16 March 2025)

In this paper, we discuss the transport of sediment and the formation of bedforms in
turbulent river flows, under flow conditions typical of flooding events. Through the
implementation of an immersed boundary method, a wall model and a morphological
model, we were able to simulate complex and mobile geometries under high Reynolds
numbers at an affordable computational cost. In particular, we examined the evolution of
bedforms on a loose sediment bed under turbulent flow conditions, using input parameters
obtained from laboratory measurements. Over time, the bedforms become more three-
dimensional and irregular in shape, leading to changes in the shear layer, crest angle and
separation patterns. The bedforms continue to evolve until a quasi-steady equilibrium is
reached. Our simulations highlight the crucial role played by the small-scale bedforms,
which significantly affect the flow dynamics: an increase in the total drag is observed,
related to the form drag generated by the local recirculation and the increased size of the
large-scale recirculation bubble. Furthermore, a stronger turbulent activity ensues from the
shear layers forming on the crests of the small-scale bedforms. Finally, a wider shedding
angle of the shear layer is caused by the irregular crest line.

Key words: river dynamics, sediment transport, multiphase flow

1. Introduction
According to global numerical predictions, the frequency of extreme flooding will double
across 40 % of the globe by 2050 (Arnell & Gosling 2016). With this work, we hope to
pave the way for the development of future management technologies that can effectively
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predict and control these complex environmental events. This is possible only through
a thorough understanding of the physical mechanisms governing riverine processes,
which is the core objective of our research. Riverine environments are complex systems
comprising various phases (Silva-Arya et al. 2008) whose interactions are interconnected
and intricate. Understanding river dynamics requires a comprehensive grasp of sediment-
transport mechanisms, which influence the morphodynamics of the system, meaning
the spatial and temporal evolution of the riverbed. In recent years, for example, small-
scale sediment formations have drawn increasing attention as a close tie with large-scale
formations was identified (Best 1996, 2005; Venditti et al. 2005b). The most accessible
evidence of sediment morphodynamics is the formation of ripples on beaches. These are
just one example of the patterns that can arise from the interaction of a fluid and a loose
bed (a bed composed of solid granular material). However, a wide variety of large-scale
morphological patterns are observed in nature: mega-dunes, ripples, dunes, anti-dunes,
bars, chevrons. These bedforms differ in many aspects: size, dimensionality, orientation
(Venditti et al. 2005a; Andreotti et al. 2011; Coleman & Nikora 2011), formation process
(Williams & Kemp 1971; Best 1992; Blondeaux et al. 2016) and migration patterns
(Mohrig & Smith 1996; Charru et al. 2013). Almost all bedforms observed in nature are
three-dimensional, even if quasi-two-dimensional bedforms have also been detected in
specific flow conditions (Venditti et al. 2005a; Coleman & Nikora 2011). The length scales
of bedforms vary greatly: from large barrier islands and mega-dunes to dunes and ripples
and down to small sand waves. Multiple scales are often present in the same environment.
In fact, superimposition of bedforms has been identified as an important aspect of dune
evolution and interaction (Galeazzi et al. 2018). With the term ‘superimposition’ we
refer to the simultaneous presence of bedforms characterised by a significant range of
scales, e.g. small morphological structures (ripples and dunes) that are hosted by larger-
scale bedforms (larger dunes or bars). Reesink et al. (2018) investigated the response and
adaptation of alluvial dunes to changing flow conditions typical of flooding events. While
the characteristics of large-scale bedforms depend on macroscopic flow parameters, such
as flow depth and discharge, the appearance of superimposed bedforms in response to
increases in flow depth and velocity was also observed. The authors linked the appearance
and disappearance of superimposed bedforms to changing flow rate and depth. They found
that an increase in flow discharge or flow depth induces an amplification of the scale range
of the bedforms. However, the associated changes in the local flow field were not measured,
thus leaving unanswered questions on the nature of the interaction of small-scale bedforms
and the flow itself.

In this work, we focus our attention on riverine environments with loose granular beds.
Laboratory and field experiments have been extensively performed to examine aspects
such as bed-load transport, suspension, settling and bedform evolution. Bedforms can
be generated from bed instabilities or pre-existing bed defects (Venditti et al. 2005a).
Both analytical (Andreotti et al. 2011; Colombini & Stocchino 2011) and experimental
(Coleman & Melville 1996) approaches have been adopted to investigate their formation
process. Once formed, bedforms evolve over time and space, growing, migrating and
interacting through merging, sediment exchange and linking (Kocurek et al. 2010). These
interactions generate complex flow fields (Best 2005b).

These smaller structures typically appear over the host dune and, given their smaller
size, migrate at a faster speed than the host dune itself. The formation and evolution
of large-scale bedform depend on small-scale sand waves, for the mechanism of
dune formation (Coleman & Nikora 2011) involving near-wall turbulence and localised
imperfections and for the mechanism of dune migration (Venditti et al. 2005a). The
faster-moving superimposed bedforms transport the sediment particles across the host

1010 A35-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

33
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.334


Journal of Fluid Mechanics

dune and deposit them on its lee side (downwind-facing portion of the dune). Unsteady
flow conditions play a role in the intensity of the turbulent eddies and, therefore, in the
host dune composition as well. Furthermore, the presence of superimposed bedforms
effectively changes the slope of the stoss side (the upwind-facing portion of the dune) of
the host dune, changing the characteristics of the crest (Reesink & Bridge 2011). Although
these processes might seem secondary and not relevant for the global equilibrium of river
systems, some works have shown that the evolution of bedforms is directly linked to the
total sediment transport and that the interaction of dunes can cause spikes of sediment flux
(Terwisscha van Scheltinga et al. 2022). However, Ashley (1990) questions the significance
of bedform superposition, proposing that superimposed bedforms may not fundamentally
differ from large-scale bedforms.

Despite the progress made, achieving a complete understanding of the mechanisms
that govern bed morphodynamics has been and remains a challenging task from an
experimental perspective. This is due to several factors, such as the difficulty of detecting
the early stages of pattern formation, the limited amount of flow data that can be collected
or the limited extent of the observation time window (Scherer et al. 2020). Additionally,
field measurements of the sediment flux during morphogenetic events are difficult to
obtain (Garcia 2008).

Numerical simulations are a useful complementary tool to overcome these difficulties
and can be used to analyse the interactions between sediment particles and the carrying
flow, especially in the near-bed region (Rodi 2017). The great advantage of numerical
simulations is the ability to predict quantities such as pressure and vorticity, which are
difficult to measure in the laboratory and the field. Lastly, numerical measurements are
non-intrusive, as opposed to experimental measurements which often require instruments
to be submerged in the fluid. Particle image velocimetry is an experimental technique
that provides more detailed information about the flow (two- or three-dimensional
measurements) and has no feedback on the flow; however, its implementation is
challenging, especially in sediment-laden flows.

In the past, mostly models based on the solution of the Reynolds-averaged Navier–
Stokes (RANS) equations have been applied to the study of sediment transport over sand
bedforms, highlighting the influence of the bedform geometrical properties on the mean
flow characteristics (Parsons et al. 2004; Lefebvre 2019; Yamaguchi et al. 2019). Parsons
et al. (2004) focused on idealised two-dimensional transverse dunes, while Lefebvre (2019)
and Yamaguchi et al. (2019) studied natural three-dimensional bedforms. More recently,
Chiodi et al. (2014) and Ahadi et al. (2018) performed RANS of sediment transport in
open-channel flow using a two-fluid model to relate the bed-load sediment transport to
the mean flow quantities. Salimi-Tarazouj et al. (2024) applied this methodology to study
oscillatory flows over fixed and mobile ripples, including both suspended and bed-load
sediment transport. Due to the moderate computational requirements, the RANS approach
allows one to simulate and study large areas with relatively realistic geometries (Lefebvre
2019; Salimi-Tarazouj et al. 2024). However, it fails to explain some of the hydrodynamic
and morphodynamic mechanisms due to the parametrisation of both large- and small-scale
eddies (Piomelli 2008; Khosronejad et al. 2011; Coleman et al. 2015; Wu et al. 2017).

An alternative is represented by direct numerical simulations (DNS) of the Navier–
Stokes equations, in which all scales of motion are captured by the grid. The increased
spatial and temporal accuracy allows the explicit calculation of the distributions of shear
stress, sediment concentration and sediment flux that is essential to understand the micro-
mechanics of sediment transport, namely the physical processes occurring at the scale of
small fluid motions (Kidanemariam & Uhlmann 2014, 2017; Akiki & Balachandar 2020;
Mazzuoli et al. 2020; Vittori et al. 2020).
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A DNS provides detailed insights but is computationally expensive, often requiring
reduced sediment particles or lower Reynolds numbers. Large-eddy simulations (LES) can
achieve higher Reynolds numbers but face similar limitations. Direct computation of flow
around particles may not be feasible with DNS or LES, depending on the smallest resolved
flow scale and sediment grain size. In such cases, a point-particle Lagrangian approach is
used, modelling particles as mass points influenced by flow forces (Marchioli et al. 2006;
Vowinckel 2021). A LES with Lagrangian models also requires additional modelling for
sub-filter-scale advection velocity (Marchioli 2017).

The limitations of certain approaches hinder the study of flow configurations with
multiple bedform scales. An Eulerian approach, modelling sediment as a continuum,
offers lower computational demands than a Lagrangian one. Large-eddy simulations,
particularly wall-modelled LES, are commonly used for sediment-transport studies due
to their efficiency at high Reynolds numbers (Zedler & Street 2001, 2006; Khosronejad
& Sotiropoulos 2014, 2017). Chou & Fringer (2008) employed LES to examine sediment-
transport time scales in turbulent flow and later studied sand-ripple formation (Chou &
Fringer 2010), focusing on fixed beds. Khosronejad & Sotiropoulos (2014) developed
a hydromorphodynamic model for sand-wave formation in open-channel flow, later
exploring Barchan dune formation (Khosronejad & Sotiropoulos 2017). Their work,
combining fluid and sediment dynamics models, identified key mechanisms in dune
formation, though findings are more applicable to desert than riverine environments.

The objective of this work is to investigate superimposed bedforms and advance
the understanding of their effects on large-scale morphodynamics and hydrodynamics.
Starting from the experimental observations of Reesink et al. (2018), we aim to reproduce
numerically the flow over a river bed where the appearance of superimposed bedforms was
observed. We simulate a laboratory-scale flow over a realistic river-bed geometry with a
coupled hydraulic and morphodynamic system. We analyse the formation process of the
bedforms, and the flow dynamics and turbulence characteristics in the presence of such
morphological structures. The bed geometry, which is complex and develops over time,
is modelled using an immersed-boundary method (IBM). The sediment phase is treated
via an Eulerian approach. We analyse the flow features and how they are affected by the
presence of superimposed bedforms. From the standpoint of morphodynamics, we analyse
the characteristics of the bedforms, the dynamics and interaction with the host dune and
their formation mechanism.

