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The Eulerian-Lagrangian approach based on Large-Eddy Simulation (LES) is one
of the most promising and viable numerical tools to study particle-laden turbulent
flows, when the computational cost of Direct Numerical Simulation (DNS) becomes
too expensive. The applicability of this approach is however limited if the effects
of the Sub-Grid Scales (SGSs) of the flow on particle dynamics are neglected. In
this paper, we propose to take these effects into account by means of a Lagrangian
stochastic SGS model for the equations of particle motion. The model extends to
particle-laden flows the velocity-filtered density function method originally devel-
oped for reactive flows. The underlying filtered density function is simulated through
a Lagrangian Monte Carlo procedure that solves a set of Stochastic Differential
Equations (SDEs) along individual particle trajectories. The resulting model is tested
for the reference case of turbulent channel flow, using a hybrid algorithm in which
the fluid velocity field is provided by LES and then used to advance the SDEs
in time. The model consistency is assessed in the limit of particles with zero
inertia, when “duplicate fields” are available from both the Eulerian LES and the
Lagrangian tracking. Tests with inertial particles were performed to examine the
capability of the model to capture the particle preferential concentration and near-wall
segregation. Upon comparison with DNS-based statistics, our results show improved
accuracy and considerably reduced errors with respect to the case in which no SGS
model is used in the equations of particle motion. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4967800]

I. INTRODUCTION

Over the past decades, major modelling efforts have been devoted to the prediction of single-
phase turbulent flows by means of Large Eddy Simulation (LES).1–3 The pioneering model was
developed by Smagorinsky,4 based on an eddy viscosity closure that relates the unknown Sub-Grid
Scale (SGS) stresses to the strain rate of the large flow scales to mimic the dissipative behavior
of the unresolved flow scales. Subsequent extensions to dynamic5,6 or stochastic models7 have
improved the quality and reliability of LES, especially for cases where mass, heat, and momentum
transfer are controlled by the large scales of the flow. Much work has been done also to improve
the applicability of LES to chemically reacting turbulent flows8,9 and, more recently, to dispersed
turbulent flows.10 The first LES of particle-laden flow, in particular, was performed under the
assumption of negligible contribution of the SGS fluctuations to the filtered fluid velocity seen by
inertial particles.11 The choice was justified considering that inertial particles act as low-pass filters
that respond selectively to the removal of SGS flow scales according to a characteristic frequency
proportional to 1/τp, where τp is the particle relaxation time (a measure of particle inertia). The
same assumption has been used in other studies12–15 in which the filtering due to particle inertia
and the moderate Reynolds number of the flow had a relatively weak effect on the (one-particle,
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two-particles) dispersion statistics examined. However, several studies16–18 have demonstrated that
neglecting the effect of SGS velocity fluctuations on the particle motion leads to significant er-
rors in the quantification of large-scale clustering and preferential concentration, two macroscopic
phenomena that result from the particle preferential distribution at the periphery of strong vortical
regions into low-strain regions.19–21 It is now well known that LES without SGS modelling for the
dispersed phase is bound to underestimate the preferential concentration and, in turn, deposition
fluxes and near-wall accumulation.22–24 These flaws have obvious consequences on the applica-
bility of LES to industrial processes and environmental phenomena such as mixing, combustion,
depulveration, spray dynamics, pollutant dispersion, or cloud dynamics.25 Recent analyses based
on Direct Numerical Simulation (DNS) of turbulence have also shown that neither deterministic
models nor stochastic homogeneous models have the capability to correct fully the inaccuracy of the
LES approach due to SGS filtering.26–29 Prompted by the above mentioned findings, some attempts
have been made on a heuristic ground, both for isotropic30–33 and wall-bounded flows.34,35

An interesting and viable modelling alternative is represented by the Probability Density Func-
tion (PDF) approach, which has proven useful for LES of turbulent reactive flows.36–41 The LES
formalism is based on the concept of Filtered Density Function (FDF), which is essentially the
filtered fine-grained PDF of the transport quantities that characterize the flow. In this framework, the
SGS effect is included in a set of suitably defined Stochastic Differential Equations (SDEs), where
the effects of advection, drag non-linearity, and polydispersity appear in a closed form. This consti-
tutes the primary advantage of the PDF/FDF approach with respect to other statistical procedures, in
which these effects require additional modelling.42

The objective of the present work is to apply the FDF-based LES formalism for particle-laden
turbulent flows. To this aim, several issues must be addressed with respect to the FDF approach
already available for turbulent reactive flows. First, the FDF must be Lagrangian since particle dy-
namics are addressed naturally from the Lagrangian viewpoint. In addition, inertial particles behave
like a compressible phase and therefore the mass density function should be considered. This leads
to the definition of a joint Lagrangian Filtered Mass Density Function (LFMDF), which represents
the mathematical framework required to implement the FDF approach in LES.43 In particular, a suit-
able transport equation must be developed for the LFMDF such that the effects of SGS convection
appear in a closed form (the unclosed terms in the transport equation can be modelled following a
procedure similar to Reynolds averaging). In this paper, the numerical solution of the LFMDF trans-
port equation is achieved by means of a Lagrangian Monte Carlo procedure. The consistency of this
procedure is assessed by comparing the first two moments of the LFMDF with those obtained from
the Eulerian LES of the flow. The results provided by the LFMDF simulations are compared with
those predicted by the original Smagorinsky closure, as well as those of the “dynamic” Smagorin-
sky model, for the reference case of turbulent channel flow. The LFMDF performance is further
assessed upon direct comparison with a DNS dataset, paying particular attention to the results for
the particle preferential concentration.

II. PROBLEM FORMULATION

In the mathematical description of turbulent dispersed flows, the relevant transport variables
are the fluid velocity Ui(x, t), the pressure P, the particle position xp(t), and the particle velocity
Up(xp(t), t). In this work, we consider heavy particles carried by an incompressible Newtonian fluid.
The equations of motion for the fluid are in scalar form

∂Ui

∂xi
= 0, (1)

∂Ui

∂t
+Uj

∂Ui

∂x j
= − 1

ρ f

∂P
∂xi
+ νf

∂2Ui

∂x2
j

, (2)

where ρ f and νf are the density and the kinematic viscosity of the fluid, respectively. LES of
turbulence involves the use of a spatial filter6
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f (x, t) =
 ∞

−∞
f (y, t)G(y,x)dy, (3)

where G is the filter function, f represents the filtered value of the transport variable f , and
f ′ = f − f denotes the fluctuation of f with respect to the filtered value. We consider spatially
and temporally invariant, localized filter functions, thus G(y, x) ≡ G(x − y) with the properties,
G(x) = G(−x), and


G(x)dx = 1. Starting from Eqs. (1) and (2), the application of the filtering

operator (3) yields

∂Uj

∂x j
= 0, (4)

∂Ui

∂t
+ Uj

∂Ui

∂x j
= − 1

ρ f

∂P
∂xi
+ νf

∂2Ui

∂x2
j

−
∂τi, j
∂x j

, (5)

where τi, j =IUiUj − Ui
Uj is the SGS tensor component.6 To close the SGS stress tensor, three

different cases have been considered in order to compare the differences produced on particle track-
ing: (1) no SGS model, (2) Smagorinsky SGS model,4 and (3) Germano (dynamic Smagorinsky)
SGS model.5,6,44 In the case without the SGS model, the contribution of the SGS is completely
ignored and τi, j = 0. The Smagorinsky model reads4

τi, j −
2
3

kδi, j = −2νtSi, j, (6)

Si, j =
1
2

( ∂Ui

∂x j
+
∂Uj

∂xi

)
, (7)

νt = (CS∆)2S, (8)

with CS = 0.065,45 S =

Si, jSi, j, and ∆ the characteristic length of the filter. The dynamic version

of the Smagorinsky model provides a means of approximating CS (the reader is referred to Ref. 6
for further details on the model).

