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We investigate the influence of shear-thinning and viscoelasticity on turbulent drag
reduction in lubricated channel flow — a configuration where a thin lubricating layer of non-
Newtonian fluid facilitates the transport of a primary Newtonian fluid. Direct numerical
simulations are performed in a channel flow driven by a constant mean pressure gradient at
a reference shear Reynolds number Re,; = 300. The interface between the two fluid layers
is characterised by Weber number We = 0.5. The fluids are assumed to have matched
densities. In addition to a single-phase reference case, we analyse four configurations:
a Newtonian lubrication layer, a shear-thinning Carreau fluid layer, a shear-thinning and
viscoelastic FENE-P fluid layer, and a purely viscoelastic FENE-CR fluid layer. Consistent
with previous findings (Roccon et al. 2019, J. Fluid Mech., vol. 863, R1), surface tension
is found to induce significant drag reduction across all cases. Surprisingly, variations in
the lubricating layer viscosity do not yield noticeable drag-reducing effects: the Carreau
fluid, despite its lower apparent viscosity, behaves similarly to the Newtonian case. In
contrast, viscoelastic effects lead to a further reduction in drag, with both the FENE-P and
FENE-CR fluids demonstrating enhanced drag-reducing capabilities.

Key words: drag reduction, viscoelasticity, non-Newtonian flows

1. Introduction

Drag reduction in turbulent flows can be achieved by introducing a thin lubricating layer
near the wall, which reduces frictional losses (Joseph et al. 1997). This strategy has been
extensively studied through experiments and has found industrial applications, particularly
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in the transport of crude oil through pipelines (Isaac & Speed 1904; Looman 1916; Joseph
etal. 1984, 1997; Hu & Joseph 1989). Another widely explored approach to drag reduction
involves the addition of polymeric additives, which alter the rheological behaviour of
the fluid and lead to significant friction reduction (Forrest & Grierson 1931; Virk 1975;
White & Mungal 2008; Wang et al. 2011). In this study, we aim to combine these two
mechanisms by employing a non-Newtonian lubricating layer to facilitate the flow of a
Newtonian core fluid.

Beyond its industrial relevance, this configuration is also relevant in biomedical
contexts, such as the human respiratory tract, where a thin mucus layer — characterised
by viscoelastic and shear-thinning properties — modulates airflow resistance (Fontanari
et al. 1997; Sue-Chu 2012; Fazla et al. 2024). While not the main focus of this study, such
parallels highlight the broader relevance of understanding how non-Newtonian lubricating
films interact with turbulent flows under the influence of surface tension.

Despite their practical importance, multiphase flows involving non-Newtonian fluids
have received relatively limited attention. While a substantial body of work exists on
single-phase non-Newtonian laminar and turbulent flows (Arosemena, Andersson &
Solsvik 2021; Amor et al. 2024; Serafini et al. 2024; Milocco et al. 2025; Rosti 2025;
Xu et al. 2025), far fewer studies have addressed multiphase systems. Several works
have focused on the motion of rigid particles — both spherical and non-spherical —
in non-Newtonian fluids (D’Avino et al. 2017; Lu et al. 2017; Datt & Elfring 2018;
Zenit & Feng 2018; Hu et al. 2024; Habibi et al. 2025). However, when gas-liquid
or liquid-liquid systems are considered, the literature is sparse, particularly regarding
interface-resolved simulations. Most studies in this area have examined the dynamics,
deformation and interaction of drops and bubbles in non-Newtonian fluids, and vice versa
(Oishi et al. 2012; Yue & Feng 2012; Wang, Do-Quang & Amberg 2017; Amani et al. 2019;
Balasubramanian et al. 2024), with only a small number investigating turbulent conditions
using interface-resolved simulations (Rosti & Brandt 2017; Del Gaudio et al. 2024).

We address this problem through direct numerical simulations (DNS) of a turbulent
channel flow at shear Reynolds number Re; = 300, driven by a constant mean pressure
gradient. The domain contains a thin lubricating layer near the bottom wall, separated from
the Newtonian bulk by a deformable interface governed by surface tension, with a fixed
Weber number We = 0.5. All cases assume density-matched fluids to isolate rheological
effects from buoyancy or inertial stratification. We consider a reference single-phase
Newtonian case, alongside four two-layer configurations in which the lubricating layer
exhibits increasing rheological complexity: (i) Newtonian; (ii) shear-thinning described by
a Carreau model; (iii) shear-thinning and viscoelasticity combined via a FENE-P model;
and (iv) purely viscoelastic behaviour modelled by FENE-CR. In all cases, the zero-shear
viscosity of the lubricating layer is matched to that of the core fluid to allow meaningful
comparison. Such fluids occur in real-world applications and can also be engineered by
incorporating micro-structures into light oils or other fluids (Ewoldt & Saengow 2022).
In line with previous findings for Newtonian—Newtonian fluids (Roccon, Zonta & Soldati
2019), surface tension alone contributes substantially to drag reduction. However, the
presence of shear-thinning behaviour without elasticity does not significantly enhance this
effect: the Carreau fluid, despite its reduced apparent viscosity near the wall, yields drag
reduction levels comparable to the Newtonian case. In contrast, viscoelastic effects play a
decisive role, and both FENE-P and FENE-CR fluids lead to drag reduction, highlighting
the importance of the elastic component in modifying interfacial dynamics and turbulence
structure.
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Figure 1. Sketch of the simulation set-up considered. The flow of a main Newtonian layer having nominal
thickness 1.74 is favoured by a non-Newtonian lubricating layer having nominal thickness 0.34. The two fluids
are immiscible and separated by a deformable interface; the flow is driven by a constant pressure gradient along
the streamwise direction. The case shown refers to a FENE-CR lubricating layer and the colour map (yellow
for low, violet for high) shows the x —z component of the polymer stress tensor.

2. Methodology

We consider a channel flow with a main Newtonian fluid layer (thickness 1.7k) lubricated
by a thin non-Newtonian layer (thickness 0.3%), as depicted in figure 1. The channel
has dimensions L, x Ly x L, =4mh x 2wh x 2h, where h is the channel half-height,
and x, y, z are the streamwise, spanwise and wall-normal directions, respectively. The
two fluids have equal density, p,, = p; = p, and are separated by a deformable interface
characterised by a constant surface tension o. The DNS of the Navier—Stokes equations
coupled with a Cahn—Hilliard equation are used to describe the dynamics of the two-phase
flow (Jacqmin 1999; Roccon, Zonta & Soldati 2023). An additional transport equation for
the conformation tensor is solved when viscoelastic fluids are considered.

2.1. Phase-field method

The phase-field method employs a diffuse-interface formulation in which the sharp
boundary between immiscible fluids is replaced by a thin transition layer, across which
fluid properties vary continuously. This is achieved by introducing the phase-field
variable ¢, which is an indicator function: ¢ =1 in the main layer, and ¢ = —1 in the
lubricating layer. The fluid interface is then represented by the region where ¢ varies
smoothly between these two values. The distribution and dynamics of ¢ are governed by
the dimensionless Cahn—Hilliard equation:

RIo) I _,

o1 +u-Vop= e Vg, 2.1
where Pe=u.h/MSp is the Péclet number, i.e. the ratio between the convective and
diffusive time scales of the interface. Here, u, denotes the friction velocity, /4 is the channel
half-height, M is the mobility, and g is a positive constant. The chemical potential pig is
defined as the variational derivative of a Ginzburg—Landau free-energy functional:

_ 5F[$, V9l
P = ———.