In summary, we aim to answer the following research questions: (i) What are the
interaction dynamics between superimposed bedforms and the host dune in a coupled
hydromorphodynamic system? (ii) How do superimposed bedforms influence the flow
dynamics and turbulence characteristics of a laboratory-scale realistic river flow?

In the following, § 2 describes the numerical set-up (governing equations, boundary
conditions and simulation parameters). In § 3 we present the predictive results in a realistic
application. Lastly, in § 4, concluding remarks and recommendations for future work are
also made. In Appendix A, we show the validation procedure of the different methods
implemented in this study, namely the IBM, the wall model and the morphological model.

2. Problem formulation
In this section, we summarise the main features of the models presently considered. Firstly,
the numerical models for the solution of the fluid phase are presented: these include the
spatial and temporal discretisation of the Navier–Stokes equations, the IBM and the wall
model. Secondly, we introduce the morphological model implemented for the evolution of
the sediment phase.
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2.1. Fluid transport

2.1.1. Numerical methods
We solve the Navier–Stokes equations (2.1) using LES. A spatial filter, represented by the
mesh itself in our case, is applied to the flow field and all scales smaller than the filter
width are modelled. The filtered Navier–Stokes equations read as

∇ · ũ = 0 , (2.1a)
∂ũ
∂t

+∇ · (̃ũu)=− 1
ρ

∇ p̃ +∇ · (2νS̃
)−∇ · τ̃ +Π + FIBM + FWM . (2.1b)

Here we indicate vectors in bold font and scalars in italics. A tilde is used to indicate
filtered quantities. The instantaneous filtered velocity is indicated by ũ, with (ũ, ṽ, w̃)

being the velocity components along the horizontal, vertical and spanwise coordinate
directions x = (x, y, z), respectively. The dynamic pressure is p̃, ρ is the fluid density,
ν is the fluid kinematic viscosity, t is the time and S is the strain-rate tensor:
S = (∇u +∇uT )/2. Force Π is the body force used to drive the flow, and adjusted at
each time step to maintain a constant flow rate. Terms FIBM and FWM are two forcing
terms used to implement the IBM and the wall model, which are discussed in §§ 2.1.2 and
2.1.3, respectively.

The sub-filter-scale stress tensor, τ̃ = ũu − ũ̃u, is modelled using an eddy-viscosity
approximation, τ̃ =−2νSFS S̃. To reduce the already significant cost of the calculations, we
employed the Smagorinsky model (Smagorinsky 1963) to parametrise the eddy viscosity.
This model has been shown to perform adequately far from solid walls and in quasi-
equilibrium conditions (Balaras et al. 1995). The validation of the fluid-dynamical model,
discussed in Appendix A, shows that this choice is sufficiently accurate for the present
cases.

Equations (2.1a) and (2.1b) are solved on a structured, non-staggered grid by a finite-
volume technique (Silva Lopes et al. 2006). A fractional step method (Kim & Moin 1985)
is used, and the solution is advanced in time using the second-order-accurate Adams–
Bashforth scheme. The spatial derivatives are discretised employing a combination of
a standard second-order central-difference scheme and a quadratic upwind interpolation
for convective kinematics (QUICK) scheme (Leonard 1987). The code gradually switches
from the upwind scheme near the wall to the central-difference scheme in the outer flow via
a hyperbolic-tangent function. More details about this procedure and the reasons behind
this choice are given in Appendix A.1. Periodic boundary conditions are applied in the
streamwise and spanwise directions and the top boundary is modelled as a fixed free
surface:

∂u

∂y
= ∂w

∂y
= 0 and v = 0 . (2.2)

Free-surface fluctuations are neglected, since (i) the Froude number is low (Fr = 0.37),
indicating subcritical free-surface deformations; (ii) the primary focus of this paper is to
study the influence of superimposed bedforms on river flow, making the behaviour of the
free surface of secondary importance; and (iii) Reesink et al. (2018) noted that free-surface
deformations did not correlate with the channel bedform morphology. In the remainder of
this paper, the tilde is omitted. All spatial averages are intrinsic, i.e. flow quantities are
averaged solely within the fluid volume, Ω f , at times when the grid cell is occupied by
fluid (Nikora et al. 2013). The intrinsic volume average is defined as

〈 f 〉 = 1
Ω f

∫
Ω f

f (x, t)dΩ =
∫
Ω0

f (x, t)φ(x, t)dΩ∫
dΩ0

φ(x, t)dΩ
, (2.3)
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where φ is the volume of fluid, Ω0 the total volume and

Ω f =
∫

Ω0

φ(x, t)dΩ . (2.4)

Analogously, the intrinsic spanwise average is defined as

〈 f 〉z(x, y, t)=
∫

W f (x, t)φ(x, t)dz∫ W
0 φ(x)dz

, (2.5)

where W is the spanwise length of the domain. The intrinsic time- and spanwise-averaged
quantities are computed as

f (x)=
∫

T0
f (x, t)φ(x, t)dt∫
T0

φ(x, t)dt
, 〈 f 〉z(x, y, t)=

∫ W
0 f (x, t)φ(x, t)dz∫ W

0 φ(x)dz
, (2.6)

where T0 is the averaging period and W the width of the domain. The volume-and-time
and the spanwise-and-time averages are defined as〈

f
〉= ∫

T0

∫
dΩ0

f (x, t)φ(x, t)dΩ dt∫
T0

∫
dΩ0

φ(x, t)dΩ dt
,

〈
f
〉
z(x, y)=

∫
T0

∫
W f (x, t)φ(x, t)dz dt∫
T0

∫
W φ(x, t)dz dt

.

(2.7)
Finally, the average over a cross-section is

〈 f 〉yz(x, t)=
∫ L y

y1(x)

∫ W
0 f (x, t)φ(x, t)dy dz∫ L y

y1(x)

∫ W
0 φ(x, t)dy dz

, (2.8)

where y1(x) is the y coordinate of the bottom surface of the computational domain, as
shown in figure 1(a), and L y is the top-surface y coordinate.

The vector u is the instantaneous resolved (filtered) flow velocity, such that u is the time-
averaged velocity, 〈u〉z is the time- and span-averaged velocity field and u′ = u − 〈u〉z
indicates the resolved velocity fluctuations since all flow configurations are statistically
homogeneous in the spanwise direction.

2.1.2. Immersed boundary method
To treat complex geometries and mobile geometries, we apply an IBM based on
the volume-of-fluid approach in the formulation proposed by Scotti (2006). The flow
equations are solved on a fixed grid, and the presence of the solid phase, mobile or fixed,
is imposed through the source terms FIBM added to the momentum equation (2.1b):

FIBM = (1 − φ)

(
uIBM − u

�t

)
, (2.9)

where uIBM is the velocity of the immersed boundary. The immersed-boundary velocity is
set to

uIBM(x)=
{

uI S for solid and boundary nodes,
0 for fluid nodes.

(2.10)

Solid nodes are identified as the grid cells that are completely below the immersed surface
(with φ = 0); fluid nodes are the set of all grid cells that are completely outside of the
immersed surface (with φ = 1); finally, boundary nodes are the set of all grid cells cut
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Figure 1. (a) Computational grid in the xy plane. Only every eighth point is shown for clarity. , Initial
bed shape; , zoom area of (b). (b) Close-up view of the bed surface in the area denoted by the magenta
rectangle in (a) ( ). , Fluid nodes; , IBM interface nodes; , solid nodes. denotes the inner-/outer-
layer interface, at a distance Δn from the IBM surface, and the arrow indicates the velocity vector Uϑ

L E S .
(c) Schematic representation of the sediment phase surface and the morphological model.

by the immersed surface (with 0 < φ < 1). The immersed-surface velocity is zero if the
geometry is fixed and is equal to the surface velocity if the bed is mobile: uI S = dxI S/dt .
Figure 1(a) shows the immersed surface as brown-shaded area. Note that the entire
sediment mass can be mobilised if the flow exerts sufficient force. The initial sediment
layer, therefore, must be thick enough so that the sediment interface never reaches the
computational boundary within the time frame of the simulation. As long as this condition
is satisfied, the results are independent of the sediment-layer thickness.

2.1.3. Wall model
Because of the coarseness of the grid, in wall-modelled LES the wall shear stress cannot
be obtained directly by differentiating the velocity profile; a model must be provided to
link the outer-layer velocity to the wall stress. We use the generalised Moody diagram
proposed by Meneveau (2020). In this model, it is assumed that the near-wall region is in
equilibrium. The flow in the inner layer, under these conditions, is governed by a simplified
equation, derived by setting advection and wall-parallel derivatives in the momentum
equation to yield

0 =− 1
ρ

[
∂p

∂ϑ

]
L E S

+ ∂

∂n

[(
ν + νWM

) ∂uWM

∂n

]
+Π . (2.11)

Here, ϑ̂ and n̂ are the tangent and normal unit vectors to the instantaneous immersed
surface, Sb, and Δn is the distance on the inner-/outer-layer interface from the surface. The
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pressure gradient (∂p/∂ϑ)L E S is taken from the inner-/outer-layer interface and assumed
to be constant through the wall layer (consistent with the boundary-layer approximation),
uWM is the wall-parallel velocity in the inner layer and νWM a turbulent viscosity that
accounts for all the turbulent motions in the inner layer (and which is not the same
as νSF S). A mixing length model is used for νWM that includes the effect of surface
roughness, and the governing ordinary differential equation (2.11) is solved numerically
on an embedded grid (sufficiently fine to resolve the velocity gradient at the wall). The
wall stress is then obtained as

τWM
w = ν

(
∂uWM/∂n

)
w

. (2.12)

Boundary conditions are uWM = uIBM at the solid/liquid interface and uWM = Uϑ
L E S at the

inner-/outer-layer interface n =Δn (where Uϑ
L E S is the outer-layer velocity component

parallel to the solid surface, interpolated to n =Δn , as shown in figure 1b).
A fit to the solution is then calculated (analogous to the Moody diagram) from

which τWM
w can be obtained, knowing Uϑ

L E S , (∂p/∂ϑ)L E S , and the equivalent sand-grain
roughness height ks , which here is taken to be equal to five times the sand-grain diameter
(van Rijn 1993). Additional details about the model can be found in the original paper
(Meneveau 2020).

