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Orientational Dynamics of Long 
Flexible Fibers in Wall-Bounded 
Turbulence
In this paper, we study numerically the role of fiber length and flexibility on the orientational 
dynamics of slender fibers in turbulent channel flow. We consider fibers of different flexibility 
at varying aspect ratio, up to lengths being comparable to the channel height. These fibers 
are constructed by constraining a large number of sub-Kolmogorov rods in a single chain, 
alongside a bending stiffness torque that allows to prescribe a finite value of the fiber rigidity. 
To perform our analysis, we carried out a series of one-way coupled direct numerical 
simulations of a fiber-laden channel flow at fixed shear Reynolds number: Res ¼ 300, based 
on the half height of the channel. By calculating the orientational statistics of the suspended 
fibers, we find that shorter fibers, with length Oð10−1Þ when normalized by the channel half 
height, tend to exhibit a nearly-isotropic orientation distribution near the channel center, as 
would fibers suspended in homogeneous isotropic turbulence. As the fiber length is increased 
(up to values comparable to the channel half height), however, deviations from the isotropic 
orientation distribution become more and more significant. When the fibers are more rigid, 
these deviations are dampened and it is also observed that the tumbling rate of the fiber is 
lowered on average. [DOI: 10.1115/1.4068129] 

1 Introduction

The problem of a turbulent suspension of long, slender fibers has 
wide-ranging applications in both industrial and natural settings [1]. 
Some intriguing applications include drag reduction in oil pipelines, 
paper and pulp production, ice particles in clouds and microplastics 
in the ocean and atmosphere. In the current study, we are interested 
in studying flexible fibers reminiscent of what can be seen in the 
context of fibrous microplastics that are found in abundance in our 
oceans and other water bodies [2,3]. Specifically, we focus on the 
role of fiber length and flexibility in the orientation dynamics of the 
fibers suspended in wall turbulence. A notable feature of flexible 
fiber-laden turbulent flows is the complex orientations and 
interactions between the fibers, and a background turbulent flow 
offers rich dynamics that profoundly impact the system’s collective 
dynamics. Attempts toward studying the dynamics of slender fibers 
can be traced back to the theoretical work by Jeffrey back in 1922 
[4]. Jeffery’s pioneering work gave the expression describing the 
orbit, now popularly known as Jeffery orbits, executed but ellipsoids 
suspended in a viscous simple shear flow devoid of fluid inertia. 
Since then, several studies in the literature have extended this by 
accounting for additional physics, such as the fiber curvature and 
inertia [5], and incorporating the effects of fluid inertial forces and 
torques [6–11]. However, efforts toward studying long flexible 
fibers suspended in turbulent flows (with lengths many times larger 
than the Kolmogorov length scale) largely remain a challenge with 
no possibility of an analytic solution and huge computational costs 
involved when solving for large swarms of fibers laden in turbulent 
channel flows.

Several numerical studies in the literature have extensively 
studied the kinematics and orientational dynamics of rigid fibers 
suspended in turbulent channel flows [12–18]. In the context of 
flexible fibers, especially in the context of long fibers, a large body of 
work exists in the context of fibers suspended in homogeneous 
isotropic turbulence (HIT) [19,20]. Flexible fibers in HIT have been 
shown to be capable of being used to measure two-point statistics of 
turbulence since the suspended fibers tend to flap at a frequency 
equal to the frequency of the background turbulence [21–24]. In the 
case of flexible fibers in turbulent channel flow, the numerical 
investigations in literature have predominantly focused on studying 
the deformation and orientational dynamics of fibers that are 
significantly shorter than channel dimensions [25–28]. However, to 
capture the rich deformation dynamics that flexible fibers can 
experience in turbulent flows, it is important for the fibers to be 
sufficiently long, as indicated by the experiments by Brouzet et al. 
[29]. A recent work by Bec et al. [30] has studied flexible fibers over 
a wide range of lengths spanning from short to fibers whose lengths 
are comparable to the channel height of a turbulent channel flow. 
They use the over-damped slender-body theory to describe the fibers 
and perform one-way coupled direct numerical simulations with 
Res ¼ 180. Their simulations showcased how flexible fibers, via 
near-wall tumbling events, experience enhanced transportation 
away from the wall. However, while accounting for fiber flexibility, 
they posit that fiber length and flexibility are directly tied. However, 
can fiber length and flexibility independently affect their collective 
dynamics in a turbulent channel flow? The present work stands out 
by studying fibers of varying lengths and flexibility.

We consider a sparse dispersion of fibers with low volume 
fractions, � Oð10−4Þ, which allow us to neglect any feedback of the 
suspended fibers on the fluid phase and perform one-way coupled 
simulations. The fibers are assumed to have densities of the same 
order of magnitude as the suspending fluid, with the density ratio 
between the fibers and the fluid being fixed as 3. The fibers are 

1Corresponding author.