59 (2.2)
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We consider a system composed by two immiscible fluids, one of which is viscoelastic.
The corresponding Ginzburg-Landau free-energy functional can be expressed as the sum
of three different contributions, namely a bulk term, an interfacial (or mixing) term, and
an elastic contribution (Yue et al. 2004):

Flo, Vol= /Q(fo(dn + fmix(V@) + fe()) dS2, (2.3)
with
2 1 2

fo(p) = y, (2.4)

ch? _
fmix(V@) = TIVd)I , (2.5)

1—¢ 1—xo 1

fe(®) = 2 WL Y (ln v+ 54 q) dq, (2.6)

where fo represents the bulk free energy driving phase separation, f,;x accounts for the
interfacial energy, which is proportional to the Cahn number Ch = £/ h (ratio of interface
thickness & to channel half-height %), and f, models the elastic contribution associated
with polymer deformation. Here, iy denotes the normalised probability distribution
function of the polymer end-to-end vector g (i.e. ng ¥ dg =1) (Bird, Armstrong &
Hassager 1987). The phase-field formulation implicitly captures topological changes of
the interface, such as rupture events, while preserving smooth transitions. From (2.2), the
chemical potential is obtained as

o
S
Following Yue et al. (2004, 2005), the elastic contribution §f, /8¢ becomes negligible in
the sharp-interface limit. The governing Cahn—Hilliard equation then reduces to

% . _i 2(43 4 2 2
at—l—u V¢_PeV(¢ ¢ — Ch” V>9). (2.8)

fe=¢° — ¢ — Ch> V2 + (2.7)

2.2. Hydrodynamics

To describe the hydrodynamics of the two-phase system, the Cahn—Hilliard equation is
coupled with the Navier—Stokes equations within the one-fluid formulation (Prosperetti &
Tryggvason 2007). The presence of a deformable interface is accounted for by an
additional source term representing surface tension forces. This formulation ensures
continuity of velocity and stresses across the interface (Landau & Lifshitz 1987; Panton
2013). The resulting dimensionless governing equations read as

V.eu=0, (2.9)
o Vu= Vot L.y (2.10)
—4u-Vu=— T $ T, )
a1 Pl Ree VT Bwe T

where u = (u, v, w) is the velocity vector and Vp is the pressure gradient. The last term
in (2.10) represents the contribution of the surface tension forces where the corresponding
stress tensor is defined as . = |V¢|*I — V¢ ® V¢, in accordance with the Korteweg
formulation (Korteweg 1901). The dimensionless parameters are the shear Reynolds
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number Re; = purh/u,, based on the Newtonian fluid viscosity, and the Weber number
We = ,ou%h /o, i.e. the ratio between inertial and surface tension forces.

2.3. Non-Newtonian rheology

The rheological behaviour of the lubricating layer is controlled by the constitutive stress
tensor, T;. In addition to a reference Newtonian lubricating layer, we consider the
following non-Newtonian models: (i) Carreau model, representative of a shear-thinning
fluid; (ii) FENE-P model, a viscoelastic and shear-thinning fluid; and (iii) FENE-CR
model, a viscoelastic fluid characterised by uniform viscosity. Hence for the different cases
considered, the constitutive stress tensor 7 is defined as

(Vu + VuT) , Newtonian,
1+ 222 ey - 1) (Ve W C
T, = + = B =1 ) (Vu+VuT), arreau,
1/xo— 1 1
Xo (1 + (4/xo 2)(¢ + )> (Vu+Vu") + (1 —x0) ,, FENE-P and FENE-CR.

2.11)

For the shear-thinning Carreau model (Carreau 1972), the effective non-dimensional
viscosity is expressed through the relation

Y 00 oo =12
By =MW _ Moo (1 — ’”‘—> [1+(Cu y)z] , (2.12)
o o Ko

where [too/Mo is the infinite-strain to zero-strain viscosity ratio, Cu = Au./h is the
Carreau number, with A the fluid characteristic time scale, n is the flow behaviour index,
and y is the strain rate. The latter is defined as y = +/2 SS, with § = 1/2(Vu + VuT).

For the viscoelastic cases (FENE-P and FENE-CR), the viscosity ratio xo = s/ (s +
1 p) quantifies the solvent contribution to the total zero-strain viscosity po = ps + pp =
Um, and has been set equal to the top Newtonian layer. The polymer stress tensor is
defined as

Re;
TH, =
P .
Wi,

(f(O)C—-g(O) ), (2.13)

where Wi, = p/lu% /1o 1s the shear Weissenberg number, while Wi = Wi;/Re; is the

Weissenberg number (coincident with the Deborah number), i.e. the ratio of elastic

to flow time scale, and A is the polymer relaxation time. The conformation tensor C

describes the polymer microstructure and is described by the equation (Alves, Oliveira &

Pinho 2021)
aC

—+u-VC=C-Vu+(C-Vu)T—12_—W(f[f(C)C—g(C)I]—i—

vic,
ot

(2.14)

er Scp

where Scj, = uo/(pk) is the Schmidt number controlling the magnitude of the diffusive
regularisation term for the polymer. The finite polymer extensibility is captured by
f(C)=L?/(L?> —tr(C)), with L the extensibility limit. The choice of g(C) distinguishes
the models: g =1 gives the FENE-P model, which accounts also for shear-thinning
effects (Bird et al. 1987), while g = f(C) yields the purely viscoelastic FENE-CR model
(Chilcott & Rallison 1988). Notably, the formulation employed here ensures a consistent
transition between different rheological behaviours. In the Newtonian region (¢ — 1), the
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effective Weissenberg number Wi(¢) = (1 — ¢)/2 Wi tends to zero, the relaxation term
vanishes, and the conformation tensor reduces to C ~ I. The polymer stress contribution
therefore becomes negligible, and the standard Navier—Stokes equations are recovered. In
contrast, in the viscoelastic region (¢ — —1), the full polymer stress is active, introducing
both elasticity and shear-thinning effects, depending on the chosen closure.

2.4. Numerical method

The governing equations (2.8), (2.9), (2.10) and (2.14) are solved using FLOW?36, an open-
source GPU-ready spectral solver (Roccon, Soligo & Soldati 2025). Spatial discretisation
relies on Fourier expansions in the two homogeneous directions (x, y) and Chebyshev
polynomials in the wall-normal direction (z).

The Navier—Stokes equations are solved in the wall-normal velocity—vorticity
formulation (Kim, Moin & Moser 1987; Speziale 1987), which yields a fourth-order
equation for the wall-normal velocity w, and a second-order equation for the wall-normal
vorticity w,. The phase-field equation (2.8) is reformulated as two coupled second-
order equations (Badalassi, Ceniceros & Banerjee 2003). Time advancement of both
the momentum and phase-field equations employs an implicit-explicit scheme (Moin &
Kim 1980): linear terms are integrated implicitly (Crank—Nicolson for the Navier—Stokes
equations, backward Euler for the phase-field; Yue ef al. 2004), while nonlinear terms are
treated explicitly using a second-order Adams—Bashforth method.

