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Turbulent flows laden with large, deformable drops are ubiquitous in nature and in a
wide range of industrial processes. Prediction of the interactions between drops, which
deform under the action of turbulence, exchange momentum via surface tension, and that
can also exchange heat or mass, are complicated due to the wide range of scales involved:
from the largest scales of the flow, down to the Kolmogorov scales of turbulence, and
further down to the molecular scale of the interface. Due to this wide range of scales,
the numerical description of these flows is challenging and requires robust and accurate
numerical schemes that are able to capture both the turbulence characteristics and the
dynamics of ever-moving and deforming interfaces including their topological changes
(i.e., coalescence and breakage). In the past decades, various numerical methods have
been proposed for simulating two-phase flows, from interface-tracking methods, where the
interface is explicitly tracked with the use of marker points to interface-capturing methods,
where the interface is identified as the isovalue of a color/marker function. Phase-field
methods belong to the category of interface-capturing methods, and have emerged as
promising approaches to simulate complex two-phase flows. In phase-field methods, the
transport equation to describe the drop motion is obtained from first thermodynamics
principles, and phenomena acting at the interface scale can be conveniently modeled.
Although in realistic case scenarios, the physical thickness of the interface cannot be
directly simulated, this family of methods offers desirable properties that have attracted
the interest of researchers in recent years. In this work, we describe the fundamentals of
the phase-field modeling associated with the direct numerical simulation of turbulence
in the context of drop-laden flows. We discuss the potentials of the phase-field method
with reference to breakage and coalescence phenomena, and to the corresponding drop
size distribution; we examine how to model surface tension changes due to surfactant
distribution, and we outline the framework to model heat and mass transfer fluxes. Finally,
we present our perspectives for future developments of phase-field modeling of drop-laden
turbulent flows in the context of the current available literature.

DOI: 10.1103/PhysRevFluids.8.090501

I. INTRODUCTION

Turbulent multiphase flows are of great interest because of their importance in many natural
and industrial applications, including rain formation [1], CO2 absorption by breaking waves [2–4],
hydrocarbon separation and drop/bubble-laden turbulent flows [5–9], or even host-to-host airborne
disease transmission [10–12]. In all these phenomena, the dynamics of the interface, which can be
locally influenced by the presence of surfactants and/or temperature gradients, crucially influences
the entire process. Accurate experiments for multiphase flows are very complicated [13–15], and
reliable simulations require sophisticated methods able to capture the topology of the different
phases and their dynamics [5,7,16–18]. Nevertheless, simulations constitute an essential tool to
investigate the physics of multiphase turbulence and are becoming increasingly popular in recent
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FIG. 1. Turbulent multiphase flows are characterized by a physics acting on a wide range of scales: from
the largest integral scale of the problem (left side), down to the Kolmogorov scale (first close-up view) of
turbulence and further down to the molecular scale of the interface (second close-up view). Depending on the
range of resolved scales, we can distinguish among different approaches. We consider here interface-resolved
simulation methods where interfacial structures (i.e., drops, bubbles, and ligaments) with a size similar to the
flow field scales are resolved. In this type of simulations, phenomena occurring at the molecular scale of the
interface cannot be directly resolved. Besides, it is also worth observing that capturing these phenomena require
a different mathematical approach as at these small scales the continuum hypothesis breakdowns.

years: numerical simulations grant access to detailed space- and time-resolved information on the
flow field, on the phases morphology (e.g., drops deformation) and on other quantities of interest
(e.g., surfactant concentration, temperature fields).

Capturing the dynamics of a turbulent multiphase flow on a discretized temporal and spatial
grid poses a further challenge, because of the huge scale separation that characterizes these kind
of flows: scales range from the largest flow scale (of the order of the domain size, see Fig. 1, left
side), down to the Kolmogorov scale of turbulence (first gray vertical stripe, from left to right, of
Fig. 1) and further down to the molecular scale of the interface (see Fig. 1, right side). This has
direct consequences on the representation of the physics of the system since there is a limit on
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spatial and temporal resolution one can reasonably afford [19]. In particular, as done for single-
phase turbulence [20–22], it would be highly desirable to perform simulations in which all scales
are directly resolved, without any model. In fact, this approach cannot be applied to multiphase
flows, since the scale separation between the largest flow scale and the smallest interfacial scale
is about eight to nine orders of magnitude, while the most recent high-performance computing
infrastructures (HPC), even exploiting the most recent advances in GPU computing [23], can handle
a maximum scale separation of about three to four orders of magnitude. In addition, although most of
the numerical approaches for the simulation of multiphase flows rely on the continuum hypothesis,
as soon as length scales become smaller and smaller, the continuum hypothesis breaks down and
molecular-scale dynamics must be considered [16,24–26].