Contributed by the Fluids Engineering Division of ASME for publication in the 

JOURNAL OF FLUIDS ENGINEERING. Manuscript received November 15, 2024; final 

manuscript received February 21, 2025; published online March 28, 2025. Assoc. 

Editor: Francesco Zonta.

Journal of Fluids Engineering                                                                                                                                                                  JULY 2025, Vol. 147 / 071102-1 Copyright VC 2025 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/fluidsengineering/article-pdf/147/7/071102/7456075/fe_147_07_071102.pdf by U

niversita D
egli Studi D

i U
dine user on 03 June 2025

https://crossmark.crossref.org/dialog/?doi=10.1115/1.4068129&domain=pdf&date_stamp=2025-03-28


constructed by connecting point-wise ellipsoids using the rod-chain 
model and with a bending stiffness torque that allows us to prescribe 
a degree of rigidity to them [25,31]. The introduction of rigidity 
allows us to closely approximate physical fibrous suspension, albeit 
with smaller values of Young’s Modulus in our simulations. We then 
suspend these fibers in a turbulent channel flow possessing a shear 
Reynolds number of 300 and perform Euler–Lagrange direct 
numerical simulations of the system. By analyzing the orientational 
dynamics of the fibers, we find that shorter fibers located near the 
center tend to orient themselves isotropically of the channel, as 
expected. However, increasing fiber lengths leads to a progressive 
deviation from an isotropic distribution of orientation. We also find 
that the fibers closer to the wall tend to experience higher tumbling 
rates than the ones closer to the channel center. Further, longer fibers 
yielded higher tumbling rates, whereas the introduction of rigidity 
tends to have the opposite effect.

This paper is organized as follows: The description of the problem 
and the governing system of equations is discussed in Sec. 2. The 
numerical methodology employed to solve the system of equations 
described in Sec. 2 is elucidated in Sec. 3. We then discuss the results 
obtained from the simulations in Sec. 4. Here, we specifically 
analyze the fibers’ average orientation and tumbling and spinning 
rates. Finally, we draw conclusions based on our findings in Sec. 5.

2 Problem Formulation

We consider long, slender, flexible fibers suspended in a turbulent 
channel flow. We assume the suspending fibers can be constructed 
by connecting a series of small ellipsoids, each smaller than the 
smallest relevant length scale in the flow, the Kolmogorov length 
scale. This assumption allows for the individual ellipsoids to be 
modeled as point particles whose translation and rotation dynamics 
can then be calculated by a force and momentum balance equation 
system [4,6]. Exploiting the correlation given by Cox [32], these 
ellipsoids of radius aell and aspect ratio k can be mapped to rods of an 
equivalent radius given as a ¼ 1:24aell=

ffiffiffiffiffiffiffiffiffiffi
lnðkÞ

p
. These rod elements 

are then connected by placing constraints at their endpoints to form 
fibers using the rod-chain model as prescribed by Andric et al. [25]. 
We subsequently describe the dynamics of each point-wise rod 
elements that make up the fibers using the system of equations 
describing the position (pn), orientation (on), linear velocity (vn), and 
angular velocity (xn) of each rod as [28,31] 

mn

dvn

dt
¼ FD

n þ Xnþ1 − Xn (1) 

d�Jxn

dt
¼ TD

n þHD
n þ lon � Xnþ1 þ Xnð Þ þ Ynþ1,b − Yn,bð Þ (2) 

dpn

dt
¼ vn (3) 

don

dt
¼ xn � on (4) 

where 

�J ¼
mna2

12
4k2 þ 3ð Þ I − onoT

n

� �
þ 6onoT

n

h i

(5) 

is the inertia tensor of the rod element in the absolute frame of 
reference, FD

n is the drag force exerted by the fluid on the rod, TD
n is 

the hydrodynamic torque due to the relative spin between fluid and 
rod, and HD

n is the hydrodynamic torque due to the fluid velocity 
gradients’ action of the rod. Since each rod element is shorter than 
the Kolmogorov length scale, it is reasonable to make use of 
expressions obtained under the framework of Stokes flow theory to 
describe the aforementioned drag force and hydrodynamic torques. 
These, in turn, can be written as [33] 

FD
n ¼ 6pkal YA

n dþ XA
n − YA

n

� �
onoT

n

� �
un − vnð Þ (6) 

TD
n ¼ 8pk3a3l YC

n dþ XC
n − YC

n

� �
onoT

n

� �
Xn − xnð Þ (7) 

HD
n ¼ −8pk3a3lYH

n �onð Þ : _cnonð Þ (8) 