For the case of heavy particles (with density ρp ≫ ρ f ), drag is the dominant force. Neglecting
gravity to focus on turbulence effects on particles,23,24,46 the equations of particle motion in the
Lagrangian framework, and in vector form, read as47

dxp

dt
= Up, (9)

dUp

dt
=

1
τp

(Us − Up), (10)

where Us = U(xp, t) is the fluid velocity seen by a particle along its trajectory and

τp =
ρp

ρ f

4 dp

3 CD|Ur | (11)

is the particle relaxation time, with dp the particle diameter, CD =
24

Rep
(1 + 0.15Re0.687

p ) the drag
coefficient and Ur = Up − Us the particle-to-fluid relative velocity at the particle position. Similarly
to what already done for the fluid phase, it is possible to derive the filtered version of Eqs. (9)
and (10). The Lagrangian nature of these equations, however, does not allow a straightforward
derivation unless the SGS effects on particle motion are disregarded. In this case, one can write

dxp

dt
= Up, (12)

dUp

dt
=

Us − Up

τp
, (13)

where τp is the particle relaxation time scale expressed in terms of the filtered relative velocity Ur . A
more precise definition of the filtering procedure for the particle-phase quantities is given in Sec. III.

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  31.221.87.74

On: Wed, 23 Nov 2016 14:12:37



115106-4 Innocenti, Marchioli, and Chibbaro Phys. Fluids 28, 115106 (2016)

III. DEFINITION OF THE FILTERED DENSITY FUNCTION

A. Particle phase

In two-phase flows, the exact governing equations are Lagrangian. Accordingly, we introduce
a Lagrangian Filtered Mass Density Function (LFMDF) formally defined for N individual particles
in the domain at time t as43

Fp
L (t; yp,Vp,Vs) =

 N
i=1

mp, i G(y − y′p)δ(y′p − xp, i(t)) ⊗ δ(Vp − Up, i(t)) ⊗ δ(Vs − Us, i(t))dy′

=

N
i=1

mp, i G(y − xp, i(t)) ⊗ δ(Vp − Up, i(t)) ⊗ δ(Vs − Us, i(t)), (14)

where mp, i is the mass of the ith particle. From the LFMDF, it is possible to derive formally the
corresponding Eulerian Filtered Mass Density Function (EFMDF)

Fp
E (t,x; Vp,Vs) ≡ Fp

L (t; yp = x,Vp,Vs) =

=

N
i=1

mp, i G(x − xp, i(t)) ⊗ δ(Vp − Up, i(t)) ⊗ δ(Vs − Us, i(t)). (15)

Let us now consider the conditional filtered value of a variable Q(t), which is defined as follows:

⟨Q(t)|yp,Vp,Vs⟩ =
N

i=1 Qimp, iG(yp − xp, i) ⊗ δ(Vp − Up, i(t)) ⊗ δ(Vs − Us, i(t))
Fp
L (t; y,Vp,Vs)

. (16)

Equations (15) and (16) imply that

(i) if Q(t) = const. then ⟨Q(t)|y,Vp,Vs⟩ = const.
(ii) if Q(t) ≡ Q̂(x(t),Up(t),Us(t)), where the hat symbol indicates that the variable Q is completely

defined by the variables x(t), Up(t), and Us(t), then ⟨Q(t)|y,Vp,Vs⟩ = Q̂(y,Vp,Vs)
(iii) the following integral property for any variable Q(t,x) holds

αp(t,x)⟨ρ⟩Q(t,x) =
 

⟨Q|y = x,Vp,Vs⟩ Fp
E (t,x; Vp,Vs) dVp dVs, (17)

where αp(t,x)⟨ρ⟩ =
 Fp

E (t,x; Vp,Vs) dVp dVs is the filtered local value of the particle mass frac-
tion at time t and position x. From these equations, it follows that the filtered value of any function
of the variables in the state-vector is obtained by integration in the sample space

αp(t,x)⟨ρ⟩Q(t,x) =
 

Q̂(Vp,Vs) Fp
E (t,x; Vp,Vs) dVp dVs. (18)

B. LFMDF transport equation

To derive the LFMDF transport equation, the time derivative of the fine-grained density func-
tion given by Eq. (14) is considered. In the present study, we are interested in the case of mono-
disperse flow, so we assume that all particles have the same mass (namely mp, i is the same for
i = 1, . . . ,N). We can thus derive

∂Fp
L

∂t
=

N
i=1

(
mp, i

∂G
∂t

δVpVs + mp, iG
∂δVp

∂t
δVs + mp, iG

∂δVs

∂t
δVp

)

=

N
i=1

(
mp, i

∂G
∂x

dxi

dt
δVpVs − mp, iG

dUp, i

dt

∂δVp

∂Vp
δVs − mp, iG

dUs, i

dt
∂δVs

∂Vs
δVp

)

=

N
i=1

(
−mp, i

∂G
∂y

dxi

dt
δVpVs − mp, iG

dUp, i

dt

∂δVp

∂Vp
δVs − mp, iG

dUs, i

dt
∂δVs

∂Vs
δVp

)
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=

N
i=1

(
− ∂

∂y
(mp, iG

dxi

dt
δVpVs) − ∂

∂Vp
(mp, iG

dUp, i

dt
δVpδVs) − ∂

∂Vs
(mp, iG

dUs, i

dt
δVpδVs)

)

= − ∂

∂y



dx
dt

|y,Vp,Vs


Fp
L


− ∂

∂Vp



IdUp

dt
|y,Vp,Vs


Fp
L


− ∂

∂Vs



IdUs

dt
|y,Vp,Vs


Fp
L



= −
∂[Vp

Fp
L ]

∂y
− ∂

∂Vp


−

Vp − Vs

τp
Fp
L


− ∂

∂Vs

 AUs |y,Vp,Vs

 Fp
L


. (19)

The LFMDF transport equation can be also written separating the filtered and unresolved parts as
follows:

∂Fp
L

∂t
+
∂

( Up
Fp
L

)
∂y

= − ∂

∂Vp

 AUp
Fp
L


− ∂

∂Vs

 AUs
Fp
L



− ∂

∂y
 (

Vp − Up

) Fp
L



− ∂

∂Vp

AUp |y,Vp,Vs


− AUp

 Fp
L



− ∂

∂Vs

AUs |y,Vp,Vs


− AUs

 Fp
L


, (20)

where the first term on the right-end side corresponds to the effects of resolved scales whereas the
last three terms take into account the effects of the unresolved scales. The EFMDF Fp

E follows by
definition the same transport equation.