The impossibility to resolve all the length scales using a unique set of governing equations has
led to the development of different families of computational methods, which can be classified
on the basis of the range of resolved scales and the characteristic size of the interfacial structures
(e.g., drop, bubble, ligament) [5,7]. Here, we focus on the class of the interface-resolved methods,
see Fig. 1. In this type of methods, the relevant interfacial structures (drops hereinafter without loss
of generality) have a size comparable to that of the flow scales that are directly resolved, e.g., in most
of the cases via direct numerical simulations (DNS). Interface-resolved methods can be divided into
two big families: interface-tracking and interface-capturing methods. The fundamental difference
lies in the definition of the interface: interface-tracking approaches explicitly follow the position of
the interface with Lagrangian markers or interface-fitted meshes, while interface-capturing methods,
the family to which the phase-field methods belong, define the interface position as a prescribed
value of a color function or phase-concentration field. The definition of the interface has direct
consequences on the simulation of topological changes of the interface (as, for instance, breaking
and merging): interface-tracking methods require explicit models to manage the connectivity of
Lagrangian markers or meshes, while interface-capturing methods handle implicitly topological
modifications of the interface.

The phase-field methods are a class of mathematical models built upon the pioneering works
of van der Waals [27], Ginzburg and Landau [28,29], and Cahn and Hilliard [30–33]. These
methods are based on the definition of an Eulerian field, the phase-field φ, which is a function
of position and time, to describe the interface position between different regions (or states) of
the domain. These regions can be representative of different gas/liquid phases, types of material
microstructure, solid/liquid material states, fractured/nonfractured regions, depending also on the
considered application. The interface between two regions is described by a smooth, but highly
localized, change of the phase variable between two fixed values. For computational reasons, the
thickness of this thin interfacial layer is typically larger than the physical width of an actual interface.
Indeed, the thickness of this thin interfacial layer is used as a parameter for numerical convenience
and it is usually set as small as possible but compatibly with the computational resources available.
As mentioned above, the field of applications of the phase-field method is vast and cannot be detailed
in a single article. Examples of applications of the phase-field method are: multiphase flows (object
of this work) [7,18,34–36], solid-liquid transformations (e.g., phase-change materials, ice-melting)
[37–39], modeling of active matter and systems [40–42], microstructure and solidification [43–47],
fracture of materials [48–50], study of metallic foams [51,52] as well as many others [53,54]. The
reader is referred to previous reviews [36,43,45,55,56] for specific information on the phase-field
methods and their applications.

Phase-field methods have emerged as promising approaches for simulating two-phase flows
and, especially in the past decade, they gained popularity thanks to the availability of improved
formulations that resolve some drawbacks of the original formulations. The first work in which
the phase-field method is proposed as a possible approach for simulating two-phase flow traces
back to the pioneering work of Jacqmin [57], who used the phase-field method to study the
Rayleigh-Taylor instability. This work laid the foundation for the use of the phase-field method
in multiphase flow simulations. Building on top of this seminal work, different phase-field method
formulations and numerical techniques, either based on the Cahn-Hilliard equation or Allen-Cahn
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equation have been developed and used to analyze different flow instances: drop-laden turbulent
flows [58–63], bubble-laden turbulent flows [58,64], emulsions [65,66], two or multilayer turbulent
flows [67–69], microdevices [70], spinodal decomposition [71–74], drop-substrates interactions
and wetting phenomena [75–77], Rayleigh-Taylor and Rayleigh-Bénard configurations [57,78,79].
Going beyond immiscible two-phase flows, the phase-field method has been also used to describe
more complex types of flows. For the description of surfactant-laden interfaces, extensions of the
phase-field method, which involve the use of additional scalar functions, have been proposed for
soluble surfactants [80–83]. The transport of passive/active scalars, like temperature or species
concentration, in multiphase turbulence can be easily accounted for in the context of phase-field
methods [79,84,85]. Recently, ad hoc formulations have been proposed for the study of phase
change problems, from solid-liquid [38,39] to evaporation/boiling phenomena [86–88]. Finally,
phase-field methods have been also used to describe the dynamics of solid finite size particles [89]
or particle-interface interactions [90,91].

The paper is organized as follows: in Sec. II, we present the fundamentals of the phase-field
methods briefly reviewing the governing equations and different formulations available. In Sec. III,
we describe the coupling with the Navier-Stokes equations detailing two important aspects of drop-
and bubble-laden turbulent flows: the modeling of surface tension forces and the handling of density
and viscosity contrasts. In Sec. IV, we describe the capabilities and limitations of the phase-field
method in describing multiphase turbulence. Then, in Sec. V, we describe the challenges associated
with the description of more complex flows which involve the transfer of heat, mass and chemical
compounds (e.g., surfactants). Finally, in Sec. VI, we discuss the future perspectives and we draw
the conclusions.