Here, l is the viscosity of the suspending fluid; un, Xn, and _cn denote 
the local fluid velocity, rotation, and shear rate at the nth rod 
element’s location; e is the Levi-Civita third-rank tensor; and XA

n , 
YA

n , XC
n , YC

n , and YH
n are coefficients that depend on the geometric 

properties of the rod elements given as 

XA
n ¼

8e3
c,n

−6ec,n þ 3 1þ e2
c,n

� �
log

1þ ec,n

1 − ec,n

(9) 

YA
n ¼

16e3
c,n

6ec,n þ 3 e3
c,n − 1

� �
log

1þ ec,n

1 − ec,n

(10) 

XC
n ¼

4e3
c,n 1 − e2

c,n

� �

6ec,n − 3 1 − e2
c,n

� �
log

1þ ec,n

1 − ec,n

(11) 

YC
n ¼

4e3
c,n 2 − e2

c,n

� �

−6ec,n − 3 1þ e2
c,n

� �
log

1þ ec,n

1 − ec,n

(12) 

YH
n ¼

4e5
c,n

−6ec,n þ 3 1þ e2
c,n

� �
log

1þ ec,n

1 − ec,n

(13) 

where ec,n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2a2 − a2
ellÞ=ðk

2a2Þ

q

.
A notable feature of the system of equations we have described is 

that it allows us to prescribe a bending stiffness to the constructed 
fibers. We do this by imposing a bending resistance torque given as 
[31] 

Yn,b ¼ − pEYa3

8k
cos −1 on � on−1ð Þ

on � on−1

jon � on−1j
(14) 

where EY denotes the Young Modulus of the flexible fiber. Finally, X 
and Y denote the constraint forces and moments that the connected 
rod elements exert on each other owing to the no-slip constraint 
between them, which, in turn, is given by the relation 

pn þ l on − ðpnþ1 þ l onþ1Þ ¼ 0 (15) 

With the above system of equations, fibers of different lengths are 
constructed by simply varying the number of rod elements that make 
up each flexible fiber.

Having described the suspended fibers, we will describe the fluid 
flow next. The carrier fluid is considered incompressible and 
Newtonian, driven by a pressure gradient between two smooth 
parallel walls of a channel. Typically, the introduction of particulate 
matter in fluid flows alters the rheological properties, such as the 
effective density and viscosity of the system, and also exerts 
additional stresses on the fluid phase [34]. However, although the 
fibers we are interested in possess densities higher than the 
suspending fluid, we consider very low-volume fractions 
� Oð10−4Þ
� �

. Such low-volume fractions of suspensions allow us 
to neglect any modification to the flow properties by the presence of 
the fibers using a one-way coupled description of the system. 
Therefore, we can write down the continuity and momentum 
balance equations as 
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r � u ¼ 0 (16) 

q
@u

@t
þ u � ru

� �

¼ −rPþ lr2u (17) 

Here, u ¼ ðux, uy, uzÞ is the velocity field, P is the pressure field, and 
q is the density of the carrier fluid. The above equations are 
complemented by the no-slip and no-penetration boundary con-
ditions at both the top and bottom walls as u ¼ 0, along with periodic 
boundary conditions along the streamwise and spanwise extrem-
ities. As per convention in wall-bounded turbulent flows, we next 
make the above system of equations nondimensional in terms of wall 
units. These are denoted by the superscript “þ” hereinafter. We do 
this by using the viscous length and times scales as l=ðqusÞ and 
l=ðqu2

sÞ toward nondimensionalizing the equations. Here, the 
reference velocity us refers to the friction velocity defined as 
us ¼

ffiffiffiffiffiffiffiffiffiffi
sw=q

p
, where sw is the shear stress exerted by the flow at the 

wall. Following this, the angular velocities are made dimensionless 
as xþ ¼ xl= qu2

s

� �
, fiber’s density as qþ ¼ qp=q and Young 

Modulus as EþY ¼ EY=ðqu2
sÞ. Furthermore, we use the fiber response 

time defined as in Dotto et al. [27] to obtain the fiber Stokes number 
as 

Stfiber ¼
2

9
aþ

2

qþktot

log ktot þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
tot − 1

q� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
tot − 1

q (18) 

This definition corresponds to that of a rigid fiber in its fully 
stretched configuration.

3 Numerical Methodology

With the governing system of equations described in Sec. 2, we 
next proceed to describe the numerical methodology that we employ 
to solve them. For this, we follow a pseudo-spectral approach, 
wherein the equations of motions pertaining to the fluid are solved in 
a modal space on an Eulerian grid. The convective terms in the 
Navier–Stokes equation u � ru are resolved in the physical space 
and then transformed [35]. The streamwise and spanwise directions 
(x and y) are discretized in Fourier space, the advantage of which is 
the implicit satisfaction of the periodic boundary conditions. The 
wall-normal coordinate (z) is discredited using Chebyshev poly-
nomials. Time advancement is treated using an implicit-explicit 
scheme, using a combination of an explicit Adam-Bashforth scheme 
and implicit second-order Crank-Nicolson.