The wall stress is then used to generate the two components of a forcing function
that is added to the Navier–Stokes equations. The forcing is calculated to ensure that the
momentum flux at the solid is equal to the wall stress at the solid/liquid interface:

FWM −∇ · (uu)w +∇ · [(ν + νSFS

)
S
]
w
= τWM

w . (2.13)

Note that FWM = 0 at all other fluid points.

2.2. Morphological model
We now discuss the model that describes the time evolution of the channel bed, i.e. the
morphodynamics. First, we introduce the conservation equation, and then the model used
to represent the sliding of sand that occurs when the surface slope exceeds its repose angle
(the angle beyond which spontaneous failure of the slope occurs) (Chien & Wan 1999;
García 2008).

2.2.1. Sediment mass conservation
The transport equation for the sediment phase is based on the Exner–Polya equation (Exner
1920), revisited by Paola & Voller (2005). The equation reads as follows:

(1 − γ )
∂yb

∂t
+∇ · qbl +ΩE −ΩD = 0 , (2.14)

where γ is the sediment porosity, set to the typical value γ = 0.35 in this work (Graton
& Fraser 1935; Martin & Aral 1971; Wheatcroft 2002), yb is the channel-bed elevation,
qbl is the bed-load sediment-flux vector (discussed later in this section), ΩE is the erosion
sediment flux and ΩD is the deposition flux. Equation (2.14) represents a sediment mass
balance equation for a loose granular bed. Suspended transport entails full lift-off and
steady re-entrainment of the sediment particles. This phenomenon takes place only if
the particles are small enough to be advected by the turbulent motions. In the present
work, we choose a flow–sediment configuration where the particle size and density are not
conducive to such a mode of transport, hence bed-load transport is the dominant transport
mode. Further discussion of this assumption can be found in Appendix A.3. Therefore,
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Figure 2. Mesh representation of a sample bedform field: flow dynamics mesh slices are shown (black
Cartesian mesh; every other point is shown for clarity). The inset shows a zoom on the region 9 < x/H < 10
and 0 < z/H < 0.5. The triangular mesh of the bed surface is coloured by the vertical distance from a reference
level ηb = (yb − yre f )/(ymax − yre f ), with yre f /H = 0.4 (every point is shown).

we neglect the suspended-sediment transport, and the balance equation (2.14) assumes the
following simpler form:

(1 − γ )
∂yb

∂t
+∇ · qbl = 0 . (2.15)

Equation (2.15) is discretised using a central-difference scheme and advanced in time with
the Adams–Bashforth scheme.

The immersed surface is discretised by triangular elements connecting the surface
nodes, and one surface node for each grid cell is defined. Figure 2 shows a representation
of the mesh used to discretise the bedform field developed in an open-channel flow (see
Appendix A.3), overlapped to slices of the Cartesian flow mesh. The position of the node
is advanced in time employing equation (2.15), and subsequently the sand-slide algorithm
is applied, as described in the following section.

The bed-load transport process is influenced by the balance of forces on settled particles,
where transport occurs when eroding forces exceed settling forces. The critical bottom
shear stress for initiation of motion is determined by factors such as particle Reynolds
number and size (Shields 1936; van Rijn 1984a; Nielsen 1992; Niño et al. 2003; Debnath &
Chaudhuri 2010). We adopt an empirical model for the bed-load transport rate. The vector
qbl is tangent to the channel bed with non-null components in the local streamwise and
spanwise directions (van Rijn 1987; García 2008). It is defined as the product of sediment
volumetric concentration Cbl , sediment velocity Uϑ

bl and bed-load layer thickness δbl :

qbl = δblCblUϑ
bl . (2.16)

We set the bed-load layer thickness to twice the particle diameter, d, as suggested in the
literature (Charru et al. 2013; Khosronejad et al. 2011). Notice that the immersed surface
represents the location of the settled particles, while the edge of the bed-load layer is
a fictitious location where we extrapolate the velocity Uϑ

bl (see figure 1c). The velocity
vector of the sediment particles within the bed-load layer, Uϑ

bl, is approximated as the
resolved velocity parallel to the bed surface, interpolated to the edge of the bed-load layer.
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The concentration in the bed-load layer is given by the empirical equation suggested by
van Rijn (1987):

Cbl = 0.18C0
T

d∗
, (2.17)

where C0 = 0.65 is the maximum sediment concentration and d∗ and T are defined as

d∗ = d

[
(s − 1)g

ν2

]1/3

, T = θ − θcr

θcr
, θ = |τw|

(s − 1)ρgd
= u2

τ

(s − 1)gd
, (2.18)

where s = ρs/ρ is the ratio between particle density, ρs , and fluid density, ρ, and g is
the acceleration of gravity. The Shields parameter, θ , represents the bottom shear stress
normalised by the specific gravity and grain diameter of the sediments. In this formulation,
the threshold shear stress is θcr , and the critical Shields parameter is given by

θcr = τw,cr

(s − 1)ρgd
, (2.19)

where τw,cr is defined according to the empirical formula suggested by van Rijn (1993),
and corrected to take into account the influence of gravity on erosion from sloping beds
with the following correction factor:

fθ = sin(α + β)

sin(α)
, (2.20)

where β represents the bed slope angle.
The system formed by equations (2.16)–(2.19) provides the bed-load transport-rate

vector, using the wall shear stress and the extrapolated bed-load-layer velocity as inputs.
Then, by computing its gradient, we can determine the bed elevation displacement through
(2.15). Finally, a further step is required to ensure that the computed bed elevation does
not exceed the threshold for landslides, as explained in the following section.

2.2.2. Sand-slide algorithm
The sand-slide algorithm used in this work is similar to that applied by Khosronejad et al.
(2011). Whenever the angle between two adjacent immersed-surface nodes is larger than
the angle of repose, α, the elevation of the node and its neighbours is adjusted so that
the local volume of sediment is conserved and all slopes are lower than the repose angle.
The procedure is iterative, since the avalanche can cause neighbouring nodes to exceed the
angle of repose, and the iteration stops when all steep slopes have been eliminated. The
algorithm takes into account only the action of gravity, and neglects any dependence on
the flow conditions (Beakawi Al-Hashemi & Baghabra Al-Amoudi 2018). Experimental
studies show that the difference between the static and dynamic angle of repose is less than
10 % in our range of sediment characteristics (Cheng & Zhao 2017); therefore we neglect
this difference. To avoid an accumulation of error, each iteration starts from a different
corner of the domain. The system of equations defining the algorithm is

c j

(
y∗b,P +�yP

)
−

(
c j y∗b, j +�y j

)
�lP j

= c j tan(α) for j = E, W, B, F,

AP�yP +
∑

j=E,W,B,F

A j�y j = 0 , (2.21)
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with

c j =
{

1 if
∣∣∣(y∗b,P − y∗b, j

)
/�lP j

∣∣∣ > tan(α),

0 otherwise,
(2.22)

where y∗b,P and y∗b, j are the bed elevation values predicted by the morphological model
at point P and its neighbour j , respectively. We use four neighbouring points to the east
(E), west (W), back (B) and front (F) of each point (P). Here �yP and �y j represent the
changes in elevation to be applied to ensure that all angles are lower than α. Distance �lP j
is the distance between point P and its neighbour j . Therefore, equation (2.21) is a system
of five equations in five unknowns (�yP , �yE , �yW , �yB, �yF ) to be solved for each
node of the immersed surface.

2.3. Summary of the numerical model
In this section, we have presented all the techniques required for the solution of the flow
dynamics and morphodynamics of the selected flow configurations. To summarise, the
coupled fluid–sediment system is advanced in time as follows:

(i) Given a bed geometry, the volume-of-fluid fraction, φ, and the IBM forcing term,
FIBM, are calculated from (2.9).

(ii) The wall shear stress, τWM
w , is calculated from (2.12).

(iii) The wall-model forcing term, FWM, is calculated from (2.13).
(iv) The flow field is updated using the information from the two previous time steps

(u, p, νSFS , FIBM, FWM) using (2.1).
(v) The bed-load sediment transport, qbl, is calculated using τWM

w and (2.16).
(vi) The bed elevation, yb, is updated using (2.15).

(vii) The slope angle is adjusted using (2.21).

When the bed geometry is fixed the first step is performed only once at the beginning
of the simulation, and the last three steps are not performed. The full flow field and
the bedform field from this procedure are collected for analysis, the results of which are
presented in § 3.

2.4. Simulation set-up
In § 3, we show the results of wall-modelled LES over a realistic bed geometry extracted
from the laboratory measurements of Reesink et al. (2018), who considered an open-
channel flow where the bottom surface is composed of loose granular material and the
bed is initially flat. They analysed the response of the channel bed to flow variations, such
as changes in flow velocity and water depth. The flow conditions were varied suddenly and
the bed morphology was recorded for a prolonged time (1.5 hours). Reesink et al. (2018)
tested 23 flow configurations with the bulk Reynolds number varying between 90 000
and 135 000 and the Froude number varying between 0.3 and 0.5. They could vary the
flow conditions by increasing or decreasing both the discharge and the water depth. The
study revealed different morphological changes in response to variations in flow depth
and velocity: (i) an increase in bedform superimposition following an increase in depth
and velocity, (ii) the flattening of dunes in response to decreased flow depth and (iii) an
increase in scour, the removal of sediment from the bed, in response to increased flow
velocity. We selected this study because of the emergence of superimposed bedforms and
the desire to understand the physics behind this multiscale phenomenon. Superimposition
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Flow parameters Roughness parameters Sediment parameters

Reb = (ûb Ĥ/ν)= 1.25 × 105 y0/h = 1.9 × 10−4 θ = ((ucrest
τ )2)/((s − 1)gd)= 0.09

Reh = (ucrest
b h/ν)= 1.04 × 105 ks/h = 5.7 × 10−3 d∗ = d 3

√
(s−1)g

ν2 = 6.1

Fr = ((ucrest
b )/(

√
gHcrest ))= 0.37 k+s = ksucrest

τ /ν = 53 d = 0.00176 m
ucrest

b = 1.61 m s−1 ws = 0.109 m s−1

Table 1. Flow, roughness and sediment parameters. Here h is the dune crest height, H(x) is the local channel
depth and the superscript ‘crest’ indicates quantities evaluated at the crest location.

occurred in nine (out of 23) cases. We chose one configuration at a bulk Reynolds
number Reb = ûb Ĥ/ν = 1.25 × 105 and Froude number Fr = ub/

√
gH = 0.37, where

Ĥ represents the bulk channel depth and ûb the bulk velocity (defined thoroughly in the
following).