C. Modeled LFMDF transport equation

The Langevin model previously developed for turbulent polydispersed flows43,48,49 is employed
here to close the LFMDF transport equation. The modeled LFMDF equation reads as

− ∂

∂Vs

 AUs |y,Vp,Vs
 Fp

L



≈ − ∂

∂Vs, i





− 1
ρ f

∂P
∂xi
+ νf∆Ũi +

(Up, j − Uj

) ∂Ui

∂x j
−

Vs, i − Ui

T∗L, i


Fp
L




+
1
2

∂2

∂V 2
s, i



ϵ̃


C0bi

kSGS

kSGS
+

2
3

(
bi

kSGS

kSGS
− 1

) Fp
L



, (21)

where we have defined the Lagrangian time scale in the longitudinal direction (i = 1) and in the
transversal directions (i = 2 and i = 3, respectively) as

T∗L,1 =
TSGS

1 + β2 |Ur |2
2kSGS/3

, T∗L,2 = T∗L,3 =
TSGS

1 + 4β2 |Ur |2
2kSGS/3

, (22)

with β = TL/TE,50 and

ϵ̃ = (CS∆)2S, kSGS = Cϵ(∆ϵ̃)2/3, TSGS =
kSGS

ϵ̃

(
1
2
+

3
4

C0

)−1

, (23)

where ϵ̃ is the SGS dissipation rate, ∆ is the filter width, kSGS is the SGS kinetic energy, and TSGS is
the SGS time scale. This model is consistent with the generalised Langevin model.42 The auxiliary
subgrid turbulent kinetic energy is defined as follows:

kSGS =
3
2

3
i=1 bi[U2

s, i −
Us, i

Us, i]3
i=1 bi

, (24)

with bi = TSGS/T∗L, i.
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D. Equivalent stochastic system

The LFMDF transport equation is of the Fokker-Planck kind and provides all the statistical
information of the state-vector. However, the most convenient way to solve this equation is through
a Lagrangian Monte Carlo method, since the LFMDF equation is equivalent to a system of SDEs in
a weak sense.51 This approach applies naturally to the dispersed phase, since its evolution equations
are Lagrangian. The system of SDEs corresponding to Eq. (21) reads as

dxp, i = Up, i dt, (25)

dUp, i =
Us, i −Up, i

τp
dt, (26)

dUs, i = −
1
ρ f

∂P
∂xi

dt + νf∆Ũi dt +
(Up, j − Uj

) ∂Ui

∂x j
dt −

Us, i − Ui

T∗L, i
dt + Bs, i j dWi, (27)

where the term dWi denotes a Wiener process.51 In the following, we discuss the results obtained

with two choices for the diffusion matrix Bs, i j =


C∗iϵ δi j:

1. a simplified model C∗i ≈ C0 bi +
2
3 (bi − 1), referred to as LFMDF1 hereinafter,

2. the complete model C∗i =

C0bi

kSGS
kSGS
+ 2

3

(
bi

kSGS
kSGS
− 1

)
, referred to as LFMDF2 hereinafter.

It is worth noting that the diffusion matrix, Bs, i j, is diagonal but not isotropic. This is crucial to
reproduce a correct energy flux from the resolved scales to the unresolved ones and represents a
necessary requirement to consider the model acceptable.52 Using the same closure as that of single-
phase flows, namely Bs, i j =


C0ϵ δi j, is inconsistent with the modeled SGS dissipation rate ϵ .

When dealing with dispersed flows, a limit case of particular importance to assess the capa-
bility of a SGS particle model is that of inertia-free particles. These particles behave like fluid
tracers and are characterized by τp → 0: The particle model must be consistent with a correct model
in this limit.52 When τp → 0, our model reduces to

dxp, i = Up, i dt, (28)
Up, i = Us, i, (29)

dUs, i = −
1
ρ f

∂P
∂xi

dt + νf∆Ui dt −
Us, i − Ui

TL, i
dt +


C0ϵ dWi, (30)

which is the stochastic system equivalent to the Velocity Filtered Density Function (VFDF) model
proposed by Gicquel et al. for the fluid.38 This model is consistent with the exact zero-th and first
moment equations, but more complete models for the second central moment are also available.38,53,54

IV. NUMERICAL METHOD

The numerical solution of the LES/LFMDF model is obtained using a hybrid Eulerian mean-
field LES/Lagrangian Monte Carlo procedure, where the filtered fluid properties are computed on a
mesh while the statistics of the dispersed phase are calculated from particles moving in the compu-
tational domain. This procedure has been used previously in the context of Reynolds-Averaged
Navier-Stokes (RANS).55 Specifically, let {Y[x]} be the set of filtered fluid flow fields at the different
mesh points and let {Y(N )} be the set of filtered fluid flow fields interpolated at particle locations.
Let {Z(N )} be the set of variables “attached” to the particles and let {Z[x]} be the set of statistics
(defined at cell centres) extracted from {Z(N )}. The first step (operator F) is to solve the PDEs for
the fluid

{Y[x]}(tn) F−→ {Y[x]}(tn+1). (31)

The second step (projection, operator P) consists of calculating the filtered fluid properties and the
filtered particle properties at particle locations

{Y[x]}(tn) and {Z[x]}(tn) P−→ {Y(N )}(tn) and {Z(N )}(tn). (32)
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Then, the stochastic differential system can be integrated in time (operator T),

{Z(N )}(tn) T−→ {Z(N )}(tn+1). (33)

Finally, from the newly computed (at particle locations) set of variables, new statistical moments are
evaluated at cell centres (operator A),

{Z(N )}(tn+1) A−→ {Z[x]}(tn+1). (34)

The operator F is a pseudo-spectral method based on transforming the field variables into
wavenumber space, using Fourier representations for the periodic streamwise and spanwise (homo-
geneous) directions and a Chebyshev representation for the wall-normal (non-homogeneous) direc-
tion. The projection step, required to evaluate fluid and particle quantities at particle positions, is
achieved with three different techniques:

• No-interpolation (zero-th order, not symmetric in the wall normal direction): The values of the
filtered quantities at the upstream neighbour node of the cell containing the particle are used.

• NGP (Nearest Grid Point, symmetric in the wall-normal direction): The average values of the
filtered quantities at each node of the cell containing the particle are used.

• Interpolation: A second-order interpolation of the Eulerian quantities at grid nodes is per-
formed to obtain quantities at the particle position.

Previous studies have shown that no improvement is obtained using higher-order interpolation
schemes.55 In fact, higher-order schemes may even lead to larger errors in hybrid formulations like
the one considered here.