To solve for the dynamics of the fibers, we first interpolate the 
flow velocities and velocity gradients and evaluate them at the 
location of the point-wise rod elements using 4th-order polynomials. 
While we do not account for fiber–fiber interactions owing to our 
small volume fractions, the fiber–wall interactions are modeled 
considering purely elastic collisions. This implies that when a rod 
element comes into contact with a wall, it will be bounced back 
according to the position of the rod element that is closest to the wall. 
This numerical methodology is implemented via a bespoke in-house 
graphics processing unit (GPU)-accelerated solver named surf gpu. 
We refer interested readers to Di Giusto and Marchioli [28] for 
further details on the flow solver employed for the current work.

The simulations reported in this paper are performed for a fiber- 
laden turbulent channel flow with a shear Reynolds number Res of 
300. The channel dimensions are Lx � Ly � Lz ¼ 4ph� 2ph� 2h 
in physical units, which corresponds to a flow of water at bulk 
velocity ub ¼ 0:3 m=s in a channel of size 0:25� 0:13� 0:04 m3. 
When written in wall units, the channel dimensions can be expressed 
as 4pRes � 2pRes � 2Res. This domain is solved using a 512�
256� 129 grid. Each suspended rod element is assumed to have a 
fixed aspect ratio k ¼ 5. Subsequently, flexible fibers of differing 
lengths are constructed by varying the number of rods that are 
connected together to make up each flexible fiber, with Lþ0 denoting 

their fully stretched length. The total aspect ratio of the resulting 
fibers, therefore, becomes ktot ¼ k nrods, where nrods denotes the 
number of rods that make up each fiber. We fix the radius of the rod 
elements to be aþ � 0:16 and the density to be qþ ¼ 3.2 This, in 
turn, yields a Stokes number of Stfiber � 0:1 for all the cases 
explored. Note that, in our simulations, the Froude number for the 
fibers, defined as Fr ¼ ub= spgð Þ with sp the fiber’s relaxation time 
and g the acceleration due to gravity, is � 1 (more specifically, 
Oð102Þ for the aforementioned physical system). This allows us to 
neglect any potential effects of gravity on the fibers’ dynamics. We 
also fix the total number of rod elements in all our simulations to 
1:2� 106. This makes the total volume fraction of the fibers in the 
channel flow to be 1:064� 10−4. As indicated by the governing 
equations in Sec. 2, the simulations are one-way coupled.

4 Simulation Results

Using the numerical methodology described in Sec. 3, we next 
proceed to perform a set of direct numerical simulations. With the 
specific intent to study the role of fiber length and flexibility, we 
choose a range of parameters for our simulations comprising 
combinations of four values of aspect ratios/fiber lengths and two 
Young’s Modulus. The details pertaining to each simulation case 
considered are tabulated in Table 1. As indicated in the table, we 
explore fibers whose lengths vary from being an order of magnitude 
smaller than the half-channel height to being comparable to the half- 
channel height.

All statistics reported in this section are sampled every 15 tþ. 
Convergence of statistics is ensured by performing all the 
simulations up to 3000 tþ and then choosing the averaging window 
to be between 1500 and 3000 tþ. This is sufficient as the averaging 
window corresponds to four times the eddy turnover time of the 
largest turbulence structures. Figure 1 shows snapshots of the fiber 
distribution of the shortest and longest fibers simulated with 
EþY ¼ 105. For better visualization, we choose to show a random 
selection of 1000 short fibers and 200 long fibers in Figs. 1(a) and 
1(b), respectively. Further, the fiber thickness is exaggerated and not 
true to size for the same purpose. It is clear from the images how, 
despite the equal rigidity, the longer fibers tend to undergo 
significant deformations exhibiting complex shapes compared to 
the short fibers.

We first discuss how we calculate the statistical quantities we are 
interested in as we move from a “rod element” description of the 
system we solve for to a fiber-centered description. The position of 
the fibers in the channel is characterized by their center of mass 
calculated as 

pcm ¼

XN

i¼1

pi

N
(19) 

Table 1 Parametric combinations considered 

Case no. EþY ktot Lþ0 Lþ0 =Res

1 0 100 33.65 0.11
2 105 100 33.65 0.11
3 0 200 66.38 0.22
4 105 200 66.38 0.22
5 0 400 131.27 0.44
6 105 400 131.27 0.44

7 0 800 260.12 0.87
8 105 800 260.12 0.87

2In the context of marine microplastics, the heaviest commonly-recovered samples 

happen to be polytetrafluoroethylene, which has a density about 2.2 times larger than 

water. A further increase of density, up to 1–1.5%, can occur in the case of plastics that 

undergo biofouling. Hence, a density ratio equal to 3 appears to represent a safe upper 

boundary for the highest-density marine microplastics.
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Here, subscripts 1 and N denote the first and last rod element of each 
fiber, respectively. Similarly, we take linear and angular velocities 
of the fibers to be the corresponding quantities averaged about the 
rod elements that make up each fiber. Following Andrić et al. [25], 
the normalized average orientation of the rod elements is calculated 
as 

n ¼

XN

i¼1

oi

�
�
�
XN

i¼1

oi

�
�
�

(20) 