Some differences exist between the laboratory experiment and the numerical simulation
presented here. First, we extract a section of the measured centreline bed profile and
extrude it in the spanwise direction, thus generating a bed geometry that is initially
two-dimensional, shown as a shaded brown area in figure 1(a). This choice is dictated
by the fact that no data are available for the spanwise shape of the bedform. However,
since the flow field is highly three-dimensional and turbulent, the bed starts to develop
three-dimensional features immediately.

Second, we apply periodic boundary conditions in the streamwise and spanwise
directions for both the fluid and sediment phases, while the laboratory flume is bounded
laterally by solid walls, and the inlet conditions are imposed. Following the studies by Ojha
& Mazumder (2008), Omidyeganeh & Piomelli (2011, 2013) and Hardy et al. (2021), we
chose the domain length and width to be large enough to guarantee that the fluid structures
can form and develop naturally. Within the time frame of the present calculation the main
dunes move only a small fraction of the domain’s total length, which justifies the use of a
single dune, rather than a sequence.

The simulation is initialised by integrating the Navier–Stokes equations over the fixed
initial geometry until a statistically steady state is reached. Then, at time t = 0, we allow
the bed to deform and observe its subsequent development. Table 1 shows the sediment
and flow parameters used. This choice neglects the previous history of the flow effects
on the bedform, but cannot be overcome, unless the experimental measurements provided
the three-dimensional bedform as a function of time, at closely spaced time instants. The
simulation is run at a constant flow rate to resemble the experimental set-up.

The cross-sectional average of channel depth, the volume-averaged channel depth and
the cross-sectional average of the velocity (i.e. the bulk velocity) are defined as follows:

H(x, t)= 1
W

∫ W

0

∫ L y

y1(x)

φ(x, t)dy dz , (2.23)

Ĥ =
∫

V0
φ(x, t)dV

W L
, (2.24)

ub(x, t)= 〈u(x, t)〉yz , (2.25)
ûb = 〈u(x, t)〉 = constant. (2.26)

In this flow configuration ub(x, t) and H(x, t) vary along the streamwise direction and
in time (if the bed is mobile); however, the product ub H is constant at all cross-sections
and all times and equal to ûb Ĥ . Hereinafter, ûb will be used as reference velocity for
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Grid Nx × Ny × Nz �x+ �y+ �z+

Coarse 256 × 120 × 128 475 43−153 515
Medium 320 × 160 × 192 417 35−125 378
Fine 448 × 200 × 256 318 30−109 304

Table 2. Grid parameters in wall units. Wall units are computed using the value of the time-averaged friction
velocity at the crest (x = 0). Both the minimum value (near the immersed surface) and the maximum value
(near the top surface) of the spanwise grid spacing, �y+, are reported.

normalisation. If the geometry is fixed, the cross-sectional averages of the velocity and the
channel depth are only a function of the streamwise direction, x . As a consequence, the
bulk Reynolds number, Reb, shown in table 1, is a constant global parameter, while the
Froude number, Fr , varies such that its maximum is found over the dune crest. The flow is
fully turbulent and subcritical (Fr < 1). We use the friction velocity over the dune crest to
evaluate a posteriori the equivalent sand-grain roughness, which is k+s = 53, in wall units,
hence in the transitional regime (Jiménez 2004; Schultz & Flack 2007).

The grid has a region with fine wall-normal spacing near the surface, then is stretched
to the top surface. The number of points in the fine-resolution region is chosen so that
the morphology variation in time is well captured by the grid. The domain has length
L/h = 13 and width W/h = 8 and height in the range 1.7 < L y/h < 2.8, where h is the
height of the larger crest of the initial bed geometry at the initial time.

Since no flow measurements are available for the geometry considered in this study, we
performed a careful validation study, which is described in Appendix A. We used several
reference cases to validate the various parts of the numerical model. Since the Reynolds
number of the actual dune is higher than in any of the validation cases, the near-wall flow
is closer to equilibrium than in the test cases, and we expect the error to be no greater than
that observed in Appendix A.3.

2.5. Grid-convergence study
We performed a grid-convergence study with a fixed bed to determine the resolution
needed to capture accurately the flow dynamics. Table 2 summarises the numerical
parameters of the grids used. To decouple the wall-modelling and resolution errors
(Kawai & Larsson 2012), the grid-resolution study was performed with a fixed wall-model
interface location, Δn = 0.05h.

Figure 3 shows the streamwise distribution of the time- and span-averaged friction
coefficient: 〈

C f
〉
z =

〈τw〉z

1/2ρû2
b

. (2.27)

Note that the C f predicted by the wall model includes the contribution of the form drag
of the roughness elements, through the rough-wall modification of the generalised Moody
diagram.

Figure 3 shows the presence of two recirculation regions behind the two crests at x/h =
0 and x/h = 5. After separation, the flow reattaches to the bottom boundary at x/h � 3
over the smaller dune, and at x/h � 7 over the larger dune, with recirculation bubbles
of average length l1/h = 2.002 and l2/h = 1.012, respectively. Once the flow reattaches,
the friction coefficient increases over the stoss side of both dunes (3 < x/h < 5 and 7 <

x/h < 13). The three grids give similar results. The integral difference between the skin
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x/h

0
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× 10–3

2 4 6 8 10 12

〈C
f〉 z

Figure 3. Time- and spanwise-averaged friction coefficient, 〈C f 〉z . , Coarse grid; , medium grid;
, fine grid.
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(b)

y/h

0
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2
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〈u〉z/ub= 1

〈u′v′〉z/ub
2  = 0.01

 2〈K〉z/ub
2  = 0.05

‹
‹

‹

Figure 4. Vertical profiles of the time- and span-averaged (a) streamwise velocity 〈u〉z/ûb, (b) Reynolds shear
stress 〈u′v′〉z/ûb

2 and (c) turbulent kinetic energy 2〈K〉z/ûb
2. The profiles are shown at seven streamwise

locations: x/h = 0.1, 2, 4.5, 6.5, 8, 10 and 12. , Coarse grid; , medium grid; , fine grid; ,
reference level for each section.

friction coefficients on the medium and fine grids is 4 % of the maximum skin friction
coefficient on the fine grid.

Figure 4 shows the vertical profiles of the time- and span-averaged streamwise velocity,
〈u〉z/ûb (figure 4a), shear Reynolds stress, 〈u′v′〉z/ûb

2 (figure 4b) and the turbulent kinetic
energy, 2〈K〉z/ûb

2 = 〈u′
i u

′
i 〉z/ûb

2 (figure 4c). Only the fluid domain is shown in this and
all the following figures.

The streamwise velocity in figure 4(a) shows very good convergence between the three
grids, with negligible difference over most of the domain. The second-order statistics in
figures 4(b) and 4(c) also show good convergence towards the solution on the fine grid
over most of the fluid domain. The largest difference is observed in the separated region
off of the larger crest. In the remainder of the paper, the medium grid resolution will be
used for the simulations of dunes with a mobile bed.

Figure 1(a) shows the grid (medium) used for the mobile-bed calculations; the
parameters of this grid are summarised in table 2. The grid in the xy plane is extruded
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Figure 5. Bed surface evolution over time: (a) t/Ts × 10−6 = 0, (b) t/Ts × 10−6 = 0.3,
(c) t/Ts × 10−6 = 0.55, (d) t/Ts × 10−6 = 0.8.

in z, the direction in which the spacing is constant. As mentioned, the bottom boundary of
the computational grid is positioned deep enough within the sediment volume to prevent
mobilisation of the entire sediment mass.

3. Results
In this section, we present the results of the simulation of a laboratory-scale, realistic
river geometry. The numerical methodology illustrated in the previous sections is
employed to perform high-Reynolds-number simulations of the flow over a bed composed
of loose sediment. With the aid of the experiments by Reesink et al. (2018), we
study a configuration where the bed presents both large morphological structures and
superimposed bedforms.

3.1. Bed geometry
Figure 5 shows the bed surface at four different time instants. The initial bed surface
(figure 5a) is uniform in the spanwise direction. Figures 5(b)–5(d) show the bed surface
at times t/Ts × 10−6 = 0.3, 0.55, 0.8, respectively, Ts = d/ws being the characteristic
sediment time scale. The formation of superimposed bedforms takes place over the
entire bed surface: the morphology of the stoss side of the first dune (8 < x/h < 13) is
characterised by trains of transverse superimposed bedforms, while that of the second
dune (1 < x/h < 5) shows local crests and troughs that are strongly three-dimensional and
tend to align with the flow. The bedforms at the beginning of the first slope (6 < x/h < 8)
show similar characteristics. On the other hand, the bedforms that form over the stoss
side of the second crest are transverse to the flow and extend over the entire width of the
channel. They display a dune-like triangular section with a lee side steeper than the stoss
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xb   /href~

Figure 6. Flow over dunes with mobile bed. (a) Spanwise-averaged profiles of the channel bed, 〈yb〉z at
, t/Ts = 0; , t/Ts = 0.3 × 106; , t/Ts = 0.55 × 106; and , t/Ts = 0.8 × 106. (b) Spanwise-

averaged and shifted profiles of the channel bed; , ỹre f
b (x) is the averaged profile during the quasi-steady-

state period.

side. A comparison of the location of the crest lines in figures 5(c) and 5(d) highlights
the increasing three-dimensionality of the bedforms. The bedform on the stoss side of the
first dune shows closed-loop crests that travel up the stoss side and develop into transverse
crests, as also observed by Venditti et al. (2005a). In the following, we refer to the large-
scale bedforms, namely the two large crests and troughs present in the initial bed geometry,
as the ‘main’ bedforms, to distinguish them from the superimposed small-scale bedforms.

Figure 6 shows the spanwise-averaged bed elevation profiles at the same four times
shown in figure 5, and highlights that the main features of the bedform do not vary
considerably: we notice a slightly sharper crest angle of the first main crest (x/h � 0), a
slightly eroded second main crest (x/h � 5) and mild deposition in the trough downstream
of the first main crest (1 < x/h < 5). As the superimposed bedforms migrate downstream,
they reach the main crest and form a rugged, irregular brink (0 < x/h < 1). Subsequently,
the sediment slides down and deposits into the trough. By comparing the lee side of the
first main dune at the four time instants, we notice that it is migrating forward, and so does
the second main dune.

To determine the celerity of the crests, we calculate the auto-correlation coefficient:

R(ξ, τ )= 〈〈yb〉z(x, t)〈yb〉z(x + ξ, t + τ)〉z〈〈yb〉z(x, t)2
〉
z

. (3.1)

At each instant, we use an iterative algorithm to determine the spatial shift, ξ∗(t), that
maximises the autocorrelation: R(ξ∗, t)= R(ξ, t)|max. Shifting the bedform by ξ∗(t)
gives the best possible overlap of the geometries as they migrate. The celerity can finally
be calculated as the derivative of the forward shift of the dune crests over time, cs =
dξ∗(t)/dt . Figure 6(b) shows the shifted spanwise-averaged profiles 〈ỹb〉z = 〈yb〉z(x +
ξ∗(t), t).