For viscoelastic simulations (FENE-P, FENE-CR), the conformation tensor equation
is advanced in time simultaneously with the momentum and phase-field equations. The
numerical treatment of the conformation tensor is particularly delicate, as the loss of
positive-definiteness and the development of steep polymer stress gradients near the walls
may trigger numerical instabilities. To alleviate these issues, a diffusive regularisation
term for the polymer (Re; Sg,) —1 V2( is introduced following standard practice in pseudo-
spectral simulations (Sureshkumar, Beris & Handler 1997; Dimitropoulos, Sureshkumar &
Beris 1998; Xi & Graham 2010). The diffusive contribution in the conformation tensor
equation is discretised implicitly via a Crank—Nicolson scheme, while the nonlinear terms
are advanced explicitly with a second-order Adams—Bashforth scheme. To ensure the
boundedness of the conformation tensor C, i.e. tr(C) < L? , we adopt the stabilisation
technique proposed by Vaithianathan & Collins (2003) and later refined by Dubief et al.
(2005) and Richter, Iaccarino & Shagfeh (2010). This method enforces the boundedness
of tr(C) by evolving an auxiliary variable f ~1'=1 —tr(C)/L? for the FENE-P model (or
f in the FENE-CR case) instead of C directly. In both formulations, the resulting value of
£~ 1 (or f)is held fixed while the nonlinear terms of conformation tensor C are computed,
ensuring that tr(C) < L? at all times, and maintaining numerical stability.

2.5. Boundary conditions

Periodic boundary conditions are applied along the two homogeneous directions (x and y),
where Fourier transforms are employed. At the walls (z/h = =£1), no-slip boundary
conditions are enforced for the velocity field:

u(z/h==1)=0. (2.15)

Using the wall-normal velocity—vorticity formulation, the corresponding conditions for the
wall-normal velocity w and vorticity w; can be derived by combining the no-slip condition
with the continuity equation. Specifically, for the wall-normal velocity we have

Jw

h=+1)=0, — =0, 2.16
w(z/ ) o7 |2 hes1 (2.16)
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and for the wall-normal vorticity we have
ou

v
w,(z/h=x1)=— het1 — 5

0x

The Cahn-Hilliard equation is solved by imposing no-flux conditions for the phase-field
variable and the chemical potential at the two walls:

99 _o e
0z lz/h==1 ’ 9z

From a mathematical point of view, this is equivalent to imposing the boundary conditions
(Jacgmin 1999; Yue et al. 2004)

(2.17)

=0.
z/h==%1

(2.18)

ZJh=£1

3 33
¢ _o, ¢ _ (2.19)
9z |z/h=+1 073 lz/h=+1
These conditions ensure global conservation of the phase field:
d
— / ¢ d2 =0, (2.20)
dr Jo

where 2 is the computational domain. While this guarantees mass conservation of the
entire system, it does not strictly enforce mass conservation of each phase (¢ =41 and
¢ = —1), and small leakages between phases may occur (Yue, Zhou & Feng 2007; Soligo,
Roccon & Soldati 2019). In the present simulations, mass leakage is always below 1 %.
For the conformation tensor, the boundary conditions are set according to the rheological
properties of the respective layer. At the top wall (z/h = 1), where the fluid is Newtonian,
a Dirichlet condition corresponding to the coiled state of the polymers is imposed:

Clyn=1=1. (2.21)

At the bottom wall (z/h = —1), when a viscoelastic fluid layer is present (FENE-P or
FENE-CR), zero artificial diffusivity is assumed (Sc¢ — 00), making the conformation
tensor equation explicit at the wall (Dimitropoulos et al. 1998):

At _
C"™ ' hee1 =C" | pe1 + 7(3sc"|z/h=,1 — 8" =), (2.22)

where S. contains all nonlinear terms of the conformation tensor transport (2.14).
This treatment ensures that the conformation tensor and the associated polymeric stress
naturally follow the interface evolution and remain confined to the respective fluid layer.

2.6. Simulation set-up

We perform five sets of DNS of a turbulent channel flow. First, a precursor single-phase
(SP) simulation at Re; = 300 is executed to reach a statistically steady state. The resulting
flow field is then used to initialise the Newtonian simulation. All multiphase simulations
are subsequently initialised from this stratified Newtonian configuration. The time step is
maintained at A7~ =0.25 x 10~ for all simulations.

The multiphase cases consider a main Newtonian layer above a thin lubricating layer,
as illustrated in figure 1. The lubricating layer exhibits different rheological behaviour
in each simulation: Newtonian, shear-thinning (Carreau model), viscoelastic and shear-
thinning (FENE-P model), and purely viscoelastic (FENE-CR model). In all viscoelastic
simulations, the Schmidt number is set to S¢, =1, chosen as a compromise to stabilise
the numerical solution of the conformation tensor without significantly compromising
physical fidelity (Sureshkumar & Beris 1995). The chosen Schmidt number conforms
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to previous numerical studies (Xi & Graham 2010; Zhu et al. 2018; Kelly et al. 2025),
and a sensitivity analysis of its effect is reported in Appendix A. For both viscoelastic
simulations, the Weissenberg number is set to Wiy = 50, and the viscosity ratio is set to
x0 =0.9. In all cases, the zero-strain-rate viscosity of the lubricating layer is matched to
that of the Newtonian upper layer, (o = ;. The Carreau model parameters are tuned
to reproduce the same degree of shear-thinning observed in the FENE-P simulation at
Wi, =50 and L =30, using the known rheological response wu;/uo(y, xo, Wi, L) as a
reference (Tamano et al. 2009), yielding poo/o = 0.9, Cu =4 and n = 0.45.

For the SP, Newtonian and Carreau cases, a grid of 512 x 256 x 257 points is used,
whereas the viscoelastic simulations employ a finer grid of 512 x 512 x 513 points to
ensure numerical stability. To verify that this resolution is sufficient for the viscoelastic
cases, we also performed additional simulations using a grid refined by a factor of 2
in all directions, and observed no appreciable differences. The surface tension of the
liquid-liquid interface is constant for all cases and set via the Weber number We = 0.5.
This value is consistent with our previous multiphase DNS database, and ensures that
the interface remains compliant yet stable under turbulent forcing, in line with earlier
studies on drag-reduced flows (Roccon et al. 2019, 2021, 2024). The Cahn number is set
to Ch=0.02, and the Péclet number is computed as Pe = 3/Ch (Magaletti et al. 2013)
to achieve asymptotic convergence to the sharp-interface limit. The interface is initially
flat and located at #; = 0.3/ from the bottom wall. Specifically, the initial phase-field
condition is

(2.23)

¢(x/h.y/h.z/h) =~ tanh(M)'

V2 Ch

On the other hand, viscoelastic simulations are initialised with zero polymer stress,
7, =0, i.e. C = I in the entire domain. Given the prescribed boundaries condition on the
conformation tensor, and because advective or stretching contributions in the Newtonian
region do not develop due to the mild gradients of the conformation tensor, the latter
remains constant over time.

3. Results

The drag reduction performance obtained from the different cases is first evaluated by
looking at macroscopic flow parameters. Then the mean shear stress budget is used to
obtain useful insights on the mechanisms leading to drag reduction, and in particular on
the interplay between capillary action, shear-thinning and viscoelasticity. The statistics
presented below have been computed once a new statistically steady-state configuration
is attained for all configurations. All simulations exhibit an initial transient, whose
duration depends on the specific case considered, where the flow adapts to the rheological
properties of the lubricating layer. Once this new steady-state configuration is attained,
statistics are computed using time window At = 4000.