The local instantaneous properties of the dispersed phase are obtained by solving the set of
SDEs via the operator T . In particular, the numerical solution of the modelled stochastic equations
is obtained representing the modelled LFMDF through an ensemble of N statistically identical
Monte Carlo particles. Each of these particles carries information pertaining to the fluid velocity
seen by the particle, U(n)

s (t), to the particle velocity, U(n)
p (t), and to the particle position, x(n)

p (t),
where n = 1,2, . . . ,N . This information is updated upon time-integration of Eqs. (25)-(27). This
system of SDEs has multiple scales and may become stiff, in particular for particles with very small
inertia. Moreover, in wall-bounded flows, the characteristic fluid time scales become smaller in the
near-wall region, thus complicating the integration. For these reasons, an ad hoc unconditionally
stable, second-order accurate numerical scheme has been developed and implemented here. The
scheme is based on that put forward in the RANS context:55 It adopts the Itô’s convention and is
developed starting from the analytical solution of Eqs. (25)-(27) with constant coefficients. Such a
scheme ensures stability and consistency with all limit cases. The first-order scheme is the following
Euler-Maruyama:

xn+1
p, i = xn

p, i + A1 Un
p, i + B1 Un

s, i + C1 [Tn
i Cn

i ] +Ωn
i , (35)

Un+1
p, i =Un

p, i exp(−∆t/τnp ) + D1 Un
s, i + [Tn

i Cn
i ](E1 − D1) + Γni , (36)

Un+1
s, i =Un

s, i exp(−∆t/Tn
i ) + [Tn

i Cn
i ][1 − exp(−∆t/Tn

i )] + γn
i , (37)

where the coefficients are given by the following relations:

A1 = τnp [1 − exp(−∆t/τnp )],
B1 = θni [Tn

i (1 − exp(−∆t/Tn
i ) − A1] with θni = Tn

i /(Tn
i − τnp ),

C1 = ∆t − A1 − B1,

D1 = θni [exp(−∆t/Tn
i ) − exp(−∆t/τnp )],

E1 = 1 − exp(−∆t/τnp )
and γn

i ,Γ
n
i ,Ω

n
i are stochastic integrals. The details of the scheme as well as the analytical solu-

tions are given in the Appendix. The second-order scheme is derived using a predictor-corrector
technique, in which the prediction step is the first-order scheme given by Eqs. (35)-(37).55

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  31.221.87.74

On: Wed, 23 Nov 2016 14:12:37



115106-8 Innocenti, Marchioli, and Chibbaro Phys. Fluids 28, 115106 (2016)

Particle statistics are evaluated by considering the ensemble of particles NE located within a
small volume of fluid δV (a box of size ∆E,1 × ∆E,2 × ∆E,3) centered around a given point x. This
ensemble provides one-time one-point statistics. For reliable statistics with minimal numerical disper-
sion, it is desirable to minimize the size of the averaging domain, namely ∆E = 3


∆E,1∆E,2∆E,3

→ 0, and maximize the number of Monte Carlo particles, namely NE → ∞. By doing so, the ensemble
statistics tend to the desired filtered values

aE =
1

NE


n∈∆E

a(n) NE→∞−−−−−−→
∆E→0

a,

τE(a,b) = 1
NE


n∈∆E

(a(n) − aE)(b(n) −bE) NE→∞−−−−−−→
∆E→0

τ(a,b),
(38)

where a(n) and b(n) denote typical information carried by the nth particle, for instance, its velocity
components and the arrows indicate the limit operator. Since we are adopting a Monte Carlo proce-
dure in a LES/LFMDF approach, the quantities obtained following Eq. (38) are filtered Eulerian
quantities, a, and subgrid quantities, τ(a,b), respectively. For example, one can evaluate the particle
filtered velocity as

Up, i(x) ≃ 1
Nx

Nx
n=1

U (n)
p, i . (39)

Analogous expressions can be written for all other filtered quantities.
The mean-field LES solver also computes the filtered fluid velocity field so that there is a

“redundancy” of the first filtered moments in the τp → 0 limit. In this case, both the spectral method
and the Monte Carlo procedure yield the solution for the particle number density and velocity fields.
These fields are referred to as “duplicate fields” hereinafter and can be exploited to assess the
accuracy of the model.56,57 The characteristics of our scheme are summarized in Table I.

V. RESULTS

In the present study, the LES/LMFDF approach is applied to track inertial particles in the
gas-solid turbulent channel flow. The fluid considered is air (assumed to be incompressible and
Newtonian) with density ρ f = 1.3 kg/m3 and kinematic viscosity νf = 1.57 · 10−5 m2/s. The refer-
ence geometry consists of two infinite flat parallel walls: the origin of the coordinate system is
located at the center of the channel, with the x−, y−, and z− axes pointing in the streamwise,
spanwise, and wall-normal directions, respectively. Periodic boundary conditions are imposed on
the fluid velocity field in x and y , and no-slip boundary conditions are imposed at the walls. Calcu-
lations were performed on a computational domain of size 4πh × 2πh × 2h in x, y , and z, respec-
tively.23 The domain was discretised using a 32 × 32 × 33 grid with uniform cell spacing in the
homogeneous directions and non-uniform cell distribution in the wall-normal direction (Chebyshev
collocation points).58 Simulations were performed with a coarsening factor CF = 8 with respect to
the reference DNS, at a shear Reynolds number Reτ = 300 based on the half-width h of the channel,
and using a fixed time step (see Table II). DNS is based on a pseudo-spectral incompressible flow
solver that uses a Fourier-Galerkin method in x and y , and a Chebyshev-collocation method in z. A
two-level explicit Adams-Bashforth scheme for the nonlinear terms and an implicit Crank-Nicolson
scheme for the viscous terms are employed for time advancement. More details can be found in

TABLE I. Summary of the LES/LFMDF solution procedure.

Spectral LES
variables

Particle solver
variables

Mean-field
variables

Duplicate fields
(fluid limit)

Ui Xp, i Ui,
∂ P
∂xi

ρ f

P Up, i, Us, i
∂Ui
∂x j
∆Ui Ui
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TABLE II. Simulation parameters for the fluid. Superscript + represents
variables in wall units, obtained using the shear velocity and the fluid
kinematic viscosity.

∆t 4.2 ·10−5 (s)
Time step ∆t+=∆tu2

τ/ν f 0.15 (w.u.)

DNS grid size Nx×Ny×Nz 256 × 256 × 257
LES grid size Nx×Ny×Nz 32 × 32 × 33

Refs. 46 and 58. Particles with density ρp = 103 kg/m3 and Stokes numbers as given in Table III
were injected in the flow at randomly chosen locations under fully developed flow conditions.
Since we are concerned with a Monte Carlo simulation, a large number of particles are required
to minimize statistical errors. In the consistency assessments (see Section V A), the number of
particles per cell was varied selecting Npc = 20,40, and 80, while simulations with inertial particles
were performed imposing Npc = 40: This latter value corresponds to a total number of particles
N ≃ 1.31 · 106 in the domain. Particles rebound elastically upon impact with the wall when their
center is less than a diameter away from the wall itself.

In the following, both instantaneous and time-averaged results are discussed. In particular,
we examine Reynolds averaged statistics, denoted by an overbar and obtained upon averaging the
filtered velocity over the homogeneous flow directions and in time.

A. Assessment of consistency and convergence

The purpose of this section is to demonstrate the consistency of the LFMDF formulation in the
τp → 0 limit and to show its convergence. To these objectives, the results obtained via the LES/mean-
field are compared against those provided by the LFMDF approach. Given the accuracy of the spectral
method, suchacomparativevalidation representsa robustway toassess theperformanceof theLFMDF
solution provided by the Monte Carlo simulation. We are particularly interested in examining the parti-
cle velocity statistics but also the particle number density distribution, which is the macroscopic result
of turbophoresis23,46 and should remain uniform in the whole domain when τp → 0. For these observ-
ables, we compare the statistics obtained from the Monte Carlo simulation, namely from the solution
of Eqs. (25)-(27), with those of the Eulerian pseudo-spectral simulation, which solves for Eqs. (1)
and (2). As mentioned, in the fluid limit this is equivalent to solving Eq. (30), and the resulting duplicate
fields (indicated in Table I) should be consistent. The values suggested in the literature for the model
parameters are given here: C0 = 2.1, Cϵ = 1, and β = 0.8.48 We have also checked the convergence
with respect to Npc, which is achieved for Npc ≥ 40.