To get a flavor of how the fibers move inside the turbulent 
channel, we first showcase the evolution of the position of selected 
fibers as they start their life inside the channel. More importantly, we 
are interested in showcasing how fibers that start at various locations 

along the gradient direction evolve in the flow. It is crucial to 
acknowledge here that observations made by following individual 
fibers would not necessarily reflect their collective behaviors. 
Nevertheless, we do this to showcase the transient behavior of fibers 
from different wall-normal locations in the channel. Figure 2 shows 
the fibers’ position and orientation with respect to the flow direction 
(x) till time tþ ¼ 1200 for the shortest and longest fibers 
(Lþ0 ¼ 33:65 and 260.12 respectively) we have considered, 
possessing two values of Young’s modulus EþY ¼ 0 and 105. Note 
that time tþ ¼ 1200 is approximately equal to three times the eddy 
turnover time of the largest structures in the flow. Within this time 
span, the fibers pass through the box in the streamwise direction 
multiple times, the exact number of times depending on the length of 
the fibers and on the region of the flow that they sample (fibers travel 
much faster in the streamwise direction when they in the channel 
center, while being much slower near the wall). For the longest fibers 
considered, the fibers sweep the box in the streamwise direction at 
least six times within the time frame considered.

Fig. 1 Instantaneous distribution of a random collection of flexible fibers of length L1
0 5 33:65 (a) and L1

0 5 260:12 (b) in a turbulent 
channel flow with Res5300. The side and bottom panels display the stream-wise component of the velocity, with the bottom cut at 
z1 5 10. The fiber thickness is magnified for better visualization.

Fig. 2 Time evolution of fibers with L1
0 5 33:65 ( ) and L1

0 5 260:12 ( ), whose initial wall- 

normal position begins at z1 5 5, 100, and 300, denoted by “ ”, “3,” and “ ,” respectively, also indicated by 
the lighter shades indicating increasing distance from the wall. E1

Y 50 (solid lines) and E1
Y 5105 (dash lines).
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We pick fibers whose center of mass lies at zþ ¼ 5, 100, and 300 
to track. This lets us visualize the evolution of a fiber that begins its 
journey close to the wall, far from the wall and the channel center, 
respectively. We first focus on the shortest of our fibers (panels a to d 
in Fig. 2). Looking at the evolution of the center of mass, we find that 
the short fibers with zero flexural rigidity (EþY ¼ 0) move with a bias 
toward the center of the channel (away from the wall). However, the 
bias is lower for the rigid short-fiber case as we do not observe a 
strong migration. The same can be said for the long fibers 
(Lþ0 ¼ 260:12) irrespective of their rigidity. Focusing on the 
evolution of the orientation of the fibers, we find that the stiffer 
fibers tend to reorient more abruptly than their counterparts that 
possess zero flexural rigidity. As expected, shorter fibers undergo 
rapid reorientations, especially the ones closer to the wall. The 
longer fibers, especially the ones with zero flexural rigidity, tend to 
enjoy extended periods in flow-aligned orientation. However, we 
observe abrupt reorientations for the rigid, long fibers closer to the 
wall. Upon closer examination juxtaposing the orientation and 
position plots, we speculate that their reorientations could be due to 
the fibers’ pole vaulting, resulting in their migration toward the 
channel center [30,36–39]. Note that, as pointed out previously in 
literature, the pole vaulting mechanism is reliant on the fibers being 

sufficiently rigid.

Having looked at the dynamics of individual fibers, the next task is 
to study the collective dynamics by means of computing statistics 
that are averaged both spatially and temporally. All the statistics 
showcased henceforth are computed by averaging across the 
streamwise and spanwise directions and plotted with respect to the 
distance of the fibers’ center of mass from the wall, and the temporal 
averaging performed as previously mentioned. Following this 
approach, we first compute and showcase the averaged orientations 
of the fibers as calculated from Eq. (20), plotted along the wall- 
normal direction in Fig. 3. It must be noted that a value of 0.5 in these 
plots represents an isotropic distribution of orientation. What is 
immediately noticeable is the apparent impact of varying fiber 
lengths on their orientational dynamics. It is previously seen in 

literature that fibers suspended in HIT tend to exhibit an isotropic 
orientation distribution [1,24,40]. Considering that the region near 
the center of the channel is reminiscent of HIT, we observe a similar 
close to an isotropic distribution of orientation amongst the shorter 
fibers with Lþ0 ¼ 33:65 and 66.38 in that region. However, we 
observe a progressive deviation from this behavior as we transition 
toward longer fibers with Lþ0 ¼ 131:27 and 260.12. This could be 
because longer fibers have the capability to sample a much larger 
flow region. This means that although the center of mass of the fibers 
might lie near the channel center, the extremities might be exposed 
to flow regions that are potentially closer to the wall.