3.1. Mean flow and rheological features

Figure 2(a) shows the rheology map of the lubricating fluids employed, where the
dimensionless viscosity w;(y)/ o is shown as a function of the strain rate . The shear-
thinning region — where viscosity decreases with increasing strain rate — is the shaded grey
area. The Carreau (green solid line) and FENE-P (green dashed line) models have the same
Zero strain rate viscosity (o, and exhibit identical shear-thinning behaviour, asymptotically
approaching a viscosity plateau w(y)/uo ~ 0.9 at high strain rates. In contrast, the FENE-
CR model (purple dashed line) maintains a constant viscosity over the entire strain-rate
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Figure 2. (a) The rheology map of the different lubricating fluids. The dimensionless viscosity p;(y)/ o, with
zero-strain viscosity (o set constant among all cases, is reported as a function of the strain rate y. Carreau and
FENE-P models exhibit the same shear-thinning behaviour (green). (b) The mean velocity profiles along the
wall-normal direction. The nominal position of the interface (z/h = —0.7) is highlighted using a grey dashed
line. The inset illustrates the resulting mean viscosity distribution 7t/ along the wall-normal direction near
the non-Newtonian lubricating layer.

range, overlapping with the Newtonian reference (purple solid line), thus isolating the
effects of viscoelasticity from those of shear-thinning. On the other hand, viscoelasticity —
the ability of a fluid to exhibit both viscous and elastic behaviour under deformation —
stems from the polymer stress contribution. This represents the memory effect of polymer
chains, which store and release elastic energy depending on whether they are stretched or
relaxed (Xi 2019).

Figure 2(b) shows the mean streamwise velocity profiles u# as a function of the wall-
normal coordinate. For the SP case, the velocity profile is symmetric, whereas in the
multiphase configurations, the introduction of a lubricating layer, whose nominal position
is indicated by the grey dashed line at z/h = —0.7, breaks this symmetry, promoting an
overall increase in mean flow velocity, especially in the main layer. The extent of this
enhancement, however, depends on the rheological properties of the lubricating layer.
For the Newtonian case, we observe an increase of the velocity in the main layer, with
values larger than the SP case as well as an increase of the derivative of the mean
velocity near the top wall. In contrast, close to the bottom wall, the derivative is smaller,
with respect to the SP case. For the Carreau case (green solid line), the introduction of
a shear-thinning behaviour induces only marginal changes compared to the Newtonian
configuration. This suggests that shear-thinning alone has a limited influence on the
mean flow. In contrast, the addition of viscoelasticity (dashed lines, FENE-P and FENE-
CR cases) leads to a substantial increase in mean velocity. This increase is particularly
pronounced in the main layer, and can be traced back to the presence of viscoelastic
turbulence in the lubricating layer. This enhancement is purely due to viscoelastic effects:
comparing FENE-P (viscoelastic shear-thinning) and FENE-CR (pure viscoelastic), no
differences are visible. To better evaluate the role played by shear-thinning phenomena, we
analyse the inset of figure 2(b), which shows the normalised mean viscosity distribution
/1o along the wall-normal direction, highlighting its dependence on the chosen rheology
and local flow field. In the shear-thinning cases, the viscosity progressively decreases from
the Newtonian bulk value w, = o, with the Carreau and FENE-P models achieving
approximately a 10 % reduction at the bottom wall, as they share the same rheology
map. This behaviour reflects the mean velocity profile behaviour: higher shear rates near
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Simulation Main layer Lubricating layer On/Osp Q1/Osp Qiot/Osp AQ %
SP Newtonian - 1.000 0.000 1.000 0.00
MP1 Newtonian Newtonian 1.005 0.116 1.122 12.2
MP2 Newtonian Carreau (shear-thinning) 0.998 0.117 1.115 11.5
MP3 Newtonian FENE-P (shear-thinning and viscoelastic) ~ 1.098 0.123 1.222 222
MP4 Newtonian FENE-CR (viscoelastic) 1.094 0.122 1.218 21.7

Table 1. Flow rates from simulations: Q,, (main layer), Q; (lubricating layer), and Q,, (total flow rate); Qgsp is
the single-phase flow rate. The percentage increase in flow rate relative to the SP case, AQ %, directly reflects
the amount of drag reduction obtained.

the wall lead to a smaller viscosity. This reduction is rather steep across the interfacial
region (—0.65 < z/h < —0.75), while moving towards the bottom wall (z/h > —0.75),
the viscosity profile gradually flattens, reaching a near-constant value of approximately
0.9. Interestingly, the fluctuations of the actual viscosity in the lubricating layer are small,
remaining within +2 % of the mean value (see Appendix B for further details). Overall, for
the present flow configuration, this behaviour can be interpreted as an equivalent viscosity
ratio only slightly above xg in the lubricating layer.

To quantify the drag reduction performance, we report in table 1 the flow rates of the
main and lubricating layers, Q,, and Q;, together with the total flow rate Q,,;, normalised
by the SP reference value Qgsp. For the Newtonian case, Q,, matches the SP one despite
one part of the channel being occupied by the lubricating layer. As a result, the total
flow rate is approximately ~ 12 % larger than in the SP case. A comparable level of
drag reduction is observed for the Carreau case (MP2). Here, shear-thinning does not
induce significant modifications in Q,,, while Q; increases due to the lower mean wall
viscosity ,,; see inset of figure 2(b). A notably different trend can be appreciated for the
viscoelastic cases (MP3 and MP4), where a remarkable increase in both Q,, and Q; can be
observed. With respect to the SP case, the total flow rate is approximately ~ 22 % larger.
This indicates that the presence of viscoelasticity introduces an additional and effective
drag reduction mechanism, enhancing the volumetric flow rate beyond the gains associated
with the interfacial dynamic alone. It can be observed that shear-thinning has a marginal
effect on the resulting flow-rate: the FENE-CR case — purely viscoelastic — exhibits a
similar increase in the flow rate.

3.2. Cross-section of channel flow

To gain further insights into the behaviour of the drag-reduced flows, we examine
qualitative maps of the flow field in a cross-section of the channel. Figure 3 shows
the instantaneous streamwise velocity distribution in a cross-section of the channel (y—
z plane) located at x/h = Ly /2 =2m. Figure 3(a) corresponds to the SP case, while
the drag-reduced cases are shown in the subsequent panels: Newtonian lubricating layer
(figure 3b), Carreau (figure 3c), FENE-P (figure 3d) and FENE-CR (figure 3¢) lubricants.
The position of the liquid-liquid interface (iso-level ¢ =0) is also highlighted with a
coloured line.

For the SP case (figure 3a), the familiar near-wall turbulence structures are recovered.
For the Newtonian and Carreau cases (figures 3b,c), the structure of the turbulence in the
main layer is similar to that in the SP case, albeit with enhanced intensity. Here, turbulence
is still present in the lubricating layer since its thickness is sufficient to sustain fluctuations;
however, its magnitude is clearly weaker than in the main flow (Roccon et al. 2019). This
indicates that the interface hinders vertical momentum exchange, effectively decoupling
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Figure 3. Instantaneous distribution of the streamwise velocity u™ in a wall-normal section (y—z plane)
located at x/h =2m. (a) Single-phase case. (b—e) Multiphase cases with increasingly complex rheology. The
position of the interface is reported with a coloured line. The images in (b,c) refer to the Newtonian and Carreau
stratified cases, while (d,e) refer to the viscoelastic cases (FENE-P and FENE-CR).

the self-sustaining cycle of the lubricating region from turbulence in the main layer. On the
other hand, the Carreau case introduces no significant changes compared to the Newtonian
case. The reduction in mean viscosity (see inset of figure 2b) slightly enhances turbulence
intensity inside the lubricating layer, but the two cases exhibit similar behaviour.