Figure 1 shows the Reynolds-averaged particle number density, C/Cin (with Cin the number den-
sity at the time of particle injection), and particle streamwise velocity, Ux along the wall-normal coor-
dinate. The different profiles correspond to different interpolation techniques. To avoid cross-effects,
no subgrid model is used in the Eulerian simulation. While velocity appears unaffected by the partic-
ular interpolation technique employed (results are perfectly consistent), the particle number density
is sensitive. In particular, significant errors in the near-wall region are found when no interpolation is
performed or when the nearest-grid-point technique is used. A second-order interpolation, however, is
sufficient to recover the expected behaviour and ensure C/Cin ≃ 1 everywhere (as expected for tracer
particles). In Figure 2, the averaged number density profile and the averaged velocity provided by the

TABLE III. Simulation parameters for the particles.

St τp (s) d+p (w.u.) dp (µm)
1 0.283 ·10−3 0.153 10.2
5 1.415 ·10−3 0.342 22.8
25 7.077 ·10−3 0.763 50.9
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FIG. 1. Reynolds-averaged particle number density (a) and filtered streamwise velocity (b) obtained with different SGS
particle models: no interpolation of LES and particle quantities (red square), NGP interpolation (blue circle), and second-order
interpolation (black triangle). Downward triangles (magenta triangledown) in panel (b) refer to the filtered streamwise
velocity provided by LES. The time window for averaging is ∆t+= 3000, in wall units.

different SGS models for the fluid are shown. The LFMDF model appears to be consistent with all
models tested, since the C/Cin profile remains uniform once the stationary state is reached and the
velocity is (again) perfectly consistent. It is also observed that, in the τp → 0 limit, the first moments
of the Germano model are nearly the same as those obtained without the SGS model. Therefore results
discussed hereinafter refer to simulations performed using the Germano model for the fluid phase,
unless otherwise stated. A further proof of consistency is provided by Figure 3, which shows the scatter
plots of the streamwise and wall-normal velocity components, indicated as Ux and Uz, respectively.
Velocities in the Eulerian simulations were evaluated at the center of the computational cells. The
velocity correlation is quite satisfactory, except perhaps for very small values of Ux.

To assess the consistency of the LFMDF formulation from a physical (and more intuitive) point
of view, in Fig. 4, we compare the near-wall fluid streaks that can be rendered from the Eulerian
LES (panel (a)) and from the Monte Carlo LFMDF simulation (panel (b)). Streaks are known to
play a crucial role in determining the transport mechanisms in turbulent boundary layers24,46 and are
visualised here by instantaneous contour plots of the fluctuating streamwise velocity on a x-y plane
located at a distance z+ = 10 from the wall. Visual inspection shows only small differences in the
color map, indicating that the streaks, and indirectly the near-wall turbulent coherent structures that
generate it, are indeed recovered by the LFMDF simulation in the fluid limit.

To complete the model assessment, we have also checked the sensitivity of Reynolds aver-
aging to the size of the reference volume δV (introduced in Section IV) over which averaging is
performed. To this aim, we considered different grids made of cubic volumes centered around the
LES (Eulerian) nodes. The size of each volume, ∆E, was varied to be either smaller or larger than
the cell size ∆ in the reference 323 LES grid. Figure 5 shows the averaged filtered streamwise
velocity at varying ∆E (with a fixed number of particles per cell, Npc = 40). It can be seen that all

FIG. 2. Reynolds-averaged particle number density (a) and filtered streamwise velocity (b) obtained with different SGS
models for the fluid: No-model (red square, red dash), Smagorinsky model (blue circle, blue dashed line), and Germano
dynamic model (black triangle, black dash dot). The time window for averaging is ∆t+= 3000, in wall units.
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FIG. 3. Scatter plot correlating particle velocity components evaluated from LES and from LFMDF: (a) streamwise
component, (b) wall-normal component.

profiles overlap even for large ∆E (∆E = 2∆) indicating that the mean filtered velocity is not sensi-
tive to the size of the averaging volume, at least in the range of ∆E analysed. For this reason, we
have chosen ∆E = ∆ for all simulations. To test this choice, we have also considered higher-order
moments, namely the root mean square (rms) of the filtered velocity, and we have analysed the
convergence in relation to the DNS results. In Figure 6, we show the rms of the filtered velocity,

defined as rms(Ũ) =

(Ũ − Ũ)2. The different profiles do not collapse and the LFMDF is in better

agreement than LES with DNS, when the volume size is ∆E = ∆, confirming the validity of the
overall method in the fluid limit. It is worth noting that the discrepancy between Eulerian LES and
LFMDF is not related to some incongruity, since these two models are not fully consistent at the
Reynolds-stress level. As suggested in previous studies,38 an even better convergence to DNS would
be probably possible with smaller ∆E and much higher N . However, this choice would increase the
computational cost considerably, thus making the model not relevant application-wise.

FIG. 4. Near-wall fluid velocity streaks. Low-speed (high-speed) streaks are rendered using colored contours of negative
(positive) streamwise fluctuating velocity on a horizontal plane at z+= 10 from the wall. Panel (a) refers to the Eulerian LES,
performed with no SGS model for the particles and with Npc= 40; panel (b) refers to the LFMDF simulation.
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FIG. 5. Mean velocity of the filtered streamwise velocity at varying ∆E. Time window for averaging is ∆t+= 3000 with
Npc= 40 particle per cell.

B. Model assessment with inertial particles

In this section, we validate the LFMDF approach for the case of inertial particles via comparative
assessment against DNS data. In particular, first, we exploit DNS to determine the range of empirical
constants appearing in the LFMDF sub-model (a priori assessment). Second, we compare the predic-
tions of the LFMDF-based simulations with the statistics provided by DNS, which is regarded here
as the reference numerical experiment (a posteriori assessment). In the latter case, comparison is also
made with the statistics provided by LES when no particle SGS model is used, in order to point out
the impact of the proposed stochastic model on statistics. As mentioned, one of the main difficulties
of modelling inertial particle dynamics in LES is to capture the preferential concentration.17,26 Hence,
the primary observable considered for the comparative assessment is the instantaneous particle num-
ber density distribution along the wall-normal direction, which is a macroscopic manifestation of the
preferential concentration. Such comparison is particularly severe since any error associated with the
proposed particle SGS model will inevitably sum up over time and may thus lead to significant devi-
ations in the final density distribution (we remark here that all LES/LFMDF simulations are carried
out with a rather large coarsening factor, CF = 8 with respect to DNS).