The evolution of the channel bed undergoes an initial transient phase during which the
superimposed bedforms start to form and grow in size and a second phase in which the
bed morphology is statistically invariant. The celerity of the main crests settles, after a
relatively long transient (0.3 × 106Ts), on a value of approximately c/ws ≈ 0.003, which
does not vary considerably until the end of the simulated time window.
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Figure 7. Contours of the spanwise-averaged profiles of the channel bed, 〈yb〉z , over time. The dashed line
identifies the location of a dune crest over time, and its slope indicates its celerity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Transient Quasi-steady

state

0.05CD

0.10

t/Ts × 10–6

Figure 8. Time evolution of the total drag coefficient, CD . , Instantaneous drag coefficient; , average
value of the drag coefficient in the quasi-steady-state interval, Tqss/Ts × 10−6 = [0.3−0.8].

Figure 7 shows contours of the spanwise-averaged profiles of the channel bed, 〈yb〉z ,
over time. The first main crest, the second main crest and the superimposed bedforms have
different celerities, as shown in the figure. The celerity shows an inverse relationship with
dune size, as expected. It is interesting to notice that the velocity of the superimposed
dunes reduces during the simulation as they grow in size, to reach a quasi-steady state.

Figure 8 shows the time evolution of the total drag coefficient of the surface, which is
the sum of the friction drag coefficient, CD, f , and the pressure drag coefficient, CD,p:

CD = CD, f + CD,p = 1
Sb

∫
Sb

C f θ̂b · x̂dA + 1
Sb

∫
Sb

−C pn̂b · x̂dA . (3.2)

The instantaneous force coefficients, C f and C p, are defined as

C f = τw

ρûb
2/2

, C p = pw

ρûb
2/2

, (3.3)

where pw is the pressure at the immersed-boundary location. The time evolution of the
drag coefficient highlights the presence of the initial transient phase and of the steady-state
phase for t/Ts = Tqss/Ts = [0.3−0.8] × 106.

During this time interval, the large features of the dunes translate almost as a solid
body, while smaller bedforms grow and decay on a shorter time scale. On the basis of
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Figure 9. (a–d) Instantaneous contours of the elevation variation normalised by the sand grain size, (yb −
ỹre f

b )/d, at t/Ts × 10−6 = 0, 0.3, 0.55, 0.8. , (yb − ỹre f
b )/d = 20; , first main crest; , first main

trough; , second main crest; , second main trough.

these observations, we can assume that a dynamic equilibrium between the flow and the
main bedform has been achieved. Therefore, we consider the system to be in a quasi-steady
state in the time interval Tqss , during which we take an ensemble average of the shifted
bedforms to define the reference profile:

ỹre f
b (x)= 1

Tqss

∫
Tqss

〈yb〉z(x + ξ∗(t), t)dt , (3.4a)

x̃re f
b (x)= 1

Tqss

∫
Tqss

〈xb〉z(x + ξ∗(t), t)dt , (3.4b)

where the integral is extended over the quasi-steady-state period, Tqss , only. The reference
profile given by (3.4) is also shown in figure 6.

Knowing ξ∗ also allows us to perform time averages of the flow properties, by shifting
each instantaneous field by the appropriate distance, so that all the bedforms have
maximum overlap. The shift previously computed is then applied backwards to the entire
field and the reference surface, before calculating any instantaneous quantity. Note that
we use the reference profile calculated via (3.4) for the quasi-steady period, while for
the transient part of the bed evolution we use the initial profile as a reference. These
geometrical definitions will aid and streamline our discussion of the results and their
interpretation in the context of a changing morphology.

With these definitions in place, we can now explore how the migration of the main
bedforms is influenced by the superimposed bedforms, which transport packets of
sediment across the dune and down into the trough. The sediment is then trapped in regions
where transport is lower (θ is lower) causing the dune to move. Both main crests migrate
downstream but at different migration rates (figure 7). This indicates that the superimposed
bedforms still travel downstream and deposit sediment inside the trough.

To elucidate this point we show top-view contours of (yb − ỹre f
b )/d in figure 9 at the

same times as figure 5. The locations of the main crests and troughs (identified as the
local maxima and minima of the spanwise-averaged profiles) are indicated by the red and
blue lines, and the black contours identify the crests of the superimposed bedforms. The
first main crest moves forward to x/h ≈ 0.5 as soon as the first superimposed bedform
reaches the main crest and later travels forward more slowly. The downstream motion
of the transverse superimposed bedforms over the stoss side of the first main dune is
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Figure 10. (a–d) Instantaneous contours of the elevation variation normalised by the sand grain size, (yb −
ỹre f

b )/d, at t/Ts × 10−6 = 0.12, 0.17, 0.21, 0.25. , (yb − ỹre f
b )/d = 20; , second main crest; , fixed

rectangular box for reference.

t/Ts × 10–6
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Figure 11. Spanwise-averaged bedform wavelength averaged over all bedforms, λ/d, on the left-hand axis
( ); span-averaged bedform height, Δ/d, on the right-hand axis ( ).

readily visible. On the other hand, it is less clear how the second main dune is migrating
forward.

To explain this mechanism, in figure 10 we show a zoom of the region 4 < x/h < 6.
The magenta boxes in the figure highlight highly irregular and short-lived crest lines
near the second main crest (figure 10a) and travelling downstream for a short distance
(barely visible in figure 10b,c) before cascading down into the trough (figure 10d). The
fairly regular streamwise contour lines in the regions 5 < x/h < 6 represent the sediment
cascading down the lee side of the two main crests.

To further characterise the time development of the superimposed bedforms, we identify
the crests and troughs by locating the local maxima and minima of the superimposed
bedforms with respect to the reference profile (3.4). Figure 11 shows the evolution in
time of height and wavelength of the superimposed bedforms. After the transient, the
superimposed bedform height settles on a statistically steady value of Δ/d � 31.5 and
the wavelength on λ/d � 981. These measurements are in reasonable agreement with the
profiles measured by Reesink et al. (2018), where Δ/d ≈ 45 and λ/d = 500−1200.
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Figure 12. (a–d) Instantaneous contours of the friction coefficient, C f (x, z, t), at t/Ts × 10−6 = 0, 0.3, 0.55,
0.8. , (yb − ỹre f

b )/d = 20; , first main crest; , first main trough; , second main crest; ,
second main trough.

3.2. Local skin-friction and pressure coefficient
The wall pressure (not shown) decreases over the stoss side of each superimposed bedform,
reaches a local minimum near the crest line and then remains nearly constant over the local
trough (as expected in separated flows).

Figure 12 shows contours of the instantaneous friction coefficient, C f . Notice that the
friction due to sand-grain roughness is included in the friction coefficient through the wall
model, by including a roughness displacement (y0 � 0.17d) into the wall-model equations.
On the other hand, the form drag due to the separation behind the superimposed bedforms
is explicitly obtained from the immersed-boundary force. Coefficient C f increases over
the stoss side of the superimposed bedforms and then suddenly drops.

Figure 12(a) shows the friction coefficient at the initial time of the simulation, when
the bed morphology is uniform in the spanwise direction, but the velocity field, although
also statistically homogeneous, is three-dimensional. The streaky structure of C f over
the stoss side is similar to that in boundary layers with a zero pressure gradient or mild
favourable pressure gradient. The recirculation bubbles behind the two main crests are
highly three-dimensional and time dependent.

As time progresses, the skin-friction coefficient indicates the presence of recirculation
bubbles downstream of the crest lines of the superimposed bedforms. Also, on average, C f
on the two stoss sides (4 < x/h < 5 and 8 < x/h < 13) is smaller in the presence of the
superimposed bedforms. This is particularly evident on the stoss side of the first main crest
(8 < x/h < 13). The first stoss side alternates streaks of low and high C f , corresponding
respectively to the troughs and crests of the superimposed bedforms.

The total drag coefficient over the mobile bed, however, is larger than that over a
fixed bed. Figure 13 shows the time evolution of the drag for the fixed- and mobile-bed
configurations. Both friction and pressure components of drag are shown. When the bed
is fixed, most of the drag is due to pressure, and the friction component is only 11 % of the
total drag. In the mobile-bed simulation the fraction of drag due to friction is even lower
(� 3 %) due to the flow reversal, which produces a negative drag (thrust) on the wall.
Furthermore, the pressure-drag component is roughly two times larger (at a quasi-steady
state) than in the fixed-bed case.

To determine the cause of this increase of form drag, we define two additional pressure
coefficients that separate the added form drag due to the larger recirculation bubble
on the main geometry, �Cmain

D,p , from the form drag due to the recirculation behind
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Figure 13. Time evolution of the friction- and pressure-drag coefficients. Fixed bed: , C f ix
D,p; , C f ix

D, f .
Mobile bed: , Cmob

D,p ; , Cmob
D, f ; , �C SB

D,p; , �Cmain
D,p .

the superimposed bedforms, �C SB
D,p, such that Cmob

D,p (t)= C f ix
D,p +�CD,p(t)main +

�C SB
D,p(t), with

�Cmain
D,p (t)= 1

Sb

∫ W

0

∫ xR

xC

(
−Cmob

p + C f ix
p

)
n̂b · x̂ dx dz , (3.5a)

�C SB
D,p(t)=

1
Sb

∫ W

0

∫ L+xC

xR

(
−Cmob

p + C f ix
p

)
n̂b · x̂ dx dz , (3.5b)

where the superscripts ‘mob’ and ‘fix’ refer to the mobile-bed and fixed-bed cases,
respectively, while xR is the reattachment location and xC is the location of the first main
crest in the mobile-bed case.

The time evolution of these quantities is also shown in figure 13. In the initial phase of
the bed evolution, the additional form drag is entirely due to the superimposed bedforms,
since �Cmain

D,p oscillates around zero. In the subsequent phases of the bedform evolution,
the superimposed bedforms generate larger local recirculation regions that contribute
significantly to the total drag. The time- and spanwise-averaged pressure coefficient
due to the superimposed bedforms in the quasi-steady-state interval is �C SB

D,p = 0.032,
contributing 42 % of the total form drag. It is also interesting to notice that the form
drag due to the main recirculation bubbles increases roughly at the time the quasi-
steady state is reached (t/Ts × 10−6 > 0.3), showing a correlation with the presence of
superimposed bedforms. This suggests that the presence of recirculation bubbles behind
the superimposed bedforms promotes larger separation on the main geometry as well, a
mechanism that we will further elucidate momentarily. The contribution of �Cmain

D,p =
0.019 in the quasi-steady-state interval is 25 % of the total form drag.