A more pronounced asymmetry emerges for the viscoelastic cases. Figures 3(d,e)
(FENE-P and FENE-CR, respectively) show a notable attenuation of turbulent activity
in the lubricating layer, although turbulence remains sustained given that the layer is
sufficiently thick. This suppression results from the combined effect of the interface and
the onset of viscoelastic turbulence. Here, polymer stresses actively modify near-wall
dynamics: the altered flow field exhibits an increased spanwise spacing of velocity streaks
together with a reduced frequency of burst events, in line with previous experimental
observations of drag-reduced SP flows (Wei & Willmarth 1992; White, Somandepalli &
Mungal 2004). By contrast, the main layer shows an increased turbulent kinetic energy
production, consistent with the modifications observed in the mean velocity profiles.
Again, no appreciable differences are observed when comparing FENE-P and FENE-CR.

An additional element of distinction among the cases can be identified in the behaviour
of the liquid-liquid interface. In the Newtonian and Carreau cases, the interface undergoes
significant perturbations, with frequent upward and downward motions that correlate with
turbulent structures in the adjacent flow. In contrast, in the viscoelastic cases, the interface
appears much less deformed, with both upward and downward displacements mitigated.
As will be shown later, this reduced interfacial motion can be linked to the damping effect
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of viscoelastic stresses, which suppress wall-normal momentum transport and stabilise the
interface.

3.3. Mean shear stress budget

To obtain a quantitative indication of previous observations, we analyse the mean
shear stress budget along the wall-normal direction. We begin by applying Reynolds
decomposition to the Navier—Stokes equations. Averaging over the homogeneous
directions and assuming a steady-state flow, we obtain a one-dimensional momentum
balance in the wall-normal coordinate:

Tior = Tk + Tt + T¢, 3.1

where the first contribution results from the constitutive stress tensor, the second from
the Reynolds stress tensor, and the last from the capillary stress tensor. For non-
Newtonian fluids, the constitutive stress tensor contribution can be further divided into
two contributions:

Tk = Ty + Tnn, (3.2)
where the first part accounts for the stress induced by the mean velocity gradient, and the
second accounts for additional non-Newtonian stresses. Thus the stress budget becomes

Tiot = Ty + Tt + Tc + Tun. (3.3)
For a Newtonian fluid, the contribution 7, vanishes, and the first contribution reduces
to the classical viscous stress due to the mean shear:
1 ou
" Re; 07
Moving to non-Newtonian fluids, for a Carreau model, the viscous stress and non-
Newtonian contributions are given by
n(z) ou 1w ou
= P Toin =~
Re; 0z Re; g 0z
and for the viscoelastic models (FENE-P or FENE-CR), these two contributions can be
expressed as

Ty 3.4

(3.5)

Ty

Xo(z) du 1 —%0(z) -~
T, = —, Tm=—— fCy;. 3.6
V= Res 9z Wi, S Cxz (3.6)
For all non-Newtonian models, the sum of 7, and 7t,, represents the total wall
stress, denoted as 1,. As the pressure gradient driving the flow is kept constant in all
configurations, in our dimensionless notation, the sum of the wall shear stress at the two
walls is [ + |7} | = 2.
Finally, the Reynolds stress and capillary stress contributions are defined as
3Ch 3¢ 3¢
V8 We dx 9z’
where u” and w’ are the velocity fluctuations.
Figure 4 shows the mean stress budget as a function of the wall-normal direction,
and each plot shows a different contribution: viscous stress (figure 4a), turbulent stress

(figure 4b), capillary stress (figure 4c) and non-Newtonian stress (figure 4d). First, we
consider figure 4(a), which shows the wall-normal behaviour of the viscous stress 7,. As
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Figure 4. Wall-normal distribution of the mean shear stress budget. (@) The viscous shear stress 7, profiles,
with insets zooming in to the regions near the top wall (z/h > 0.94) and bottom wall (z/h < —0.94).
(b) The turbulent shear stress ;. (c¢) The capillary stress 7. profiles for the different multiphase cases, with
an inset focusing on the interface region around z/h = —0.7. (d) The non-Newtonian stress t,,, profiles for the
shear-thinning and viscoelastic cases, with an inset providing a close-up view of the lubricating layer region
(z/h < —0.6).

expected, T, dominates in the near-wall regions, and decreases monotonically towards the
channel centre. In the SP case, the profile is symmetric around the centreline. In contrast, in
the lubricated cases, the presence of a moving interface induces a pronounced asymmetry.
A clear reduction (and respectively an increase) in t, is observed near the bottom (and top)
wall as the rheological complexity of the lubricating layer increases, as can be appreciated
in the two insets. In particular, a reduction in t, is already noticeable in the Carreau case,
resulting from the combined effect of lower local viscosity and wall shear rates within
the lubricating layer. This trend becomes more pronounced when viscoelastic effects are
introduced: the decrease in 7, near the bottom wall is stronger. This is due to a reduction
in wall shear rates (see figure 2b) and, secondarily, to a slight reduction in viscosity
(FENE-P). Figure 4(b) shows the turbulent stress t;. Also in this case, a clear asymmetry
is observed, closely mimicking the viscous stress, resulting in a distinct minimum in t;
near the average interface location (z/h = —0.7). This leads to an increase in turbulence
production in the main layer, and diminished turbulence activity within the lubricating
layer. For the Carreau case, the mild reduction in viscous stress 7, near the bottom wall
induces a slight increase in 7;, due to the lower local viscosity. Upon the introduction
of viscoelastic effects (dashed lines), the asymmetry in the turbulent stress distribution
becomes more marked. Consequently, turbulence activity within the lubricating layer is
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strongly suppressed compared to the Newtonian and Carreau cases, thus the minimum in t;
becomes less pronounced. This behaviour seems to suggest that viscoelasticity produces
a decoupling between streamwise and wall-normal velocity fluctuations (Ptasinski et al.
2001), effectively leading to a decrease in the turbulent shear stress.

Figure 4(c) shows the capillary stress .. This stress peaks near the average interface
position, and decays away from it, acting as a barrier to wall-normal momentum transport
(see the corresponding minimum in 7; in figure 4b). The inset shows the region —1 <
z/h < —0.4, highlighting how the capillary stress contributes to decoupling the dynamics
of the two layers. As viscoelastic effects are introduced, both the intensity and spatial
extent of 7, decrease, reflecting reduced interfacial fluctuations (thus lower interfacial
area), and a diminished role of surface tension forces in regulating the wall-normal
momentum exchange (Verschoof et al. 2016; Roccon et al. 2019).

Finally, figure 4(d) shows the non-Newtonian stress t,,. This stress is negligible for
the Carreau case (see Appendix B) but becomes important when viscoelastic effects
are introduced (dashed lines). In these configurations, t,, is non-zero at the wall and
slightly increases moving away from the wall, reaches a maximum at approximately
z/h = —0.95, then decreases monotonically towards the mean interface position. The
presence of t,, serves a twofold purpose. First, it promotes the development of viscoelastic
turbulence within the lubricating layer, characterised by decorrelated streamwise and wall-
normal velocity fluctuations, effectively leading to a decrease in the turbulent shear stress,
as previously observed. Second, the non-Newtonian stresses contribute in damping the
interface wavy motion, a phenomenon qualitatively similar to the observations of Rosti &
Brandt (2017). To maintain the shear stress budget along the wall-normal direction, an
increase in 1,, is accompanied by a reduction of the turbulent and capillary stresses. The
reduced turbulent stresses lead to a reduction of the momentum exchange along the wall-
normal direction (Verschoof et al. 2016; Roccon et al. 2019). Likewise, the reduction in
the capillary stresses reflects the interface stabilisation induced by viscoelasticity and thus
the corresponding reduced wave amplitude.