Figure 7 shows the particle number density profiles along the wall-normal coordinate for
different Stokes numbers. Two different formulations of the proposed LFMDF model are tested:
The simplified LFMDF1 formulation and the complete LFMDF2 formulation (see Sec. III D). In
both formulations, we use C0 = 2.1, Cϵ = 1, and β = 0.8. The LFMDF1 predictions (dark magenta
profiles) deviate substantially from the reference DNS results (red profiles) for all Stokes numbers:
This is due, of course, to the assumption of isotropic velocity fluctuations on which the LFMDF1
formulation is based. On the other hand, the LFMDF2 formulation, which has a more complete
diffusion term, leads to improved predictions (black profiles), especially for the two larger Stokes
numbers: St = 5, panel (b), and St = 25, panel (c). Discrepancies, however, are still evident and lead
to a significant overestimation (underestimation) of particle accumulation in the viscous sub-layer

FIG. 6. Root mean square of the filtered streamwise velocity.
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FIG. 7. Comparison of particle number density distributions predicted by two different particle SGS model formulations:
Simplified stochastic model (LFMDF1, purple triangledown) and complete stochastic model (LFMDF2, black triangle). See
also Sec. III D. Other symbols: ”red square” DNS, “blue circle” LES without particle SGS model. Panels: (a) St= 1 particles,
(b) St= 5 particles, (c) St= 25 particles. Profiles are computed at t+= 2130 after particle injection into the flow.

for the smaller St = 1 (large St = 25) particles, as shown in Figs. 7(a) and 7(c), respectively. The
main reasons are that the present model does not have all the necessary viscous terms needed to
capture properly the flow dynamics in the viscous sublayer,36–41,54 and also that the closure of the
LMFDF2 formulation involves two parameters, C0 and Cϵ, which are known to be quite sensitive
to the characteristic features of both the turbulent flow and the numerical approach. For instance,
turbulent theory gives the value C0 = 2.1 for stochastic models in homogeneous flows,42 whereas
numerical simulations of wall-bounded flows in the RANS framework suggest to set C0 = 3.5.59

Since we are mostly interested in the near-wall statistics, in the following we shall limit ourselves
to the complete model LFMDF2 and neglect the isotropic LFMDF1 formulation, which underes-
timates the particle number density in the wall-normal direction and is not sensitive to the Stokes
number (hence it cannot take into account inertial effects on particle dispersion60). Nevertheless, we
remark here that the LFMDF1 formulation is much simpler than the complete model and appears
to work reasonably well outside of the viscous sublayer in the case of small Stokes numbers.
Therefore, its use could be considered to study particle dynamics far from the wall or in unbounded
flows (e.g., jets and mixing layers).

In this study, we exploit DNS to obtain a priori estimates of the two model constants. We
remark that our purpose is not to find optimal values for C0 and Cϵ but rather to quantify the sensi-
tivity of the model to a change in the value of these constants. Figure 8 shows the number density
profiles obtained at varying C0 (while keeping Cϵ constant and equal to 1). This figure shows that C0
has a significant influence on the particle wall-normal accumulation only for large-inertia particles
(high Stokes numbers) and suggests that C0 = 3.5 provides the best predictions over the range of
Stokes numbers considered here. This result is in agreement with Refs. 53 and 59. We performed
a similar analysis to estimate Cϵ while keeping C0 constant (and equal to 3.5). Results are shown
in Fig. 9 and demonstrate that Cϵ affects the particle spatial distribution at all Stokes numbers. In
particular, we observe higher accumulation of particles at the wall for smaller values of Cϵ. This
finding indicates that the diffusion term is at least as important as the drift term in the present flow
configuration. Based on this comparison, we select Cϵ = 0.1 to calibrate the LFMDF model.

A combined analysis of Figs. 8 and 9 indicates that, regardless of the value considered for C0 and
Cϵ, the near-wall volume concentration of small inertia particles (represented by the St = 1 particles
in this study) is always overestimated by the LFMDF2 model, whereas the opposite occurred with the

FIG. 8. Effect of the parameter C0 on the particle number density along the wall-normal coordinate (a-priori estimate). Red
symbols (red square) refer to the DNS result, all other symbols refer to LES results obtained with the LFMDF2 model. Panels:
(a) St= 1, (b) St= 5, (c) St= 25. Profiles are computed at t+= 2130 after particle injection.
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FIG. 9. Effect of the parameter Cϵ on the particle number density along the wall-normal coordinate (a-priori estimate). Red
symbols (red square) refer to the DNS result, all other symbols refer to LES results obtained with the LFMDF2 model. Panels:
(a) St= 1, (b) St= 5, (c) St= 25. Profiles are computed at t+= 2130 after particle injection.

LFMDF1 model (see Fig. 7(a)). For such particles, therefore, the critical modelling issue in order to
retrieve the correct physical behaviour seems to be the closure of the diffusion term. We remark here
that particles with small inertia are subject to a weaker turbophoretic wallward drift and tend to remain
more homogeneously distributed within the flow domain.23,46 As a consequence, the instantaneous
Eulerian statistics that can be extracted from local particle ensemble averages may exhibit significant
statistical errors in the near-wall region, where the control volumes to which averaging is applied
become smaller and smaller. This source of error becomes less important as particle inertia increases,
namely as particle accumulation in the near-wall region increases with St.

The key quantity for a correct evaluation of the diffusion term is the kinetic energy ratio
kSGS/kSGS. If kSGS is computed from Eq. (24), which implies Lagrangian ensemble averaging, then
it will be affected by the resulting statistical error. To improve the model, we propose a new
formulation to evaluate kSGS, which is slightly different from Eq. (23),

kSGS = τ(Us, i,Us, i) = 1
2

3
i=1

U2
s, i − (Us, i)2


. (40)

In the limit of Npc → ∞, Eq. (40) is equivalent to Eq. (24) but is expected to decrease the variance
of the model estimations for finite values of Npc at small Stokes numbers. In the following, results
for the St = 1 particles refer to calculations performed using this new formulation, unless otherwise
stated. In particular, Fig. 10 shows the comparison of the LFMDF results for the particle number
density. For completeness, also the LES results without the particle SGS model are included. The
overshoot of the particle accumulation at the wall for St = 1 is strongly reduced with respect to the
predictions reported in Figs. 8 and 9, and there is a nearly perfect match with the DNS profile for
the intermediate-inertia particles (St = 5, Fig. 10(b)). As expected, the wall accumulation at large
Stokes number is unaffected. We remark that the values of the particle number density within a
distance of few wall units from the wall are very noisy even in DNS:61 This implies that the only
relevant information one can extract from the viscous sublayer portion of the profiles shown in
Fig. 10 is just the trend in model performance at varying particle inertia.

To provide a phenomenological perspective to our discussion, we complement the statistical
description of the particle wall-normal distribution with the analysis of particle clustering in the
near-wall region. As demonstrated in previous studies (see Refs. 23, 24, and 46 and references

FIG. 10. Comparativeassessmentof theLFMDF2modelwithEq. (40):Predictionsof the instantaneousparticlenumberdensity
at varying Stokes numbers (black triangle) are compared with DNS results (red square) and with LES results with no particle
SGS model (blue circle). Panels: (a) St= 1, (b) St= 5, (c) St= 25. Profiles are computed at t+= 2130 after particle injection.
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therein, for a review), the tendency that inertial particles have to form clusters is crucial to develop
peaks of particle concentration within the flow. Therefore, a reliable particle SGS model should be
able to capture (in a statistical sense) also these phenomena. To perform this analysis, we quantify
particle clusters by means of Voronoï diagrams, which represent an efficient and robust tool to
diagnose and quantify clustering.62 One Voronoï cell is defined as the ensemble of points that are
closer to a given particle than to any other particle in the flow: The area of a Voronoï cell is therefore
the inverse of the local particle number density. In addition, Voronoï areas are naturally evaluated
around each particle and, differently from standard box counting methods, provide a direct measure
of particle preferential concentration at inter-particle length scale.62