3.3. Dynamics of the main recirculation bubbles
To support the previous findings, we analysed the variation in time of the two recirculation
bubbles (downstream of the two main crests). The lengths of the two recirculation bubbles,
�1 and �2, are identified by the locus of points where the spanwise-averaged skin-friction
coefficient, 〈C f 〉z(x, t), is less than or equal to zero. The average and root-mean-square
of the length variation in time are summarised in table 3. As anticipated in § 3.2, the
recirculation bubbles on the mobile bed are larger, by 20 % and 10 %, respectively.

All separated flows exhibit some level of unsteadiness. The reattachment point, in
particular, always oscillates. Unless separation occurs at a sharp corner, the separation
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Fixed bed Mobile bed

�1/h 3.07 3.66

�RM S
1 /h 0.212 0.425

�2/h 1.28 1.41

�RM S
2 /h 0.353 0.554

Table 3. Recirculation-bubble characteristics. Average and relative root mean square of the two main
recirculation bubbles (labelled as 1 and 2, respectively) for the simulations with fixed and mobile beds.
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Figure 14. Contours of the instantaneous streamwise velocity in the middle plane near the two main crests:
u/ûb at (a) t/Ts × 10−6 = 0, (b) t/Ts × 10−6 = 0.3, (c) t/Ts × 10−6 = 0.55 and (d) t/Ts × 10−6 = 0.8. The
black dashed lines denote the maximum and minimum bed level during the calculation.

point may oscillate as well. In this case, an additional cause of unsteadiness, although
with a longer time scale, is present, namely the fact that the geometry of the crest is
itself unsteady. Figure 14 shows instantaneous contours of the streamwise velocity in the
middle plane for the fixed bed and for the mobile bed at three widely spaced times. The
panels focus on the crests of the two main dunes. By comparing figures 14(b) and 14(c),
we can see that the separation point of the first main dune shifts upstream. This shift
occurs because the main recirculation region merges with the local recirculation behind
the superimposed bedform, which reaches the crest. The interconnection between the train
of superimposed bedforms reaching the main crest and the variation in the size of the
recirculation bubbles is linked to the increase in form drag generated by the main geometry,
�Cmain

D,p . Figure 14 also highlights the motion of the superimposed bedforms, shown in
more detail in supplementary movie 1 available at https://doi.org/10.1017/jfm.2025.334.
Interestingly, superimposition seems to occur at multiple scales. In fact, smaller bedforms
can be seen travelling on top of the superimposed bedforms.
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Figure 15. Contours of time- and spanwise-averaged streamwise velocity 〈u〉z/ûb. (a) Fixed bed.
(b) Mobile bed. The dashed lines denote the maximum and minimum bed level during the calculation.

The streamwise velocity over the crest is larger over the mobile bed than over the
fixed bed due to the flow constriction caused by the superimposed bedforms, which can
significantly decrease the cross-sectional area (compare for instance, figures 14a and 14d).
Another reason for the increased average velocity is the creation of a low-momentum zone
near the wall, due to the flow separation behind the superimposed bedforms on the stoss
side. Similar phenomena can be observed on both main crests, although on the second
crest, the flow is also affected by the recirculation bubble downstream of the first dune. As
a consequence of the increased mean velocity, the flow outside the low-momentum region
has more inertia, and the angle formed by the separated shear layer with respect to the
horizontal is larger. This can be also observed from the mean flow: figures 15 and 16 show
contours of the time- and spanwise-averaged streamwise velocity and spanwise vorticity:

〈ωz〉z =
∂〈u〉z

∂y
− ∂〈v〉z

∂x
. (3.6)

As mentioned in § 3.1, the time averaging is performed after shifting the geometry to
account for the motion of the large-scale dune. Figure 16 shows an increase in spanwise
vorticity near the bed over the stoss side of the first main dune, determined by the flow
separation over the crests of the superimposed bedforms, confirming the results of Hardy
et al. (2021). As observed by Zgheib et al. (2018), regions of high vorticity remain confined
within the wall region, extending only to a distance approximately equal to the height of
the superimposed bedforms. Figures 15 and 16 show the mean flow modifications due to
the bed mobility: the different inclination of the separated shear layer, the larger region of
reversed flow and the formation of the low-momentum region on the stoss side of the two
main dunes.

The instantaneous contours of the normalised turbulent kinetic energy, 2K/ûb
2 =

ui ui/ûb
2, shown in figure 17, highlight the role that the shear layers play in the generation

of turbulent fluctuations. In the separated shear layer that departs from the crest the
turbulent production is large, and the Reynolds stresses are amplified due to the shear-layer
instability. In addition to the main shear layers, however, smaller ones are separating from
the crests of the superimposed dunes, contributing to an increase in the turbulence levels
near the wall when the bed is mobile, which is reflected in the mean values (figure 18).

3.4. Roughness effects
As previously pointed out, the superimposed bedforms create separated shear layers
that amplify the turbulent fluctuations, cause form drag and generate a region of low
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Figure 16. Contours of the time- and spanwise-averaged spanwise vorticity, 〈ωz〉z〈H〉/ûb. (a) Fixed bed.
(b) Mobile bed. The dashed lines denote the maximum and minimum bed level measured during the
simulation.
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Figure 17. Contours of the instantaneous turbulent kinetic energy in the middle plane, 2K/ûb
2, at

(a) t/Ts × 10−6 = 0, (b) t/Ts × 10−6 = 0.3, (c) t/Ts × 10−6 = 0.55 and (d) t/Ts × 10−6 = 0.8. The black
dashed lines denote the maximum and minimum bed level measured during the simulation.

momentum near the wall. These are typical phenomena observed in flows over rough
surfaces, and the present flow is characterised by two scales of roughness: the sand-grain
size and the superimposed bedforms.

The flow is characterised by a succession of favourable pressure gradient (FPG) and
adverse pressure gradient (APG) regions. Figure 19 shows the acceleration parameter:
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Figure 18. Contours of the time- and spanwise-averaged turbulent kinetic energy 2〈K〉z/ûb
2. (a) Fixed bed.

(b) Mobile bed. The black dashed lines denote the maximum and minimum bed level measured during
the simulation.

y/h

x/h,

(a)

(b)

(c)

xb   /href∼

xb   /href∼

2

–1

0

K
 ×

 1
0

6 1

APG FPG

IVIII

–1

0

K
 ×

 1
0

6 1

0

0.5

1.0

I

III

4 6 8 10 12

2

APG FPG

IVII III

I IVII III

4 6 8 10 12

2 4 6 8 10 12

x/h

Figure 19. Acceleration parameter, K . (a) Bed time- and spanwise-averaged geometry: , fixed-bed; ,
mobile-bed reference profiles; , locations of sections I, II, III and IV. (b) Acceleration parameter along the
fixed-bed dune. (c) Acceleration parameter along the mobile-bed dune. The zones of APG and FPG are
highlighted.

K = ν

u2∞
du∞
dx

, (3.7)

where u∞ = 〈u〉z(x, y = L y) is the time- and spanwise-averaged streamwise velocity at
the top boundary. A positive K indicates an FPG and a negative K indicates an APG.
Although K is not large enough to cause relaminarisation of the flow (Spalart 1986),
significant APG and FPG effects can be noticed.
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Figure 20. Profiles of the wall-parallel velocity at (a–d) the locations shown in figure 19. , Fixed bed;
, mobile bed; , logarithmic law of the wall, with slope 0.12H/dn .

Figure 20 shows the mean-velocity profiles at four streamwise locations as a function
of the wall-normal distance, dn . We observe a slight decrease of the velocity gradient in
the outer layer in FPG sections (Piomelli & Yuan 2013), and an increase of the gradient
in APG regions (Knopp et al. 2021). As a consequence of the superimposed bedforms,
which act as large roughness elements, the momentum deficit in the near-wall region is
significantly larger when the bed is mobile. The slope 0.12H/dn , shown in figure 20, is
the same that characterises the logarithmic region in a channel flow with zero pressure
gradient (Bradshaw & Huang 1995; Pope 2000), and serves as a reference.

In the APG region (sections I and IV in figure 20) the velocity profile shows mild
features of accelerating flows, such as a decreased slope of the velocity profile. Conversely,
in sections II and III, located in the APG region, the slope of the velocity profile away from
the wall increases, as is typical of APG flows. The slope change is more significant when
the bed is mobile (probably due to the near-wall momentum deficit).

Note that, as mentioned above, the sand-grain-size roughness is included through the
generalised Moody diagram (Meneveau 2020). Therefore, the differences in velocity
distribution (e.g. near-wall momentum deficit, wall-normal velocity gradient, acceleration
parameter etc.) between the fixed and mobile cases are entirely attributable to the
three-dimensional morphology.

3.5. Sediment transport
The non-dimensional bed-load transport rate is calculated as

Φ = |qbl|/
√

(s − 1)gd3 . (3.8)

Figure 21 shows that the bed-load transport (and its gradient) are largest on the crests of the
superimposed bedforms, highlighting that they control most of the sediment transport. In
the separated flow region (2 < x/h < 6), we observe small areas where the wall shear
stress is sufficiently high to erode the bed and transport minor amounts of sediment
upstream, as illustrated in figure 22, which focuses on the recirculation zones.
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Figure 21. (a–d) Contours of the instantaneous non-dimensional bed-load sediment transport rate, Φ, at
t/Ts × 10−6 = 0, 0.3, 0.55, 0.8. , (yb − ỹre f

b )/d = 20; , first main crest; , first main trough; ,
second main crest; , second main trough.
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Figure 22. (a) Contours of the instantaneous magnitude of the non-dimensional bed-load sediment transport
vector, Φ, at t/Ts × 10−6 = 0.2. (b) Contours of the instantaneous streamwise component of the bed-load-layer
velocity, Uϑ

bl/ûb, at t/Ts × 10−6 = 0.8. , (yb − ỹre f
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crest; , upstream transport; , downstream transport.
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The non-dimensional bed-load transport rate is shown in figure 22(a), and the
streamwise component of the velocity at the edge of the bed-load layer in figure 22(b),
at t/Ts × 10−6 = 0.2. The green box highlights regions where sediment is eroded by the
reverse flow and transported upstream, as indicated by the velocity contours, towards
the lee side of the first main dune. This process, in addition to landslides from the
crests, contributes to sediment deposition in the trough of the first main dune. The
recirculation region is highly three-dimensional; while most sediment in the trough is
transported upstream by the recirculating flow, on the stoss side of the smaller main crest
(4 < x/h < 5), sediment can be transported either upstream or downstream.