3.4. Quadrant analysis

To better understand the mean shear stress budget results and the physical mechanisms
driving drag reduction, we now examine the quadrant contributions to the turbulent shear
stress (Wallace, Eckelmann & Brodkey 1972). This approach decomposes the Reynolds
stresses 7; = —u/w’ into contributions associated with four types of events: (i) outward
interactions of high-speed fluid (Q1, u’ > 0, w’ > 0); (ii) ejections of low-speed fluid (Q2,
u' <0, w' > 0); (iii) inward interactions of low-speed fluid (Q3, u’ <0, w’ < 0) and (iv)
sweeps of high-speed fluid towards the wall (Q4, u’ >0, w’ < 0). Figure 5 shows the
averaged quadrant contributions to t; in the lower portion of the channel (z/h < —0.4),
where the lubricating layer is located. Colours are used to identify the different cases: SP
(black thin line), Newtonian (violet solid line), Carreau (green solid line), FENE-P (green
dashed line) and FENE-CR (violet dashed line). Symbols are used to distinguish among
Q1 (positive), Q2 (negative), Q3 (positive) and Q4 (negative) events.

For the SP case, the turbulent stress is dominated by Q2 and Q4 events (shown
respectively with square and circle markers), with ejections and sweeps constituting
the hallmark of the turbulent momentum transfer along the wall-normal direction. The
introduction of a lubricating layer alters this balance. For the Newtonian and Carreau
cases, Q2 and Q4 events remain the primary contributors, but they are less intense
than in the SP case. In both cases, ejections (Q2) increase with distance from the wall,
reaching a peak at approximately z/h = —0.85, followed by a minimum near the mean
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Figure 5. Quadrant contributions to the turbulent shear stress in the lubricating layer (z/h < —0.7). Colours
are used to distinguish among the different cases: SP (black thin line), Newtonian (violet solid line), Carreau
(green solid line), FENE-P (green dashed line) and FENE-CR (violet dashed line). Markers are used to identify
the quadrant events: outward motion Q1 (upward-pointing triangles), ejection Q2 (squares), inward motion Q3
(downward-pointing triangles), and sweep Q4 (circles).

interface position (z/h ~ —0.7), then a plateau before decaying for z/h > —0.5. Sweeps
(Q4) display a different trend, characterised by a distinct double-peak structure: an
initial maximum at z/h = —0.85, a decrease near z/h = —0.78, and a secondary peak
at approximately z/h = —0.65, though with consistently smaller amplitudes than the
ejections. This behaviour reflects the role of the interface in hindering wall-normal
momentum transfer, thereby weakening the coupling between the turbulence in the
lubricating layer and the self-sustaining cycle of the main flow. Only minor differences
are observed between the Newtonian and Carreau cases, confirming that shear-thinning
has little impact on wall-normal momentum transfer. These trends become even more
pronounced when the viscoelastic cases (FENE-P and FENE-CR) are considered. We
can observe a pronounced suppression of both Q2 and Q4 activity in the lubricating
layer. Likewise, Q1 and Q3 events also become less intense. These modifications are,
however, less marked with respect to the Newtonian and Carreau cases. This is consistent
with the strong reduction in turbulent stresses observed in figure 4(b) for the viscoelastic
cases. Indeed, such decrease can be directly traced back to the lack of Q2 and Q4 events
observed in the quadrant analysis. These observations are also consistent with the results
obtained by Cheng et al. (2025) in two-dimensional elasto-inertial turbulence.

Further insights on the modulation of the turbulent stresses can be gained from the
normalised joint probability density functions (JPDFs) of (u/, w’), reported in figure 6 and
evaluated at z/h = —0.85, where the turbulent production in the lubricating layer reaches
its maximum. By construction, the fractional contributions of all four quadrants sum to
unity, and the relation between the turbulent stresses and the JPDF is given by

o0 o0
4 =—uw = —/ f u'w' JPDF(/, w') du’ dw’. (3.8)
—o00 J -0

In the SP reference case (figure 6b), the JPDF displays an elongated elliptical
distribution oriented along the Q2—-Q4 diagonal. This alignment reflects the dominance
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Figure 6. The JPDF of the quadrant contributions to the turbulent shear stress 7; at z/h = —0.85. (a) The SP
case. (b—e) Drag-reduced flows with increasingly complex rheology. The images in (b,c) refer to the viscous
lubricating layers (Newtonian and Carreau), while (d,e) refer to the viscoelastic ones (FENE-P and FENE-CR).

of ejection and sweep events, and agrees with classical observations in turbulent channel
flows (Kim et al. 1987; Wallace 2016).

For the Newtonian and Carreau cases (figures 6b,c), the JPDFs preserve the Q2
inclination but become more oblong, with most of the Q4 contributions shifted closer
to the w’ =0 axis. This shift indicates weakened wall-normal velocity fluctuations,
consistent with the reduced sweep activity observed in figure 5. From a physical point
of view, the interface dampens vertical momentum transfer, leading to fluctuations that are
more streamwise-dominated within the lubricating layer. Shear-thinning further modulates
this behaviour: it narrows the overall range of u’ values while slightly broadening the
distribution in w’.

The viscoelastic cases (figures 6d,e) exhibit a more pronounced change. Here, the JPDF
collapses into an oblate distribution that is nearly horizontal along w’ =0 and shifted
towards higher streamwise fluctuations, indicating that Q2-Q4 events become much less
likely. This horizontal flattening reflects the prevalence of fluctuations with a negligible
wall-normal component, i.e. an increased number of w’ ~ 0 events, highlighting a strong
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Figure 7. The PDF of the interface elevation ¢/h, defined as the deviation of the instantaneous interface
position from its mean location (¢ /h = 0). Positive values of ¢/ h correspond to interface crests, while negative
values of ¢/h correspond to interface troughs. The inset illustrates a schematic interpretation of crests and
troughs. Vertical lines indicate the root mean square of the interface position, while the hatched box indicates
the bottom wall boundary (¢/h = —0.3).

decoupling between streamwise and wall-normal motions. As a result, turbulence in the
lubricating layer becomes dominated by streamwise fluctuations. Viscoelastic flow actively
suppresses the ejection—sweep cycle that normally drives momentum transfer via the
non-Newtonian stress. This is consistent with the well-documented effects of polymer
additives on near-wall turbulence: increased spanwise spacing of low-speed streaks and
reduced frequency of bursting events (Ptasinski et al. 2001; White & Mungal 2008),
which behaviour aligns with the widely accepted view that polymers absorb energy from
near-wall vortices and redirect it towards stabilising low- and high-momentum streaks,
which would otherwise be weakened by ejection and sweep motions (Dubief et al.
2004). In this framework, weak ejection and sweep activity directly signals an efficient
transfer of energy from vortices to streaks through the stretch—relax cycle of polymers (Xi
2019). Consequently, viscoelastic turbulence in the lubricating layer is characterised by
suppressed wall-normal transport and the dominance of streamwise fluctuations, sustained
by near-wall streaks that are considerably more stable than their Newtonian counterparts
(Luchik & Tiederman 1990; Wei & Willmarth 1992; White ef al. 2004).