II. PHASE-FIELD MODELING OF INTERFACIAL PHENOMENA

Phase-field methods belong to the class of interface-capturing methods. These methods rely on
the use of a color function, in this case the phase-field φ, to define the instantaneous interface
position. The phase field is transported by a proper governing equation [30–32,92,93] and can
be exploited to compute different quantities of interest of two-phase flows, as for instance the
local interface curvature [92,94], thermophysical properties [36,63,64,95,96], signed distance from
the interface [91], other geometric properties of the interface [97], etc. With respect to other
commonly employed interface-capturing methods like volume-of-fluid methods [98], in phase-field
methods, the color function does not abruptly change moving from one phase to another, but instead
undergoes a continuous transition in a thin interfacial layer [99,100]. This property of phase-field
methods offers some unique advantages that range from an accurate computation of the interface
curvature to ease of coupling with more complex physics (e.g., surfactant-laden interfaces [83],
solid particles [101], contact-angle dynamics [102]).

Phase-field methods are traditionally based on Cahn-Hilliard [30–32] or Allen-Cahn [33] equa-
tions, Fig. 2. These two governing equations are obtained as gradient flows of a Ginzburg-Landau
free-energy functional, which can be defined as follows:

F[φ,∇φ] =
∫

�

(
(φ2 − 1)2

4︸ ︷︷ ︸
f0

+ ε2

2
|∇φ|2︸ ︷︷ ︸
fmix

)
d�, (1)

where � is the domain considered, ε is a capillary width that controls the extension of the transition
layer, and φ is the phase field (equal to φ = ±1 in the two pure phases) [103]. The functional
is composed by the sum of two contributions, the double-well potential, f0, accounting for the
separation of the two phases (phobic behavior) and the mixing term, fmix, accounting for the energy
stored at the interface (i.e., surface tension). From the free-energy functional, the chemical potential
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FIG. 2. Phase-field method formulations available for the description of multiphase flows at a glance. We
can distinguish between formulations that rely on the Cahn-Hilliard equation—a conservative fourth-order
equation—and Allen-Cahn equation—a second-order equation that in its original form is not conservative.
For Cahn-Hilliard-based phase-field methods, in addition to the standard formulation, mass-conservation
improved alternative approaches are available: (i) profile- and flux-corrected formulations; (ii) approaches that
employ variable mobility coefficients; (iii) use of dual grid resolution methods and adaptive mesh refinement;
(iv) mass-redistribution algorithms; (v) use of modified free-energy functionals. For Allen-Cahn-based phase-
field methods, different methods are available to conserve the phase-field variable: (i) use of time-dependent
Lagrangian multipliers; (ii) use of space- and time-dependent Lagrangian multipliers; (iii) conservative version
of the Allen-Cahn equation.

can be obtained as the functional derivative:

μφ = δF[φ,∇φ]

δφ
= f ′

0 − ε2∇2φ, (2)

where f ′
o denotes the derivative of f0 with respect to φ. From the chemical potential expression,

we can obtain the equilibrium profile for a planar interface by solving the equation ∇μφ = 0. The
solution for a planar interface is

φeq = tanh

(
s√
2ε

)
, (3)

where s is the coordinate normal to the interface. From Eq. (2), the Cahn-Hilliard and Allen-Cahn
equations can be derived as the H−1(�) and L2(�) gradient flows of the free-energy functional,
respectively. In the absence of flow-field advection, the Cahn-Hilliard equation reads as follows:

∂φ

∂t
= ∇2( f ′

0 − ε2∇2φ), (4)

while the Allen-Cahn equation is

∂φ

∂t
= ε2∇2φ − f ′

0. (5)

090501-5



ROCCON, ZONTA, AND SOLDATI

Here, two important characteristics that make these two equations different can be appreciated. First,
we observe that the Cahn-Hilliard equation is a fourth-order partial differential equation, while the
Allen-Cahn equation is a second-order equation. Second, by imposing no-flux conditions at the
domain boundaries, Cahn-Hilliard equation leads to the conservation of the phase field, while the
Allen-Cahn equation does not. These two equations represent the building blocks of almost all
phase-field formulations. We can distinguish between two macroclasses of phase-field methods. In
the first class of phase-field methods, also known as energy-based phase-field methods, the phase
field is governed by a Cahn-Hilliard equation, a fourth-order equation that, as already mentioned,
satisfies global mass conservation. In the second class of phase-field methods, also known as second-
order phase-field methods, the phase-field is governed by an Allen-Cahn equation, a second-order
equation that in its original form does not satisfy global mass conservation, but that can be modified
so to fulfill this constraint. Before proceeding, it is important to remark that conservation of the
global mass does not guarantee the conservation of the individual mass of each phase [104,105].
For a detailed discussion of this point, the interested reader is referred to Appendix A. In the next
two sections, Cahn-Hilliard- and Allen-Cahn-based approaches will be discussed.