As we move toward the walls, we no longer observe an isotropic 
orientation distribution but rather a strong preferential alignment 
with the streamwise direction irrespective of the fiber length. This, 
again, is reminiscent of what was previously observed in the case of 
relatively shorter fibers [1,13] and equally long fibers [30] 
suspended in wall-bounded flows. Regarding the flexibility/rigidity 
of the suspended fibers, we find that fiber rigidity tends to dampen 
the deviations that varying fiber lengths bring to the averaged 
orientation angles.

Now that we know how the fibers like to align themselves in the 
flow, we are next interested in how they tumble and spin inside the 
flow. We calculate the tumbling rate, which measures the rotation of 
the fiber axis of symmetry here characterized by its mean square 
value as 

_n _nh i ¼ jx� nj
2

(21) 

and the mean square spinning rate that measures the rotation around 
the fibers’ axis of symmetry as jn � xj

2 
[40]. We already know that 

the orientations of the fibers closer to the center of the channel, 
henceforth referred to as the “bulk” flow region, closely resemble 
what was already seen in fibers suspended in HIT. To further test this 
and make direct comparisons with experiments on HIT, we first plot 
the probability distribution of the normalized mean square tumbling 
rate, specifically at the bulk and the near-wall region. We categorize 

Fig. 3 Components of the orientation vectors of the fibers with lengths L1
0 5 33:65 ( ), L1

0 5 66:38 

( ), L1
0 5 131:27 ( ) and L1

0 5 260:12 ( ), and E1
Y 5 0 (solid lines) and E1

Y 5 105 (dash lines)
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the region that is 30 wall units above and below the half-height of the 
channel as the bulk region and the region from the wall to 60 wall 
units as the wall region. For a suitable comparison with the 
experimental findings, we use the local values of the mean square 
tumbling rates calculated from the bulk and the near-wall regions to 
normalize the squared tumbling rates of fibers pertaining to those 
regions. Figures 4(a) and 4(c) show these probabilities for the 
flexible and rigid fibers, respectively. For the flexible fibers, we find 
a weak influence of the fiber length on the tumbling rate 
probabilities. This influence becomes even more weaker when 
considering rigid fibers.

Parsa and Voth [41] experimentally studied the dynamics of nylon 
threads of varying lengths suspended in HIT. They showcase their 
fiber lengths normalized with respect to the Kolmogorov length 
scale. Therefore, we show the fibers’ length normalized by the 
Kolmogorov length scale calculated at the channel center. We then 
compare the probability distribution obtained from our simulations 
with that of Parsa and Voth [41], denoted by cyan-colored markers 
for optimal visibility. For direct comparison with their experiments, 

it is useful to normalize the fiber length with respect to the 
Kolmogorov length scale calculated from the channel center. 
Doing this, the fiber lengths can be rewritten as Lþ0 ¼ 3:58gþ, 
Lþ0 ¼ 7:06gþ, Lþ0 ¼ 13:97gþ, and Lþ0 ¼ 27:69gþ. Looking at 
Fig. 4(a), we find that dependence on fiber length is a lot more 
prominent in our simulations than seen in their experiments. 
However, the probability distribution of the long flexible fibers 
agrees with the experimental findings. Making the same comparison 
with the simulation results of the rigid fibers, we find excellent 
agreement between the two (see Fig. 4(c)). Since nylon threads 
possess a finite degree of rigidity, the results from rigid fibers find 
better agreement with the experiments expectantly.

On the other hand, tumbling rates of the fibers in the near-wall 
region tend to be more sensitive to the fiber length, as is evident from 
the broader tails seen in probability distribution plotted in Figs. 4(b) 
and 4(d). To better understand this, we next plot the dimensionless 
mean square tumbling rate as a function of the wall-normal 
coordinate in Figs. 5(a) and 5(b). The most prominent finding is 
that fibers near the wall tend to tumble at rates two to three orders of 

Fig. 4 Probability of the mean square tumbling rate of the fibers with lengths L1
0 5 33:65 ( ), 

L1
0 5 66:38 ( ), L1

0 5131:27 ( ) and L1
0 5 260:12 ( ). Results from Parsa and Voth [41] are 

shown in cyan color with fiber lengths L 5 8:5g (“x”), L 5 32:8g (“�”), L 5 42:4g (“1”), and L 5 72:9g (“*”).