Similarly to the bed-load transport rate, we compute the non-dimensional suspended-
sediment transport rate:

Φs = |qs|√
(s − 1)gd

= 0.00033d0.3T 1.5 , (3.9)

where qs is the suspended-sediment erosion rate (van Rijn 1984a). The erosion rate of
suspended sediment is two orders of magnitude smaller than the bed-load transport, thus
validating our choice to neglect it in the present simulation.

4. Conclusions
We have studied the flow over a realistic dune geometry at a laboratory scale, to investigate
the response of a loose sediment bed to a turbulent flow at a Reynolds number of 121 900,
intending to analyse a flow configuration that resulted in the formation of superimposed
bedforms. Our results show that the morphology of the superimposed bedforms varies,
depending on the local state of the flow: the bedforms exhibit a very three-dimensional
shape in the recirculation regions, and tend to be oriented in the streamwise direction; on
the other hand, they tend to be a transverse over the stoss side of the larger crest and they
may become large enough to cause local detachment of the flow and recirculation. As the
bedforms migrate downstream over time, they become more three-dimensional. The shape
of the main crest line and the configuration of the brink also change as the superimposed
bedforms reach the top of the stoss side from upstream.

The bedform reaches a quasi-steady state (statistically) after a long transient: the size and
speed of the superimposed bedforms cease to change significantly, but fluctuate around
an average height of Δ/d = 31.5 and length λ/d = 981, and a speed of c/ws ≈ 0.003.
Although the mean profile of the dune does not vary considerably during this quasi-steady
period, we observe slight changes in crest angle, erosion of the second main crest and mild
deposition in the trough downstream of the first main crest. Nonetheless, these changes are
sufficient to induce strong variations of the flow features, indicating that the presence of
superimposed bedforms plays an important role in determining the global dynamics of the
system.

Our results also show that the presence of superimposed bedforms leads to an increase
in the size and temporal oscillation of the recirculation bubbles. The recirculation behind
the superimposed bedforms causes pressure drops that contribute significantly to the form
drag. The shear layer near the wall is weakened in the presence of superimposed bedforms,
due to the near-wall momentum deficit over the stoss side of the preceding main dune and
to the irregular shape of the brink. We also find that the shear layer deviates towards the top
surface when the recirculation bubble is very large due to the sharper crest and irregular
brink. Overall, the main effect of the superimposed bedforms on the stoss side of the first
main dune is to reduce the momentum near the wall and decrease the velocity gradient at
the wall, where form drag supplies most of the resistance to the flow.
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Using the present model, which combines wall-modelled LES, an IBM-based bedform
description and a transport equation for the sediment motion, we were able to simulate
successfully a realistic hydromorphodynamic system and investigate the main effects that
superimposed bedforms have on the global flow dynamics. Although the investigation
focuses on a single specific morphology, we suggest that several observations regarding
the influence of superimposed bedforms on flow dynamics may be applicable across a
range of Reynolds numbers, provided that similar bedforms develop and generate local
flow separation. The findings discussed in this paper contribute to our understanding of
how such features affect large-scale flow and sediment dynamics in natural and engineered
channels, potentially supporting a more precise quantification of their impact on overall
flow dynamics. The knowledge and quantification of such impact are crucial to improve
the accuracy of riverine system simulations on a large scale. Our study addresses the entire
spectrum of spatial scales that bedforms may exhibit and discusses the inaccuracies that
may be expected if these scales are underestimated or neglected, thus paving the way for
improved predictions of sediment transport and bedform morphodynamics.

In addition, the study contributes to the assessment of the scaling behaviour that
these phenomena exhibit with the flow and sediment parameters. Reesink et al. (2018)
revealed the relation between bedforms and flow parameters such as flow depth and flow
regime. Reesink et al. (2018) noted that superimposed bedforms appear in response to an
increase in water depth (Fr increase); on the other hand, increasing the flow regime (Re
increase) flattens the bedform field. This aligns with our observations, as the superimposed
bedforms form and migrate through the mechanism of cascade and deposition in the
troughs, which would be inhibited by a stronger shear layer over the superimposed bedform
crests. Estimating the limits of this transition would require further simulations.

The results discussed in this paper also highlight an intriguing aspect of
superimposition, specifically its occurrence at multiple scales. The bedform elevation
contours (see figure 9) reveal at least three scales of bedforms: the main dunes, the
superimposed bedforms extensively described in this study and very small-scale bedforms
that travel over the superimposed bedforms at a higher migration rate. This observation
raises the question of how small these structures can become and what the smallest scale
is at which sediment transport can occur through this mechanism. The scale of these
structures approaches the grid resolution, which means the current simulation could not
capture the dynamics of anything smaller. Investigating these small-scale structures further
would be desirable but would require more advanced simulations to fully understand their
behaviour and impact.

The numerical toolbox assembled in our study appears suitable for a wide range of
wall-bounded flows, Reynolds numbers and flow configurations. A natural expansion of
the present work would be to simulate other flow configurations studied by Reesink et al.
(2018) to understand further the response of superimposed bedforms to the flow and vice
versa. For instance, it would be interesting to study the phenomenon of flattening of the
dunes when the flow depth is reduced, as understanding the cause of the disappearance
of superimposed bedforms could bring to light different features of the flow that foster
bedform formation.

Another possible route to extend the study would be to consider realistic Reynolds
numbers, rather than the laboratory-scale ones used here. If we were to simulate a natural
river flow, the Reynolds number would be considerably larger; however, the computational
cost of the simulation would still be acceptable, since the grid size required for wall-
modelled LES does not scale in viscous units. For instance, a realistic river configuration
with an average water depth and width of O(10 m) and O(100 m), respectively, with an
average annual flow discharge of O(1 × 103m3 s−1), results in a bulk Reynolds number
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of O(107), two orders of magnitude larger than in the present laboratory-scale simulation.
The time and length scales influence the numerical requirements of the simulation, in
terms of both grid resolution and time advancement iterations. Since only the large scales
of the flow need to be captured in wall-modelled LES, whose size is a weak function of
the Reynolds number, the number of points required would increase approximately by a
factor of 16. The current simulation required approximately 150 000 CPU hours to cover
a physical time of 4 hours, while the realistic river flow would require 2.5 million CPU
hours, a number that is large, yet manageable.

Supplementary movie. The supplementary movie is available at https://doi.org/10.1017/jfm.2025.334.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Validation and assessment of the model
In this appendix, we validate the numerical methods implemented, namely the IBM for
the treatment of the complex and movable wall boundary, the wall model for the treatment
of the wall boundary condition and the morphological model for the simulation of the
evolving channel bed. To test the wall model and the IBM, we first compare our results with
reference data for the flow in an open channel at a high Reynolds number and over periodic
hills. For the morphological model we reproduce numerically a laboratory experiment
(Venditti et al. 2005a) of an open-channel flow over a loose, initially flat, granular bed.

A.1. Channel flow
First, we validate the implementation of the wall model coupled with the IBM by
performing simulations of a plane channel. The domain is a cuboid of length L = 4H ,
width W = 2H and height 1.1H , and it is discretised with a Cartesian grid. The immersed
surface is a flat horizontal surface, located at yb = 0.1H , such that the effective flow
depth is H . The flow is forced with a constant mean-pressure gradient, Π , resulting
in a Reynolds number Reτ � 5200, for which high-quality DNS data are available for
comparison (Lee & Moser 2015). We use periodic boundary conditions in the streamwise
and spanwise directions, the top of the domain is a free-slip surface and at y = 0.1H
(the solid surface modelled by the IBM) the wall model discussed earlier is used. The
computational domain is discretised with a uniform grid in the streamwise and spanwise
directions with 128 points, respectively. The spacing in wall units of the grid in these two
directions is �x+ = 156 and �z+ = 78, respectively. In the vertical direction, the grid
has a region of uniform fine resolution near the immersed boundary and is then stretched
upwards through a hyperbolic tangent distribution, with a total of 128 points. The resulting
grid spacing near the immersed surface is therefore �y+min = 20 and �y+max = 56 near the
top surface.

The main issue we faced was the presence of numerical oscillations near the wall and
the free surface, as shown in figure 23. At the free surface, the grid is coarse and neither
the molecular nor the sub-filter-scale dissipation is sufficient to dampen the saw-tooth
oscillations introduced by the solution of (2.1b) on a staggered grid (Ferziger & Peric
2002). Below the inner-/outer-layer interface, the oscillations were due to the application
of the IBM forcing. The refinement of the grid reduces their intensity but does not
remove them completely. To remove them, we blended the central-difference scheme with
a second-order-accurate upwind method, the QUICK method:

d•
dx

= f

(
d•
dx

)
QU I C K

+ (1 − f )

(
d•
dx

)
C D

. (A1)
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Figure 23. Channel flow: time- and spanwise-averaged vertical velocity profile, 〈v〉/ub, and QUICK blending
function, f . , QUICK blending function (right-hand axis); , CD grid D; , blended grid D; ,
wall-model interface location.

Figure 23 shows that the blending function f restricts the upwind method to be active only
below the interface and near the top boundary, and is effective in removing the unphysical
oscillations.

Figure 24 shows the wall-normal profiles of the time- and spanwise-averaged streamwise
velocity, 〈u〉, shear Reynolds stress, 〈u′v′〉, and normal Reynolds stresses, 〈u′u′〉 and 〈v′v′〉,
in wall units. The vertical black dashed line ( ) in figure 24 indicates the location of
the wall-model interface, i.e. the location at which the Uϑ

L E S is extracted from the LES
solution and fed to the wall model. The use of a fine grid coupled with the blended method
gives reasonably accurate results. In wall-modelled LES, the coarseness of the grid causes
low Reynolds stresses because only part of the fluctuation spectrum is resolved. Since
we simulate a channel flow, the fluctuations of the vertical velocity component, v′, are
driven to zero at the surface while the streamwise and spanwise ones increase. Note that
the region below the interface is effectively a sponge layer in which the turbulent eddies
required in the LES region develop. Also, in this region, the integral scale of turbulence
and the grid spacing are of the same order: refining the grid reduces both at the same rate
and thus cannot improve the results.

A.2. Flow over periodic hills
Next, we performed wall-modelled LES of flow over periodic hills, a benchmark case
for heavily separated flows. The Reynolds number was Reh = 37 000, and the data
are compared with experimental results by Rapp & Manhart (2011). Figure 25 shows
the general features of the flow, which separates from the curved surface generating
a recirculation bubble. The height of the channel constriction, h, is one-third of the
total channel depth, the distance between consecutive crests is L = 9h and the spanwise
extension of the channel is W = 4.5h. Rapp & Manhart (2011) showed that these
dimensions are sufficient to allow periodic boundary conditions to be applied. At the top
of the domain, we use a free-slip condition.