A. Cahn-Hilliard-based phase-field methods

This class of phase-field methods is based on the Cahn-Hilliard equation. Starting from the
original formulation of the Cahn-Hilliard equation and including the flow-field advection, we obtain
the following equation:

∂φ

∂t
+ u · ∇φ = M∇2( f ′

0 − ε2∇2φ), (6)

where f ′
o = φ3 − φ denotes the first derivative of f0 with respect to φ and M is the mobility

parameter. Expanding the right-hand side, we can observe that the equation is a fourth-order
equation and particular care should be taken in choosing the numerical method. Despite this, in
recent years, schemes for the solution of the Cahn-Hilliard equation have been developed employing
finite-difference [58,106], finite volume/element [107], Lattice-Boltzmann [108,109], and pseu-
dospectral methods [99,110]. Thanks to its conservative nature and robustness, the Cahn-Hilliard
equation has been widely used in simulating two-phase flow. In addition, given the smoothed nature
of the phase-field variable, the interface curvature can be accurately computed and thermophysical
properties can be assumed to be proportional to the phase field, avoiding the use of additional
smoothing kernels to smear out density and viscosity variations. Finally, since the Cahn-Hilliard
equation is obtained as the gradient flow of a free-energy functional, the hyperbolic tangent profile
across the transition layer comes directly from the energy minimization principle without the need
for reinitialization schemes.

The use of realistic parameters for the Cahn-Hilliard equation is however not feasible from a
computational point of view: since in numerical simulations the transition layer must be numerically
discretized, the adoption of realistic values for the capillary width ε—order of nanometers—is not
possible. This possibly leads to some drawbacks, usually referred to as shrinkage and coarsening
effects, when the method is applied to simulations of immiscible two-phase flows. To overcome
these issues, different strategies, which are briefly discussed in the following, have been developed.

A first possible strategy is the use of penalty fluxes qc, which further enforce the equilibrium
profile [105,111,112]:

∂φ

∂t
+ u · ∇φ = M∇2( f ′

0 − ε2∇2φ) + qc, (7)

Examples of this strategy are the profile-corrected [111] and flux-corrected formulations [112]. A
second strategy foresees the use of variable or degenerate mobility coefficients [113–116]. The
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Cahn-Hilliard equation is thus modified as follows:

∂φ

∂t
+ u · ∇φ = ∇ · [M(φ)∇( f ′

0 − ε2∇2φ)], (8)

where M(φ) = M0(1 − γ 2φ2) is the variable mobility and 0 � γ � 1 is a positive coefficient. For
γ = 1 (degenerate mobility), bulk diffusion vanishes in the bulk and diffusion occurs only in the
interfacial layer. A third possible approach involves the use of dual grid resolution methods [58,117],
which employ a finer grid resolution to resolve the Cahn-Hilliard equation compared to that used for
the velocity and pressure fields, or the use of adaptive mesh refinement algorithms, which locally
refine the mesh in the interfacial region [118–122]. Another viable solution foresees the use of
mass redistribution algorithms [123], which have been also used in the context of Allen-Cahn-based
models [124]:

∂φ

∂t
+ u · ∇φ = M∇2( f ′

0 − ε2∇2φ) + qm, (9)

where qm is the source term introduced to compensate for shrinkage and coarsening effects [123].
Finally, modifications to the free-energy functional [125,126] aimed at removing the curvature-
driven interface motion obtained when drops and bubbles with nonzero curvature are described can
be also adopted:

F[φ,∇φ] =
∫

�

(
(φ2 − 1)2

4
+ ε2

2
|∇φ|2 + fc

)
d�, (10)

where fc is the additional contribution included in the energy functional. Likewise, the resulting
chemical potential (obtained as the functional derivative of the energy functional reported above)
is also modified. These modifications resemble the procedure used to derive the conservative
Allen-Cahn equation by subtracting the curvature-driven motion [92,124,127] (see Appendix B for
details).

B. Allen-Cahn-based phase-field methods

This class of phase-field methods is based on the Allen-Cahn equation [33]. Starting from the
original formulation of the Allen-Cahn equation, Eq. (5), and including the flow-field advection, we
obtain

∂φ

∂t
+ u · ∇φ = −( f ′

0 − ε2∇2φ) = ε2∇2φ − f ′
0, (11)

where f ′
o denotes the first derivative of f0 with respect to φ. The Allen-Cahn equation is a

second-order equation that has been widely used in material science applications involving melting,
solidification, and state transformation changes [43,56]. Due to its nonconservative nature, the
Allen-Cahn equation cannot be directly used in this form for simulations of two-phase flows with
no phase change. However, compared to the Cahn-Hilliard equation, Allen-Cahn is simpler from a
mathematical point of view as it is a second-order equation for which a large number of fast and
efficient numerical methods are available, like finite difference [96,128,129] and Lattice-Boltzmann
schemes [130–135]. This has motivated researchers to modify the nature of this equation to make
it appealing for simulations of two-phase flows. A common strategy involves the use of local and
nonlocal corrections using Lagrangian multipliers [136–143] to enforce the conservation of the
phase field. For time-dependent multipliers, the Allen-Cahn equation is modified as follows:

∂φ

∂t
+ u · ∇φ = ε2∇2φ − f ′

0 + β(t ); β(t ) =
∫
�

f ′
0d�∫

�
d�

, (12)
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where β(t ) is the time-dependent Lagrangian multiplier (i.e., the nonlocal correction). For space-
and time-dependent Lagrangian multipliers the Allen-Cahn equation reads as follows:

∂φ

∂t
+ u · ∇φ = ε2∇2φ − f ′

0 +
√

2 f0β(t ); β(t ) =
∫
�

f ′
0d�∫

�

√
2 f0d�

, (13)

where the term
√

2 f0β(t ) is a space- and time-dependent Lagrangian multiplier. In general, the use
of space- and time-dependent Lagrangian multipliers provide better performance and allow for the
description of small interfacial features [138,144,145], which otherwise might dissolve in the bulk
[144].

Another viable approach involves the use of local modifications of the PDE [92,127,146]. In
particular, considering that the right-hand side of the Allen-Cahn equation describes a curvature-
driven motion (see Appendix B for details), Chiu and Lin [124] derived, following the idea of
subtracting the curvature-driven interfacial motion developed by Sun and Beckermann [92], the
conservative version of the Allen-Cahn equation [147]:

∂φ

∂t
+ ∇ · (uφ) = γ∇ ·

[(√
2ε∇φ − (1 − φ2)

∇φ

|∇φ|
)]

, (14)

where n = ∇φ/|∇φ| is the interface normal vector. On the right-hand side of Eq. (14), we can
recognize a diffusive term and a sharpening term, which is used to maintain the hyperbolic tangent
profile of the transition layer and to conserve the phase field. Interestingly, the right-hand side of
Eq. (14) matches, up to coefficients, the expression of the penalty-flux term in the profile- and
flux-corrected formulations of the phase-field methods [105,111,112] (see also Sec. II B). Note also
that Eq. (14) shares some similarities with the conservative level-set method [148–153], for example,
the use of a hyperbolic tangent kernel and of diffusive and sharpening fluxes to conserve the phase
indicator. The main difference between the two methods lies in the number of steps required to
compute the phase indicator: two for the conservative level-set method (advection and reinitializa-
tion) and one for the conservative phase-field method [93,124]. Finally, it is worth observing that
by removing the curvature-driven motion present in the original Allen-Cahn equation, the resulting
equation is not anymore the gradient flow of a free-energy functional and equation (14) can be
also derived from pure geometrical considerations [92,124,150]. In this case, the hyperbolic tangent
profile of the interface is an advected kernel rather than a solution obtained from thermodynamic
considerations. For this reason, these formulations are also referred to as advected phase-field
methods [70,150]. This type of phase-field methods have recently attracted the attention of many
researchers thanks to their ease of implementation and favorable properties, e.g., the boundedness of
the phase-field solution [93,154]. Possible improvements have been recently proposed by Jain et al.
[155], who modified the sharpening term replacing the phase field with the signed distance from the
interface, so to obtain a more regular function that does not contain any jumps/discontinuities.

III. FLOW-FIELD DESCRIPTION

The description of the flow field requires methodologies that can handle the jump conditions
at the interface imposed by the surface tension forces and the difference in density and viscosity
between the two phases [17]. For the sake of simplicity, here we consider only the one-fluid approach
(or whole-domain approach). This approach is based on the solution of a single set of Navier-
Stokes equations in the entire domain (usually performed on a structured grid) and accounts for
the interfacial jump conditions (i.e., continuity of velocity and viscous stress and surface tension
pressure jump) via the introduction of source terms. The one-fluid approach is the oldest and most
widely used one because fast and efficient single-phase flow solvers can be adapted for the purpose
without the need of extensive modifications. Possible alternatives to this approach are: (i) body-fitted
grid methods [156–159], which rely on the solution of multiple sets of Navier-Stokes equations,
one for each phase, coupled at the interface; (ii) ghost-fluid methods [160–165], which rely on the
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solution of the Navier-Stokes equations in separated domains using structured grids and employ
ghost nodes to couple the different domains. In the context of the one-fluid approach, a single
set of Navier-Stokes equations is solved in the entire domain. If we consider the mixture of two
immiscible, incompressible, and Newtonian phases, then the resulting Navier-Stokes equations in
conservative form read as follows:

∇ · u = 0, (15)

∂ (ρu)