Fig. 5 Mean square tumbling rates (a and b) and spinning rates (c and d) of the fibers with lengths 

L1
0 5 33:65 ( ), L1

0 5 66:38 ( ), L1
0 5 131:27 ( ) and L1

0 5 260:12 ( ), and E1
Y 5 0 

(solid lines) and E1
Y 5 105 (dash lines)

071102-6 / Vol. 147, JULY 2025                                                                                                                Transactions of the ASME 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/fluidsengineering/article-pdf/147/7/071102/7456075/fe_147_07_071102.pdf by U

niversita D
egli Studi D

i U
dine user on 03 June 2025



magnitude larger than those near the channel center. Such increased 
near-wall tumbling rates can be attributed to a combination of 
increased turbulence fluctuations near the wall [42] and collisions of 
the fibers with the wall [30]. However, the center of the channel is 
essentially a quiescent core, yielding significantly lower tumbling 
rates. These observations are consistent with previous experiments 
and simulations in literature [1,13,38,43], and hold true for both 
rigid and flexible fibers. Furthermore, we also find that increasing 
fiber lengths yield larger tumbling rates. This is due to the long fibers 
being able to interact with more energetic eddies [43]. To precisely 
discern the effect of rigidity on tumbling rates, we contrast the 
flexible and rigid ones corresponding to the same fiber length. By 
doing this, we can observe a reduction in the mean square tumbling 
rates in the rigid fibers compared to their flexible counterparts. This 
reduction is minimal and mostly confined to the near-wall region for 
the short fibers. However, long rigid fibers see a significant reduction 
in the mean square tumbling rates compared to flexible fibers of the 
same length. Finally, we plot the spinning rates of all the cases in 
Figs. 5(c) and 5(d). Comparing Figs. 5(c) and 5(d) with Figs. 5(a) 
and 5(b), it is evident that the magnitudes of spinning rates are higher 
than those of the tumbling rates. This is consistent with the 
experimental measurements on long fibers suspended in homogeneous 
isotropic turbulence [20], and on short curved fibers suspended in a 
turbulent channel flow [42]. Such increased spinning rate magnitudes 
can be attributed to the fibers being trapped by the elongated vortical 
structures of the background turbulence [20]. With regard to varying 
fiber lengths and flexibility, we find that they have a qualitatively 
similar impact on the spinning rates as they did with the tumbling rates.

5 Discussions and Conclusions

In this paper, we have investigated the orientational dynamics of 
flexible fibers of varying lengths and flexibility suspended in a 
turbulent channel flow at shear Reynolds number Res ¼ 300 by 
means of Euler–Lagrange simulations. The flexible fibers are 
modeled by connecting sub-Kolmogorov-sized rod-like elements to 
form long chains [25]. Additionally, by incorporating a bending 
resistance torque [31], we have studied both fully flexible and rigid 
fibers with Young’s modulus of EþY ¼ 0 and 105, respectively. This 
formulation allows the study of flexible fibers of length comparable 
to the half-height of the channel while using relations from Stokes 
flow theory to prescribe the forces and torques that each rod-like 
element experiences in the flow.

We first examined the temporal evolution of the fibers from 
different locations from the wall by tracking the position of their 
center of mass and orientation vector with respect to the streamwise 
direction. Our results show that shorter flexible fibers tend to migrate 
away from the wall, whereas their rigid counterparts stay closer to 
the wall and experience more rapid changes in orientations. 
However, the temporal behavior of the longer fibers is found to be 
less sensitive to their flexibility/rigidity as they move and orient 
themselves similarly, irrespective of their bending stiffness. 
Collating the rapid changes in orientation of the fibers closer to 
the wall and their subsequent journey away from the wall hints at the 
possibility of the fibers pole-vaulting toward their journey away 
from the wall, as previously observed in the literature [30,36–39].

To study the fiber orientation based on their location along the 
channel height, we have next discussed the fiber spatially and 
temporally averaged orientational vectors. Reminiscent of experi-
mental and numerical observations made on fibers suspended in 
HIT, we find that short fibers closer to the channel center tend to 
orient themselves isotropically in the flow. However, we also find 
that longer fibers tend to progressively deviate from an isotropic 
distribution with increasing fiber length. This deviation could be due 
to the capability of longer fibers to sample a more extensive range of 
flow scales, although their center of mass might lie within the 
channel center. Although Bec et al. [30] found similar trends with 
respect to fiber lengths, they reported a smaller magnitude of 
deviations in comparison to what we observed. This variation can be 
attributed to the methodology employed in calculating the 

orientation vectors, wherein they calculated the local orientation 
of each fiber. In contrast, we calculate the orientation of the fiber as a 
whole using Eq. (20). We also observe that fiber rigidity tends to 
minimize the deviations with respect to increasing fiber lengths, 
especially closer to the channel center.