At the bottom boundary, the approximated wall-model boundary condition is applied as
discussed in § 2.1. The wall-model interface was initially set at a fixed distance from the
boundary, namely Δn = 0.05Hcrest , where Hcrest is the water depth at the crest.
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Figure 24. Channel flow, Reτ = 5200: mean flow statistics. , Lee & Moser (2015) (DNS); , CD grid D;
, blended grid D; , wall-model interface location. (a) Mean velocity, 〈u〉/uτ . (b) Reynolds shear stress,

〈u′v′〉/u2
τ . (c) Normal Reynolds stresses, 〈u′u′〉/u2
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Figure 25. Periodic hills: flow streamlines (white) and mean streamwise velocity, normalised by the bulk
velocity (colour contours).

We performed a grid-convergence study with three meshes with increasing resolution,
with 64, 96 and 128 cells in each direction, respectively. While the grid is uniform in x and
z, the wall-normal grid spacing varies due to channel constriction. The finest grid (F) has
spacing equal to �x/h = 0.057−0.10, �y/h = 0.0015−0.038 and �z/h = 0.035, in the
streamwise, wall-normal and spanwise directions, respectively. The standard wall model
was used. We then ran two additional cases with the finest grid in which the wall model
was modified first by moving the inner-/outer-layer interface close to the wall (F-NW),
and then by adding the non-equilibrium correction (F-NW-NEQ), suggested by Meneveau
(2020).
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Figure 26. Flow over periodic hills at Reh = 37 000: friction coefficient normalised by the density and bulk
velocity, 〈C f 〉z(x/h)= 2τw/(ρûb

2). , Experimental data by Rapp & Manhart (2011); , F; , F-NW;
, F-NW-NEQ.

Figure 26 shows the time- and span-averaged friction coefficient, 〈C f 〉z(x/h), and
compares it with the experiments of Rapp & Manhart (2011). We observe significant
error for simulation F, in the recirculation region and, to some extent, in the upward slope
downstream. To reduce the errors in the recirculation region, we moved the inner-/outer-
layer interface to the first fluid point. This modification is justified by the fact that the
rationale for having the interface away from the wall is to create a buffer layer, between
the wall and the interface, in which eddies can be generated (Kawai & Larsson 2012). In
a separated flow, however, the existence of an inflectional velocity profile and the inherent
unsteadiness of the separation and reattachment lines provide a vigorous stirring of the
flow that accelerates the generation of eddies. Moving the interface closer to the wall
improves the results significantly (simulation F-NW in figure 26). The addition of the
non-equilibrium model correction (Meneveau 2020) was also beneficial, and the wall shear
stress predicted by the F-NW-NEQ simulation agrees much better with the data. Similar
conclusions can be drawn from an examination of the mean velocity and Reynolds stresses
(not shown). These modifications were used in the production runs described in the paper.

A.3. Morphological model
The final test we carried out had the purpose of testing the accuracy of the morphological
model. To this end, we simulated one of the cases studied experimentally by Venditti
et al. (2005a). Those authors considered an open-channel flow where the bottom surface
was composed of loose granular material and the bed was initially flat, and analysed five
flow regimes, spanning some cases in which sediment transport is minimal, and others in
which the sediment begins to be transported immediately, causing bedform deformation.
We focus on the experiment at the highest Reynolds number, where the bedform develops
most rapidly (FLOW A in Venditti et al. 2005a). Table 4 shows the sediment and flow
parameters used to match the experiment. The flow is fully turbulent and subcritical
(Fr < 1). The equivalent sand-grain roughness associated with the sediment dimensions
was ks = 30y0 (van Rijn 1993), and lies at the intersection between the transitional and
fully rough regimes. This configuration falls into the gravitational-settling regime (Finn &
Li 2016), in which the particle motion is mainly driven by settling.

The simulations match all the flow and sediment parameters. We use the methodology
discussed in § 2.1 with the combination of the IBM and the wall model and the blended
central difference–QUICK scheme for the convective terms. The domain is a cuboid of
length L = 32H , width W = 4H and height 1.5H , and the initial immersed surface in this
case is a horizontal plane, located at yb = 0.5H , such that the effective flow depth is H .
The streamwise and spanwise directions are periodic and the top surface is treated as a
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Flow parameters Roughness parameters Sediment parameters

Reb = Hub/ν = 76 000 k+s = ksuτ /ν = 76 θ = u2
τ /(s − 1)gd = 0.111

Fr = ub/
√

gH = 0.41 d = d 3
√

(s−1)g
ν2 = 12.7

Reτ = uτ H/ν = 4590 ws/uτ = 2.8

Table 4. Experimental parameters for the validation of the morphological model (Venditti et al. 2005a).

Simulation Nx × Ny × Nz �x+ �y+ �z+

Coarse 128 × 80 × 64 290 65−85 290
Medium 192 × 120 × 96 195 45−60 195
Fine 256 × 160 × 128 145 33−47 145

Table 5. Open-channel flow over loose granular bed: simulation grid parameters.

fixed free-slip surface. The grid is Cartesian with uniform spacing in the streamwise and
spanwise directions. The wall-normal distribution of grid points is similar to that shown in
figure 1(b). There is a band of cells with uniform spacing to cover the area across the flow–
sediment interface; above this layer the grid is stretched to the top surface. Table 5 shows
the numerical parameters. Three grids were used (coarse, medium and fine) to verify the
grid convergence of the results.

Initially, the simulation is run with a fixed bed to allow the flow to develop fully and
reach a statistically steady state. Then, statistics for the fixed-bed case were collected for
150T f , where T f = δ/uτ is the large-eddy turnover time. Experimental measurements
collected before the bed started to deform are available, and are compared in figure 27
with the numerical results. Since the medium and fine grids are in good agreement with
each other and with the experimental data, the medium grid is used in the following.

The simulation starts from an instantaneous flow field obtained from the fixed-bed
case. We use the bed-load transport model by van Rijn (1984b), which was shown
(D’Alessandro et al. 2021) to yield accurate predictions in this transport regime (〈θ〉 �
0.1 > θcr ). Starting from the flat bed, Venditti et al. (2005a) reported the emergence of
several, progressively larger and more complex features on the bed:

(i) Longitudinal striations with spacing of the order of the hairpin streaks, which form
and disappear quickly.

(ii) A cross-hatch pattern (t/Ts = 6720).
(iii) Chevron-shaped features develop at the nodes of the cross-hatch (t/Ts = 8400).
(iv) Incipient crest lines.
(v) Quasi-two-dimensional crest lines for 15 120 < t/Ts < 50 400.

(vi) Quasi-equilibrium two-dimensional bedforms for t/Ts = 2 × 106.

The structures corresponding to points (i)–(iii) are too small to be captured by a wall-
modelled LES grid and, therefore, we focus our attention on the structures corresponding
to points (iv)–(vi), namely on the later stages of development.

Figure 28 shows contours of the bed elevation displacement, ŷb, normalised by the
grain diameter, d, at five time instants: t/Ts = 0, 12 000, 15 000, 35 000 and 50 000,
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Figure 27. Open-channel flow at Reτ = 4590, fixed bed. Time- and spanwise-averaged profiles of (a)
streamwise velocity, 〈u〉/uτ , and (b) Reynolds stress profiles in wall units, 〈u′v′〉 and 〈u′u′〉. , Venditti et al.
(2005a); , coarse grid; , medium grid; , fine grid; , wall-model interface location.
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Figure 28. Contours of the bedform-elevation displacement ŷb. Five time instants from flat bed to quasi-two-
dimensional transverse dunes are shown at (a) t/Ts = 0, (b) 12 000, (c) 15 000, (d) 35 000 and (e) 50 000. Only
a portion of the domain is shown for clarity.

corresponding to the phase of development of quasi-two-dimensional crest lines. The bed-
elevation displacement from the initial flat bed is defined as ŷb(x, z, t)= yb(x, z, t)−
〈yb(t = 0)〉. Supplementary movie 2 shows the full evolution of the bedforms.

Figure 28(a) shows the initial flat bed with ŷb = 0, while figure 28(b–e) shows the
elevation variation during the formation and growth of the two-dimensional crest lines.
Compared with the experimental findings, our bedform field exhibits a greater spanwise
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Figure 29. Channel flow over loose granular bed: comparison of (a) bedform wavelength, λ, and (b) bedform
height, Δ, with experimental data. , Venditti et al. (2005a); , 90 % confidence range; , best-fit law by
Venditti et al. (2005a); , coarse grid; , medium grid. Computed data at multiple spanwise locations are
shown for each time instant.

variation (i.e. sinuosity). Similar results were observed in the numerical simulations
by Khosronejad & Sotiropoulos (2014) which also reproduced the configuration of the
laboratory experiment conducted by Venditti et al. (2005a). They suggested that this
issue might be related to the different inflow boundary conditions and the length of the
domain compared with the experiment. In this work, instead of inlet conditions, we adopt
periodic boundary conditions in the streamwise direction, which recirculates all the initial
three-dimensional bed structures.

To compare quantitatively the bedform evolution to the experiment, we determined the
wavelength and amplitude of the bedforms, by smoothing the bed profiles and identifying
the local maxima. Figure 29 shows the wavelength, λ(z, t), and the height, Δ(z, t), of the
bedforms. Each symbol (circle and star) represents the average wavelength and height of a
profile at a specified spanwise location and time instant. The grey area represents the 90 %
confidence range of the experimental measurements in figure 29. The numerical results
are slightly below the average height and wavelength but fall well within the uncertainty
of the experiments. Determining the height and wavelength of the ripples is challenging
both experimentally and numerically, leading to significant variability in the experimental
(and numerical) data. Given these factors, we find the agreement satisfactory.

As anticipated in § 2.2, we neglect the suspended-sediment transport in the present
simulations. Khosronejad & Sotiropoulos (2014) performed a numerical simulation with
the same flow and sediment configuration and a numerical model similar to the one used
here, including suspended-sediment transport and stratification effects. They observe that
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fine grids are required to achieve bed destabilisation unless stratification is included, and
that suspended sediment accounts only for about 17 % of the total sediment transport
rate.

In the present work, the sand bed is destabilised even with the coarse grid, probably
because of the less dissipative nature of the numerical scheme compared with that of
Khosronejad & Sotiropoulos (2014). Furthermore, the agreement of the bedform height
and wavelength indicates that the role of suspended-sediment transport, in the present
simulations, is not crucial. The results shown in this appendix prove that the methodology
applied in this work can effectively model strongly separated flows, and can accurately
predict the morphodynamics of a mobile bed.
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