∂t
+ ∇ · (ρu ⊗ u) = −∇p + ∇ · [η(∇u + ∇uT )] − σκnδ, (16)

where u = (u, v,w) is the velocity vector, p is the pressure field, ρ and η are the density and
viscosity fields, respectively and in general are functions of the phase-field variable. The last term at
the right-hand side of Eq. (16) represents the contribution of the surface tension forces, with σ the
surface tension, κ the mean curvature, n the interface normal vector, and δ the surface Dirac δ that
identifies the interface location [166]. The use of the conservative form of the Navier-Stokes equa-
tions (as reported above) is in general recommended, especially when local methods are employed.
This is however just one of the requirements to obtain an accurate and robust simulation method
[96]. Compared to the single-phase version of the Navier-Stokes and continuity equations obtained
assuming constant and uniform density and viscosity, Eqs. (15) and (16) are characterized by two
main features: (i) a source term that accounts for the surface tension pressure jump that arises at
the interface; (ii) the presence of density and viscosity contrasts. The modeling of interfacial forces
and density/viscosity contrasts represents the crucial aspect of the development and use of accurate
methodologies for multiphase flow simulations. In the two following sections, these two aspects
will be addressed in detail.

A. Modeling surface tension forces

Surface tension forces, which arise at the interface between two fluids, and are due to the cohesive
interactions between molecules and the associated energy, are proportional to the surface tension
value and to the local curvature. If the surface tension is constant, then surface tension forces act
along the direction normal to the interface. In principle, the best approach to account for these
forces, which are localized at the interface, is to use conformal meshes and integral formulations.
This approach is computationally very expensive and therefore of scarce applicability. Most large-
scale simulations are usually performed using Eulerian methods, and thus the common choice is to
use volumetric formulations, which are based on a numerical approximation of the Dirac function
to account for surface tension forces [167,168]. Therefore, interfacial forces are approximated as
follows:

fσ = −σκnδs = σ∇ · [(I − n ⊗ n)δs], (17)

where δs is a smoothed Dirac δ. The first expression is the building block of the continuum surface
force (CSF) model [169], while the second is the building block of the continuum surface stress
(CSS) model [16,170,171]. In the CSF formulation, originally applied to volume-of-fluid [169,171]
and level-set [172] methods, the δ function is approximated using a Heaviside function. A similar
approach can be employed also for phase-field methods [173]. The normal vector and the curvature
required to evaluate the interfacial forces [equation (17)] can be directly computed from the phase
field [92]:

n = ∇φ

|∇φ| ; κ = ∇ · n. (18)

Phase-field methods can provide accurate computation of the curvature thanks to the smoothness of
the phase-field variable φ, while volume-of-fluid methods normally require convolution operations
[174], height function approaches [175–177], or higher-order interface reconstruction methods
[178,179]. Accurate computation of curvature is crucial for accurate computation of surface tension
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(a) (b)

(c)

(d)

FIG. 3. Panel (a) shows the ratio between the numerical value of the surface tension forces, |fn
σ |, and

the analytical one, |fa
σ | (in magnitude). Results are shown for different dimensionless capillary widths ε/h

and droplet radii: R/h = 0.5 (red), R/h = 0.4 (light red), R/h = 0.3 (orange), and R/h = 0.2 (gray); length
scales are reported normalized by the half-length of the computational domain, h. Surface tension forces are
computed using a CSF approach on a Cartesian grid using finite differences. The behavior of the equilibrium
profile, smoothed Dirac δ, and curvature are reported in panels (b–d) for a droplet with radius R/h = 0.5 and
different capillary widths ε/h. In general, a good approximation of the surface tension forces is obtained.
The overestimation of surface tension forces obtained for large capillary widths can be traced back to the
following drawback: As the phase field is a smooth field, the curvature is defined everywhere in the domain
and corresponds to the local curvature of the isocontour (d). However, the curvature κ (φ) is in general different
from the one corresponding to the isolevel φ = 0, i.e., κ0 = κ (φ = 0). This leads to an overestimation when
large capillary widths ε/h are considered and the smoothed Dirac δ samples a wide range of curvature
values.

forces, and in the next example we show the robustness of phase field to compute surface tension
forces for different grid resolutions. In particular, in Fig. 3 we show the effect of changing the
thickness of the transition layer on the computation of the interface forces. In this specific example,
we consider the simple case of a two-dimensional drop in quiescent fluid and we vary the grid
resolution: in this way, we change the thickness of the transition layer, which is proportional to the
capillary width, i.e., it is 4ε/h. In Fig. 3(a) we show the numerical values of the surface tension
forces, |fn

σ |, computed using a CSF approach. These values are obtained for different dimensionless
droplet radii R/h and capillary widths ε/h (with h the half-length of the computational domain)
and are normalized by the value, |fa