Finally, we have analyzed the rotation rates of the fibers by 
calculating their tumbling and spinning rates. We first discussed the 
probability distribution of the normalized mean square tumbling 
rates experienced by the fibers closer to the center of the channel and 
closer to the wall separately. Focusing first on the fibers near the 
channel center, we find a clear dependence on the rigidity of the 
fibers on the probability distribution of the tumbling rates. We 
observe that the fully flexible fibers tend to have fatter tails in the 
distribution, hinting at dependence on fiber length. However, we 
also observe that the opposite happens in the case of rigid fibers. By 
comparing our findings with the experimentally calculated proba-
bility distribution of the mean square tumbling rate by Parsa and 
Voth [41], we find that the experiments best agree with our 
simulations with rigid fibers. This could be due to the finite rigidity 
of the nylon fibers used in their experiments. Nylon fibers also 
possess comparable density with respect to the suspending fluid in 
their experiments, making comparisons with their findings all the 
more suitable. It is also worth noting that the experiments by Parsa 
and Voth [41] were conducted in HIT with a Taylor Reynolds number 
of 150 and 210. Plotting the tumbling and spinning rates along the 
channel depth, we can make the following observations. Owing to the 
strong turbulence fluctuations that occur close to the wall and to fiber- 
wall collisions, fibers in that region tend to tumble and spin at rates 
significantly higher than those closer to the channel center. We also 
find that increasing fiber lengths tend to yield higher tumbling and 
spinning rates, but increased rigidity has the opposite effect.

A common feature observed in all the statistics along the wall- 
normal direction is the progressive absence of data closer to the 
walls of the channel for longer fibers. This is because longer fibers 
tend to move away from the wall, creating an inhomogeneous 
particle distribution. Therefore, as shown by Bec et al. [30], this 
leads to an apparent depletion in the boundary layer that 
progressively becomes stronger with increasing fiber lengths. 
Another major takeaway from the current paper is the specific role 
that the introduction of fiber rigidity brings to the collective 
dynamics of the fibers. In the introduction, we asked whether fiber 
length and flexibility can affect their collective dynamics independ-
ently. Our results comparing rigid and flexible fibers show that 
rigidity does indeed play independent roles in modulating the 
orientation dynamics of the fibers, albeit quantitatively. A future 
study that covers a broader range of bending stiffness values and 
fiber lengths is warranted to thoroughly quantify their individual 

roles in the dynamics of the system.

The main focus of this paper has been to probe the role of fiber 
length and flexibility, specifically on the orientational dynamics of 
fibers suspended in a turbulent channel flow. Since the suspended 
fibers are flexible, a natural next step would be to study how they 
deform. Studies in the past have looked at the flapping frequencies of 
flexible fibers suspended in HIT [21,24,44] and also the migration of 
fully flexible fibers away from the wall as a consequence of the 
fibers’ contact with the channel wall [30]. Therefore, our future 
efforts will be devoted to the characterization of the flapping and 
deformation modes as a function of a range of fiber lengths and 
rigidity, as well as the inertia of the background flow by contrasting 
the fiber dynamics suspended in turbulent channel flows with 
different values of shear Reynolds numbers. In the current work, we 
have focused on fibers that possess negligible inertia, as indicated by 
the Stokes number and the particle Reynolds number. While such 
fibers are relevant to marine microplastics, atmospheric micro-
plastics tend to possess larger values of fluid inertia owing to 
significant density differences. Studying such a system would also 
entail accounting for the effects of fluid inertia on the calculation of 
the forces and torques experienced by the suspended fibers [8,45]. 
Such a study would be another natural extension of the current work, 
which would be the subject of another future paper.
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Nomenclature

EY ¼ fiber Young’s modulus (kg m−1 s−2) 
mn ¼ mass of the nth fiber (kg) 
on ¼ orientation vector of the nth fiber (rad) 
pn ¼ position vector of the nth fiber (m) 

Res ¼ Reynolds number, qush=l 

Stfiber ¼ Stokes number, 2
9

aþ
2

qþktot
log ktotþ

ffiffiffiffiffiffiffiffiffi
k2

tot−1
p� �

ffiffiffiffiffiffiffiffiffi
k2

tot−1
p

u ¼ velocity vector of the fluid (m s−1) 
us ¼ shear velocity (m s−1) 
vn ¼ velocity vector of the nth fiber (m s−1) 
2a ¼ fiber diameter (m) 
2h ¼ channel height (m) 
2l ¼ fiber length (m) 
k ¼ aspect ratio of ellipsoids, l=a 

ktot ¼ total aspect ratio of the fibers, nrods k 
l ¼ dynamic viscosity (kg m−1 s−1) 
q ¼ fluid density (kg m−3) 

qp ¼ fiber density (kg m−3) 

qþ ¼ density ratio, qp=q 
xn ¼ angular velocity vector of the nth fiber (s−1) 
X ¼ angular velocity vector of the fluid (s−1) 
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