An example of Voronoï diagram for the present channel flow configuration is shown in Fig. 11,
which focuses on the instantaneous distribution of the St = 5 particles within a wall-parallel fluid
slab of thickness 1 ≤ z+ ≤ 5. Only a portion of the x − y plane is shown to highlight the presence
of the well-known particle streaks. Compared to the visualisation provided by DNS (Fig. 11(a)),
both LES results (with no particle SGS model in Fig. 11(b); with the LMFDF model in Fig. 11(c),
respectively) show broader particle streaks and wider inter-cluster spacing. Clusters and voids are

FIG. 11. Voronoï tessellation for the St= 5 particles on a wall-parallel fluid slab (1 ≤ z+ ≤ 5) at time t+= 2130 after particle
injection. Particle clusters are in dark gray, voids are in light gray. Panels: (a) DNS, (b) LES with no particle SGS model, (c)
LES with the calibrated LMFDF2 model.
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FIG. 12. PDF of normalized Voronoï areas (V = A/ Ā) of St= 5 particles on a wall-parallel fluid slab located at a distance
1 ≤ z+ ≤ 5 from the wall.

identified by comparing the PDF of Voronoï areas obtained from the simulations to that of a syn-
thetic random Poisson process, whose shape is well approximated by a Gamma distribution.62 This
comparison is shown in Fig. 12, where the Voronoï areas are normalized using the average Voronoï
area, Ā (equivalent to the inverse of the mean particle number density), independent of the spatial
organization of the particles.

As found previously,62 in the case of heavy particles, the PDFs clearly depart from the Poisson
distribution, with higher probability of finding depleted regions (large Voronoï areas) and concen-
trated regions (small Voronoï areas), a typical signature of the preferential concentration. In the
present study, the inclusion of the LMFDF model into the LES has little effect on the prediction
of concentrated regions, and the first cross-over point, Vc, representing the threshold value below
which Voronoï areas are considered to belong to a cluster, occurs at slightly larger values than in
DNS. The model improves the prediction of depleted regions even if the second cross-over point,
Vv, representing the threshold value above which Voronoï areas are considered to belong to a void is
always well predicted.

To complete the LFMDF model assessment, in Fig. 13, we show the statistics of the root
mean square of the particle velocity. In particular, we focus on the streamwise and wall-normal
components, which are the most interesting as far as the particle wall transport is concerned. It can
be seen that the calibrated LFMDF improves the LES prediction for all Stokes numbers, with just
small (yet persistent) discrepancies for the wall-normal rms of the St = 1 particles (Fig. 13(d)). This
explains the peak of concentration observed for these particles in the number density statistics.

FIG. 13. Comparative assessment of the LFMDF2 model: The prediction of the particle velocity rms at varying Stokes
number (black triangle) is compared with DNS results (red solid line) and with LES results with no particle SGS model (blue
circle). Panels: (a), (d) St= 1, (b), (e) St= 5, (c)-(f) St= 25; (a)-(c) streamwise component, (d)-(f) wall-normal component.
Statistics are obtained averaging over a time window ∆t+= 1800.
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VI. DISCUSSION AND CONCLUSIONS

In this work, we have assessed the performance of a new FDF approach to the simulation
of turbulent dispersed flows. The approach is derived from RANS-based models that have been
successfully applied to the simulation of reactive and polydispersed flows.10,42,43,55 We have adopted
a Lagrangian Filtered Mass Density Function (LFMDF) model that provides the Lagrangian prob-
ability density function of the SGS particle variables and of the fluid velocity seen by the particles.
Important features of this method are that (1) the approach is Lagrangian and (2) a mass density
function is considered, as done in compressible flows. The exact transport equation for the LFMDF
has been presented, and a modeled transport equation for the filtered density function has been
considered using a closure strategy inspired by PDF methods. Specifically, two different formula-
tions have been proposed, which differ in the treatment of the SGS scales. The simpler formulation,
which assumes isotropic flow conditions, appears to work reasonably well away from the wall and
for small-Stokes-number particles. The complete formulation, which accounts for flow anisotropy,
works better close to the wall and with intermediate- to large-Stokes-number particles.

The modeled LFMDF transport equation has been solved numerically using a Lagrangian Monte
Carlo scheme and considering a set of equivalent stochastic differential equations. These equations
have been discretized with an unconditionally stable numerical scheme based on the analytical solu-
tion that the equations admit with constant coefficients. This scheme is the natural extension of the
one developed in the context of RANS simulations and is the key ingredient for the treatment of
multi-scale problems. A turbulent channel flow at shear Reynolds number Reτ = 300 based on the
channel half-height has been simulated and the results yielded by the LFMDF method in conjunc-
tion with LES have been compared with those provided by large-eddy simulations in which no SGS
model is included in the particle equations. To provide a numerical experiment as reference, results
from DNS of the same flow configuration have been considered as well. It is important to remark
here that the Reynolds number effects on the considered statistics are expected to be marginal up to
Reτ ≃ 900,28 so that present results can be considered reliable below such threshold value.

The convergence of the Monte Carlo simulations and the consistency of the LFMDF formu-
lation in the fluid-tracer limit have been assessed by comparing the particle number density and
low-order velocity moments with those obtained from the purely Eulerian framework. The good
agreement of duplicate (Eulerian and Lagrangian) fields demonstrates that the model can safely
be applied in the case of particles with small or negligible inertia. We were also able to quantify
the effect that the number of particles needed to compute the statistical observables of interest
(especially the number density distribution) may have.

The a priori assessment made against DNS allowed us to calibrate the values of the model coef-
ficients for the specific channel flow parameters considered in the present study. Even without dy-
namic calibration of the coefficients, the a posteriori assessment made against DNS and no-model
LES shows improved predictions of particle statistics (e.g., particle number density along the
wall-normal coordinate and particle velocity fluctuations), especially at intermediate Stokes num-
bers. In spite of this, however, it should be noted that the LFMDF is a purely statistical method and
therefore cannot recover much as far as turbulent coherent structures are concerned.

In our opinion, the LFMDF formulation considered in this paper provides a rigorous and
physically sound approach to the large-eddy simulation of turbulent dispersed flows. Compared to
the existing stochastic models, it offers a sound theoretical framework in which the basic exact
equations for the particle phase are approximated by Lagrangian closures without requiring ad
hoc term. In particular, the approach ensures consistency (up to second-order) among the moments
extracted from the stochastic particle system in the tracer-particle limit, a property that not all
stochastic models and heuristic approaches possess. Moments consistency in the tracer limit is
one of the requirements set forth in the recent analysis of the formulation of stochastic models
for single- and two-phase flows.52 Compared to structural subgrid scale models for particles, the
main advantage of the LFMDF approach is its ability to provide reasonably accurate predictions
regardless of the grid coarseness and of the flow Reynolds number: approximate deconvolution is
known to worsen its performance on coarse grids at high Reynolds numbers, when the range of
unresolved scales that cannot be reconstructed by deconvolution widens;31 fractal interpolation is
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inaccurate at low Reynolds numbers, when the fluid velocity changes relatively smoothly in the
domain and therefore interpolation becomes inefficient since there is no fractal form to be copied.26