σ | = σκn, which is analytically computed for a thickness of
the transition layer tending to zero. We can observe that surface tension forces are accurately
evaluated for a wide range of capillary width ε and droplet radii, even when the transition layer has
a characteristic size comparable with the droplet radius, i.e., when 4ε/h � R/h. The discrepancy
between analytical and numerical values obtained for small droplet radii and large capillary widths
is due to the fact that the curvature is defined everywhere in the domain [Eq. (18)], and represents the
curvature of the local isocontour of φ [168,180], see Fig. 3(d). This curvature, which is not uniform
in space and is in general slightly different from that corresponding to the drop interface—defined
as κ0 = κ (φ = 0) (i.e., of the isolevel φ = 0)—leads to an overestimation of surface tension forces
when large capillary widths ε/h are considered, since the smoothed Dirac δ centered at the reference
interface location [Fig. 3(c)] samples a wide range of curvature values [see the higher-than-linear
behavior of curvature in Fig. 3(d)]. The accuracy of the CSF approach, which is at best first-order,
limits its applicability in surface tension-dominated flows [19,168]. Better results can be obtained
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using the energy-based (EB) formulation [181], which relies on the chemical potential definition
to compute surface tension forces. This formulation, analytically equivalent to the CSS approach,
does not involve the direct computation of the interface curvature. Rather, the calculation of surface
tension forces is based on the smooth equilibrium profile and on the chemical potential definition.
The resulting order of accuracy is in general higher than that obtained using CSF-based approaches
[181] and extensions of this approach have been also applied to level-set methodologies [182,183].
To compute accurately the interfacial forces, the interfacial transition profile should be as close
as possible to the equilibrium kernel. In general, the energy-based approach is best suited for
interfaces characterized by uniform surface tension. Although this approach can be extended to
surfactant-laden interfaces [82,184], the surfactant effect on surface tension cannot be modified,
and tangential contribution cannot be easily separated from normal one [83,185] as when CSF/CSS
approaches are employed.

Finally, regardless of the approach used to compute surface tension forces, balanced numerical
schemes should be preferred [186]. This is usually achieved by a consistent discretization of pressure
gradients terms and surface tension forces, so to match the equilibrium solution given by the Laplace
equation for a spherical drop: p = κσ = 2σ/R. The use of schemes that do not satisfy this
requirement can lead to the generation of spurious currents, i.e., artificial currents generated by
unbalanced forces at the interface [168]. Quite often, the presence of these currents is by no means
negligible, and can even overwhelm the underlying physics of the system, making the interpretation
of the simulation results challenging. The consequences of spurious currents can be far-reaching,
leading not only to the incorrect predictions of the flow behavior, but also to the misrepresentation
of heat/mass transfer fluxes, in particular when the role played by surface tension forces is important
[170]). Not surprisingly, mitigation of spurious currents can be obtained via improved calculations
of interface curvature (for example, better pressure and surface tension discretization, smoother
phase indicators, use of height functions in VOF [178,187,188]).

To give an example of spurious currents, we consider the case of a two-dimensional static drop
having diameter R/h = 0.4 [with h the half-size of the domain, see the sketch reported in the inset
of Fig. 3(a)] immersed in a quiescent fluid. The governing equations have been discretized using
a pseudospectral approach (see Soligo et al. [83] for details). The domain has size 2h×2h, and
the results are obtained using a phase-field method and different approaches for the computation
of the surface tension forces: (i) continuum-surface force approach (CSF); (ii) continuum-surface
stress (CSS); (iii) energy-based or chemical potential-based method (EB). Simulations are run
considering a fixed value of the surface tension and of the capillary width ε/h = 0.04 (i.e., of
the thickness of the transition layer), but different grid resolutions: from 32×32 up to 256×256,
thus corresponding to different values of the grid spacing  = 2h/N . Simulations are run until a
stationary, equilibrium state is achieved. In Fig. 4(a), we visualize contour maps of the L∞ norm
of the velocity field, ||u||∞. As apparent, the velocity field is not perfectly zero everywhere as it
should be (at least down to machine accuracy), but spurious currents, whose magnitude depends on
the grid spacing and on the approach used to compute surface tension forces, are present in a thin
layer around the interface (which is explicitly rendered by the circular black line). Note that the
technique employed for the space discretization can have an impact on the magnitude of spurious
currents: in the present case, the use of a pseudospectral technique induces low spurious currents,
which can become a bit higher when other discretization techniques (for example finite differences)
are used [189]. A more quantitative evaluation of the magnitude of spurious currents is provided
in Fig. 4(b), where the numerical values of ||u||∞ are reported as a function of the grid resolution
 = 2h/N , for the different cases discussed here. In general, it can be observed that better results in
terms of spurious currents can be obtained using the CSS and the EB approaches. Both approaches
avoid the direct computation of the curvature from the phase-field variable and thus provide overall
better performance. We can also observe that the order of convergence is higher for CSS and EB
approaches. Specifically, while the CSF approach is approximately first-order accurate, the CSS and
EB approaches are second- and third-order order accurate, respectively [see the triangles showing
the scaling slope on the left-hand side of Fig. 4(b)].
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(a) (b)