3.5. Characterisation of interfacial waves

Having discussed the turbulence modulation induced by viscoelasticity in the lubricating
layer, we now evaluate its effects on the interfacial waves. To characterise the dynamics of
these waves, we compute the PDF of the interface elevation ¢/ h, defined as the difference
between the instantaneous interface position and the nominal interface position (located
at z/h = —0.7, i.e. 0.3h above the bottom wall). The definition of the interface elevation
is illustrated in the inset of figure 7. Positive values of ¢ /h correspond to interface crests,
while negative values correspond to troughs. Figure 7 shows the PDFs of the interface
elevation for the different cases, using the following colour scheme: Newtonian (violet
solid line), Carreau (green solid line), FENE-P (green dashed line) and FENE-CR (violet
dashed line).

Looking at the PDFs, it is possible to observe that their shape is slightly positively
skewed, regardless of the case considered. This fact can be attributed to the confinement
effect of the bottom wall, which limits the maximum amplitude of negative fluctuations
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(Roccon et al. 2019). When comparing the different cases, the results indicate that the
shapes of the PDFs depend on the rheological properties of the lubricating layer, with
marked differences between viscous (solid lines) and viscoelastic (dashed lines) cases.
In particular, the PDFs of the viscoelastic cases exhibit a lower likelihood of large
fluctuations — positive or negative — in the interface elevation, i.e. very deep troughs or
very high crests. Consistent with previous findings, the shear-thinning effect plays only a
marginal role, and minor differences can be appreciated for positive events.

The present results suggest that viscoelastic effects stabilise the interfacial waves,
thereby hindering the formation of deep troughs and high crests. This observation can
be traced back to two main physical reasons. The first reason is the reduced turbulence
activity in the lubricating layer, which decreases the forcing perceived by the waves. At
the same time, although turbulence in the main layer is modified — most notably by a
suppression of ejection—sweep events, and a decoupling between streamwise and wall-
normal fluctuations — the transfer of forcing across the interface remains weak. As a result,
the main layer contributes only marginally to the amplification of interfacial motions. The
second reason is the modified momentum balance equation that applies at the interface
when one or both of the two phases are non-Newtonian. Following (Panton 2013, p. 669),
we can write the momentum balance equation

(n-ti—np)—(m-tf —np™) =okn, (3.9)

where tj is the constitutive stress tensor, K is the sum of the two principal curvatures
(i.e. twice the mean curvature), o is the surface tension, r is the unit normal to the
interface, and p is the pressure. The superscripts / and m identify the two sides of the
interface (lubricating and main layers, respectively). We recall that (3.9) holds under
the assumptions of no phase change and constant surface tension, while no specific
assumptions are made for the constitutive stress tensor. Right-multiplying (3.9) by the
unit normal, we obtain

p"—p =@ on—nT .7 n)=0Kk, (3.10)

where the term n” - r}; -n can be interpreted as an additional pressure contribution

exerted by the stress tensor. When both phases are viscous (Newtonian or Carreau),
we have n . ri .n=n'. 7}’ -n =0, and the classical pressure jump condition for an
interface is recovered, in agreement with the Young—Laplace equation (Batchelor 2000,
p. 66). When one or both phases are non-Newtonian and exhibit viscoelastic (or more
complex) behaviour, the corresponding term n” - T - n may differ from zero — depending
on the conformation tensor configuration — thus giving rise to a polymeric pressure
contribution. In the present case (viscoelastic lubricating layer), the dimensionless balance
equation is

1=xo, 7 o K

“Tpen=——, 3.11)

m )
—-p +
p P Re; We

pP
where the highlighted contribution p, is the polymeric pressure, which is positive when
the polymer is primarily stretched, and negative when compressed. It is important to note
that polymeric pressure behaviour is not symmetric: polymers strongly resist stretching —
when chains elongate and store elastic energy — but are much less sensitive to compression,
where chains can easily coil up. As a result, polymeric pressure exhibits small negative
values when the polymer is compressed, and larger positive values when the polymer
is stretched. Including the polymeric pressure contribution, the effective pressure jump
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Figure 8. (@) A graphical sketch of the interface stabilisation produced by viscoelasticity: the additional
polymeric pressure locally reduces the effective pressure jump and penalises large curvature regions.
(b) A contour map of the interface curvature for the Newtonian case. (c,d) The polymeric pressure and the
interface curvature for the purely viscoelastic FENE-CR case.

becomes

K
m 1 py_ "™
Pr =P =P =37 (3.12)
where it can be noticed that the polymeric pressure acts as an additional pressure on the
lubricating layer side (Zhang & Ren 2016), as shown in figure 8(a).

The interplay between polymeric pressure and surface tension forces, as expressed by
(3.12), can be appreciated in figures 8(b—d). Figure 8(b) shows the interface curvature for
the Newtonian case, while figure 8(c) displays the polymeric pressure, and figure 8(d)
the interface curvature for the FENE-CR case. The curvature is computed as K = —V - n,
with n = V¢ /|V¢|, while the polymeric pressure is evaluated at a distance 2 Ch below the
iso-level (¢ = 0).

Comparing the interface curvature maps of the Newtonian and FENE-CR cases, it can
be seen that the FENE-CR curvature map exhibits fewer fluctuations, and the transitions
between positive and negative regions are smoother. Looking at the polymeric pressure
map (figure 8d), it can be observed that polymeric pressure exhibits larger values (black)
when negative values of the curvature are found (yellow, crests). Conversely, when positive
curvature values are found (violet, troughs), the polymeric pressure is close to zero (white).

The observed stabilisation effect induced by viscoelasticity can be explained by
considering (3.12) together with figure 8(a). For positive curvature values (left), p™ >
p! — pP. In this configuration, the polymer is primarily compressed, so the polymeric
pressure is slightly negative, which reduces the effective pressure difference, opposes the
indentation of the interface, and limits the trough depth. For negative curvature values
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(right), p! — pP > p™. Here, the polymer is primarily stretched, so the polymeric pressure
exhibits large positive values, again reducing the effective pressure difference. Overall, the
polymeric pressure counteracts the imbalance by acting as an additional restoring force on
the lubricating side. Hence for both troughs (left) and crests (right) — which correspond to
large local curvature values (positive for troughs and negative for crests) — the polymeric
pressure acts as an additional restoring force on the lubricating layer side, hindering large
interface deformations. This effect is consistent with the behaviour previously observed in
the PDF of the interface elevation (figure 7). This restoring action is asymmetric and more
pronounced when the polymer is stretched (crests), reflecting the inherently asymmetric
behaviour of polymers when stretched or compressed, as is also visible in figure 8(c).

4. Conclusions

We have investigated the influence of shear-thinning and viscoelasticity on turbulent
drag reduction in a lubricated channel flow — a configuration where a thin lubricating
layer of non-Newtonian fluid facilitates the transport of a primary Newtonian fluid.
Direct numerical simulations were conducted in a channel flow driven by a constant
mean pressure gradient, at reference shear Reynolds number Re; =300. The fluids
were assumed to have matched densities, and the interface between the two layers
was characterised by Weber number We = 0.5. In addition to a single-phase Newtonian
reference case, four configurations were analysed: a Newtonian lubrication layer, a shear-
thinning Carreau fluid layer, a viscoelastic shear-thinning FENE-P layer, and a purely
viscoelastic FENE-CR layer.