The discretized equations of the LFMDF model are also very easy to code and require incremental
computational costs compared to LES with no SGS model. While we believe it should be used as
the natural framework to develop Lagrangian sub-grid models for the dispersed phase, we are also
aware that there is room for further improving the quality and predictive capabilities of the model.
The first step would be the development of a dynamic procedure to determine the optimal values of
the model coefficients, possibly as a function of the particle Stokes number. Another improvement
could be represented by the implementation of higher order closures in the Langevin equation
for the fluid velocity seen by the particles. Finally, it would be very useful to implement low-Re
corrections to better capture the near-wall behaviour of the statistics: This should improve the model
predictions at relatively low particle inertia (e.g., St = 1 in the present study).
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APPENDIX: WEAK FIRST-ORDER NUMERICAL SCHEME

The analytical solution to the Eqs. (25)-(27) can be obtained with constant coefficients, re-
sorting to Itô’s calculus in combination with the method of the variation of constants. Let us
consider the fluid velocity seen by the particles, for instance. One seeks a solution of the form
Us, i(t) = Hi(t) exp(−t/Ti), where Hi(t) is a stochastic process defined by (indicating T∗L, i with Ti for
ease of notation),

dHi(t) = exp(t/Ti)[Ci dt + B̌i dWi(t)], (A1)

that is, by integration on a time interval [t0, t] (∆t = t − t0),

Us, i(t) =Us, i(t0) exp(−∆t/Ti) + Ci Ti [1 − exp(−∆t/Ti)]
+ B̌i exp(−t/Ti)

 t

t0

exp(s/Ti) dWi(s), (A2)

TABLE IV. Analytical solutions to system (27) for time-independent coefficients.

xp, i(t)= xp, i(t0)+Up, i(t0)τp[1−exp(−∆t/τp)]+Us, i(t0) θi{Ti[1−exp(−∆t/Ti)]
+τp[exp(−∆t/τp)−1]}+ [Ci Ti]{∆t −τp[1−exp(−∆t/τp)]−θi(Ti[1−exp(−∆t/Ti)]
+τp[exp(−∆t/τp)−1])}+Ωi(t), (A3)

with θi =Ti/(Ti−τp),
Up, i(t)=Up, i(t0)exp(−∆t/τp)+Us, i(t0) θi[exp(−∆t/Ti)−exp(−∆t/τp)]

+ [Ci Ti]{[1−exp(−∆t/τp)]−θi[exp(−∆t/Ti)−exp(−∆t/τp)]}+Γi(t), (A4)

Us, i(t)=Us, i(t0)exp(−∆t/Ti)+Ci Ti[1−exp(−∆t/Ti)]+γi(t). (A5)

The stochastic integrals γi(t), Γi(t), Ωi(t) are given by

γi(t)= B̌iexp(−t/Ti)
 t
t0

exp(s/Ti) dWi(s), (A6)

Γi(t)= 1
τp

exp(−t/τp)
 t
t0

exp(s/τp)γi(s) ds, (A7)

Ωi(t)=
 t
t0
Γi(s) ds . (A8)

By resorting to stochastic integration by parts, γi(t), Γi(t), Ωi(t) can be written

γi(t)= B̌i exp(−t/Ti) I1, i, (A9)

Γi(t)= θi B̌i [exp(−t/Ti) I1, i−exp(−t/τp) I2, i], (A10)

Ωi(t)= θi B̌i {(Ti−τp) I3, i− [Tiexp(−t/Ti) I1, i−τpexp(−t/τp) I2, i]}, (A11)

with I1, i =
 t
t0

exp(s/Ti) dWi(s), I2, i =
 t
t0

exp(s/τp) dWi(s), I3, i =
 t
t0
dWi(s).
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TABLE V. Derivation of the covariance matrix for constant coefficients.

⟨γ2
i(t)⟩= B̌2

i
Ti
2 [1−exp(−2∆t/Ti)], where B̌2

i = B
2
ii, (A12)

⟨Γ2
i (t)⟩= B̌2

i θ
2
i


Ti
2 [1−exp(−2∆t/Ti)]− 2τpTi

Ti+τp
[1−exp(−∆t/Ti)exp(−∆t/τp)]

+
τp

2 [1−exp(−2∆t/τp)]

, (A13)

1
B̌2

i
θ2
i

⟨Ω2
i(t)⟩= (Ti−τp)2∆t + T 3

i
2 [1−exp(−2∆t/Ti)]+ τ3

p

2 [1−exp(−2∆t/τp)]
− 2T 2

i (Ti−τp)[1−exp(−∆t/Ti)]+2τ2
p(Ti−τp)[1−exp(−∆t/τp)]

− 2
T 2
i τ

2
p

Ti+τp
[1−exp(−∆t/Ti)exp(−∆t/τp)], (A14)

⟨γi(t) Γi(t)⟩= B̌2
i θi Ti


1
2 [1−exp(−2∆t/Ti)]− τp

Ti+τp
[1−exp(−∆t/Ti)exp(−∆t/τp)]


,

⟨γi(t)Ωi(t)⟩= B̌2
i θi Ti

(Ti−τp)[1−exp(−∆t/Ti)]− Ti
2 [1−exp(−2∆t/Ti)]

+
τ2
p

Ti+τp
[1−exp(−∆t/Ti)exp(−∆t/τp)]


, (A15)

1
B̌2

i
θ2
i

⟨Γi(t)Ωi(t)⟩= (Ti−τp){Ti[1−exp(−∆t/Ti)]−τp[1−exp(−∆t/τp)]}

− T 2
i

2 [1−exp(−2∆t/Ti)]− τ2
p

2 [1−exp(−2∆t/τp)]
+Tiτp [1−exp(−∆t/Ti)exp(−∆t/τp)]. (A16)

The stochastic integrals γn
i , Ω

n
i , Γ

n
i are simulated by

γn
i = P

i
11 G1, i,

Ωn
i = P

i
21 G1, i+P

i
22 G2, i,

Γni = P
i
31 G1, i+P

i
32 G2, i+P

i
33 G3, i,

where G1, i, G2, i, G3, i are independent N (0,1) random variables.

The coefficients Pi
11, P

i
21, P

i
22, P

i
31, P

i
32, P

i
33 are defined as

Pi
11=


⟨(γn

i )2⟩,

Pi
21=

⟨Ωn
i
γn
i
⟩

⟨(γn
i
)2⟩
, Pi

22=


⟨(Ωn

i )2⟩−
⟨Ωn

i
γn
i
⟩2

⟨(γn
i
)2⟩ ,

Pi
31=

⟨Γn
i
γn
i
⟩

⟨(γn
i
)2⟩
, Pi

32=
1

Pi
22
(⟨Ωn

i Γ
n
i ⟩−Pi

21P
i
31), Pi

33=


⟨(Γni )2⟩− (Pi

31)2− (Pi
32)2).

where B̌i = Bii since Bi j is a diagonal matrix. The derivation of the weak first-order scheme is
now rather straightforward, since the analytical solutions to Eqs. (25)-(27) with constant coefficients
have been already calculated. Indeed, the Euler scheme (which is a weak scheme of order 1) is
simply obtained by freezing the coefficients at the beginning of the time interval ∆t = [tn, tn+1]. Let
Zn
i and Zn+1

i be the approximated values of Zi(t) at time tn and tn+1, respectively. The Euler scheme
is then simply written by using the expression reported in Table IV and expressing the stochastic
integrals through the Choleski algorithm, as reported in Table V. The second-order scheme is based
on a prediction-correction algorithm, in which the prediction step is the first-order scheme of equa-
tions (35)-(37) and the corrector step is generated by a Taylor expansion under the assumption that
the acceleration terms vary linearly with time.55
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