In line with previous findings (Roccon et al. 2019, 2021), surface tension is confirmed to
produce a significant drag reduction effect across all two-phase cases. However, our results
reveal that shear-thinning alone does not contribute appreciably to further drag reduction:
the Carreau fluid case behaves similarly to the Newtonian counterpart, despite its lower
apparent viscosity. In contrast, viscoelasticity proves to be a critical factor for enhanced
drag reduction, and we observe a twofold effect. First, viscoelasticity leads to a modulation
of turbulence in the lubricating layer, and we observe a reduction in the likelihood of
observing sweep and ejection motions, thus suggesting a loss of correlation between
streamwise and wall-normal velocity fluctuations. Second, the presence of viscoelasticity
in the lubricating layer introduces an additional contribution (polymeric pressure) in the
interface jump condition, relative to the classic Young—Laplace equation. The polymeric
pressure reduces the effective pressure jump across the interface. As a result, interface
deformations of large amplitude are penalised: in regions of positive curvature, the
polymeric pressure opposes the formation of deep troughs, while in regions of negative
curvature, it counteracts the bulging of crests.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2026.11119.
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Reference Rez 1oc Sc,
Zhu et al. (2018) 87-195 0.3-0.75
Xi & Graham (2010) 84 0.5
Kelly ez al. (2025) 180 0.7
Present work 230-250 1.0

Table 2. Schmidt numbers employed in archival literature for pseudo-spectral simulations. The local Reynolds
number in the viscoelastic lubricant layer is computed using the semi-local friction Reynolds number Re; j, =
Rer,o\/Z Tw.bot/ (Tw,t0p + Tw,bor) (Roccon, Zonta & Soldati 2021).

Appendix A. Sensitivity to diffusive regularisation

The purely convective nature of the constitutive equations governing viscoelastic
fluids — such as the FENE-P and FENE-CR models — poses significant challenges
for accurate numerical simulation (Bird et al. 1987; Xi & Graham 2010; Dubief,
Terrapon & Hof 2023), particularly in regimes dominated by elastic effects, i.e. at
high Weissenberg numbers. First, the absence of a diffusive term in the constitutive
equations can lead to the amplification of high-frequency disturbances, resulting in
numerical instability. Second, numerical schemes must preserve both the boundedness
of the trace of the conformation tensor and its symmetric positive-definite property
throughout the computation. Depending on the numerical discretisation employed,
different strategies have been proposed to address these challenges. For finite-difference
schemes, commonly adopted approaches exploit the intrinsic high-frequency dissipation
of the discretisation, often in combination with upwind advection schemes (Min, Yoo &
Choi 2001), second-order Kurganov—Tadmor schemes (Vaithianathan et al. 2006; Song,
Xu & Shishkina 2025), log-conformation formulations (Vaithianathan & Collins 2003;
Fattal & Kupferman 2004), or weighted essentially non-oscillatory (WENO) shock-
capturing schemes (Izbassarov et al. 2018; Lin et al. 2025). In contrast, pseudo-spectral
methods, which are characterised by very low numerical dissipation, typically rely on
the introduction of a diffusive regularisation term (or artificial diffusivity) to stabilise the
computation (Sureshkumar & Beris 1995; Sureshkumar et al. 1997; De Angelis et al.
2005; Zhu et al. 2018; Song et al. 2019; Kelly et al. 2025). The magnitude of this
regularisation, controlled via the Schmidt number Sc,, should be chosen as small as
possible (i.e. S¢, — 00) in order to minimise its impact on solution accuracy while still
ensuring numerical stability and compatibly with the available grid resolution.

To assess the influence of the diffusive regularisation term, we perform two additional
simulations using the FENE-CR model. These simulations employ Schmidt numbers lower
than that used in the production case reported in the main text, specifically Sc¢, = 0.5 and
S¢p, =0.75. These values are representative of those commonly adopted in the archival
literature (see table 2). In all cases, the physical and numerical parameters, as well as
the grid resolution, are kept unchanged. Figure 9 shows the wall-normal profiles of the
mean and root mean square of tr C (figure 9a), together with the corresponding profiles
of the non-Newtonian stress (figure 9b). The three cases exhibit only minor differences.
In particular, small variations in the mean value of tr C are observed slightly above the
nominal interface location (z/ h = —0.7). Likewise, small deviations in the non-Newtonian
stress profiles appear in the region —0.95 < z/h < —0.75. Although these differences are
visible in the figure, they remain small in absolute magnitude when compared with the
other contributions of the shear stress budget.

We now examine the effect of artificial diffusivity on the flow statistics. Figure 10
presents the wall-normal profiles of the mean streamwise velocity (figure 10a) and the
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Figure 9. Effect of Schmidt number on conformation tensor statistics. (a) The mean and root mean square
(inset) profiles of the trace of the conformation tensor, tr C. (b) The mean non-Newtonian shear stress profile.
Results refer to S, = 1.0 (black), S¢, = 0.75 (red), and Sc, = 0.5 (blue). The nominal position of the fluid—fluid
interface (z/h = —0.7) is indicated by the grey dashed line.
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Figure 10. Effect of Schmidt number on velocity statistics for Sc, =1.0 (black), S¢, =0.75 (red) and
Sc, =0.5 (blue): (a) the mean streamwise velocity profile; (b) the root mean square (RMS) of the velocity
fluctuations.

root mean square of the velocity fluctuations (figure 10b) for the three Schmidt numbers
considered. Consistent with the conformation tensor statistics, the differences among the
cases are negligible. This indicates that despite minor variations in the conformation
tensor statistics, the level of drag reduction remains essentially unchanged across the three
Schmidt numbers considered.

Appendix B. The PDF of the viscosity distribution in the lubricating layer

To better understand the range of viscosity values effectively sampled in the shear-thinning
simulation (Carreau case), we show in figure 11 the PDF of the instantaneous viscosity,
conditioned on the non-Newtonian fluid, at three different wall-normal locations: near the
wall (z/h = —0.9), in an intermediate position inside the lubricating layer (z/h = —0.8),
and at the nominal location of the interface (z/h = —0.7).
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Figure 11. The PDFs of the instantaneous viscosity at three wall-normal locations in the Carreau simulation.
Statistics are conditioned on the non-Newtonian phase only. Markers are used to identify the locations: near
the wall (z/h = —0.9, solid line), at an intermediate position inside the lubricating layer (z/h = —0.8, dashed
line), and at the nominal location of the interface (z/h = —0.7, dash-dotted line).

The PDFs show that throughout most of the lubricating layer, the viscosity remains
tightly clustered around the local mean value /. At z/h = —0.9, the fluid lies entirely
within the shear-thinning phase, as confirmed by the local interface statistics (¢ /2 ~ —0.2)
shown in figure 7. Consequently, the PDF exhibits a narrow, single-peaked distribution,
reflecting a nearly uniform shear rate. Farther from the wall, at z/h = —0.8, the viscosity
distribution broadens and the peak reduces, due to the lower strain rate near the interface.
At this height, the interface frequently crosses the plane — consistent with the PDF of
the interface elevation ¢ (figure 7, corresponding approximately to ¢/ h ~ —0.1), leading
modest variability in the viscosity of the shear-thinning fluid. At the nominal interface
location, z/h = —0.7, the viscosity PDF remains narrow but exhibits the largest spread
among the three locations, reflecting enhanced local fluctuations in strain rate induced
by interface dynamics. Despite this increased variability, the viscosity fluctuations remain
limited, which explains the negligible non-Newtonian stress observed in figure 4(d).

Overall, the mild wall-normal variation of w/uo in the interval —1 <z/h < —0.7
indicates that for the present flow, the shear-thinning behaviour of the Carreau model can
be effectively represented by an equivalent viscosity ratio slightly above 0.9 within the
lubricating layer.
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