FIG. 4. Spurious currents observed in the benchmark simulation of a two-dimensional static drop immersed
in quiescent fluid. The domain has dimensions 2h×2h and the drop diameter is R/h = 0.4 (with h the half-size
of the domain, see the sketch of Fig. 3). The capillary width has been set equal to ε/h = 0.04. The left panel
shows the distribution of spurious currents in space, visualized by contour maps (red-high, white-low) of the
L∞ norm of the velocity field, ||u||∞. The interface position (isocontour φ = 0) is shown with a black line and
the flow field is represented using arrows. The case shown in panel a refers to the CSS approach for a grid
spacing equal to  = 0.0312 (corresponding to a grid resolution N×N = 64×64) Panel b shows the effects of
different surface tension models and grid spacing  = 2h/N (where N is the number of grid points used) on
the magnitude of the spurious currents. Results are generally better using the continuum-surface stress (CSS)
or the energy-based (EB) approaches.

B. Modeling density and viscosity contrasts

Without loss of generality, we consider a two-phase flow, and we indicate as ρ1 and ρ2 the
densities of the two phases, and η1 and η2 the corresponding viscosities (where subscripts 1 and
2 refer to dispersed and continuous phases, respectively). In the context of interface-resolved
simulations, and more specifically of interface-capturing methods, density and viscosity are usually
assumed to be proportional to the color function. This operation can be extended to phase-field
methods by assuming that density and viscosity are linear functions of the phase-field variable
[36,190,191]. An important advantage of using the phase-field φ as a basis function is that, being
φ a smooth and continuous field, no additional operation is required to numerically discretize the
density and viscosity maps. From a mathematical point of view, these maps are defined as

ρ(φ) = ρ1
(1 + φ)

2
+ ρ2

(1 − φ)

2
, (19)

η(φ) = η1
(1 + φ)

2
+ η2

(1 − φ)

2
, (20)

where φ = ±1 are the phase-field values in the bulk of phases 1 and 2, respectively [192]. As
previously mentioned, the implementation of these maps is straightforward as it does not require the
computation of auxiliary smoothing kernels. Nevertheless, the use of Eqs. (19) and (20) in Navier-
Stokes equations in conjunction with phase-field methods can lead to two issues. The first issue
might arise when large density or viscosity ratios are considered: if the phase-field is not perfectly
bounded between the bulk values (i.e., φ = ±1 or φ = 0 and 1, see Appendix A for details on
this point) negative values of density or viscosity can be locally obtained. These unphysical values
of density and/or viscosity can further amplify the problem of spurious currents, thus negatively
influencing the stability and accuracy of the computation. To overcome this problem, two possible
workarounds are available: (i) the first consists in clipping the phase-field values used to compute
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the density and viscosity maps [124,193]; (ii) the second consists in using different interpolation
kernels for the density and viscosity maps, as for instance kernels that rely on the harmonic mean
rather than the classic arithmetic one [36,194,195].

The second issue is linked with the correct advection of mass and momentum in the Navier-
Stokes equations. In particular, the presence of diffusive fluxes (or more in general sink/source
terms) at the right-hand side of the phase-field governing equation displaces also mass when
nonunitary density ratios are employed [96]. This issue, which is usually of secondary impor-
tance when low to moderate Reynolds numbers are considered [57,191,193,196,197], becomes
particularly important when high Reynolds numbers and high-density ratios are considered. In this
sense, modifications of the Navier-Stokes equations, so to make the phase advection consistent with
the momentum advection, have been recently proposed: (i) changes of the momentum transport
equation with the introduction of an auxiliary variable [198]; (ii) use of an entropy-viscosity
method [199]; (iii) direct modifications of the momentum transport equation with the introduction
of corrective terms [96,142,143,200,201].

IV. CAPABILITIES AND LIMITATIONS IN DESCRIPTION OF MULTIPHASE TURBULENCE

After having described the fundamental aspects of the phase-field modeling of multiphase
turbulence, we discuss here the main capabilities and limitations of the phase-field approach. As
shown in Fig. 1, the multiscale nature of multiphase turbulence imposes several challenges for
numerical simulations. In particular, the desire of simulating each and every time and length scale
has to face the limitations of computing power and available memory. The usual choice when
interface-resolved simulation methods (e.g., phase-field methods) are employed is to avoid resolving
the small interfacial scales and to resolve all turbulence scales: from the macroscopic problem
scale, down to the Kolmogorov length scale. In this way, however, all phenomena occurring at
scales smaller than this threshold are modeled or somehow smeared out. This choice has direct
consequences on the description of topological changes of the interface, namely coalescence and
breakage events. In the following, to assess the effects of modeling the smaller interfacial scales,
the different stages composing a coalescence and a breakage event will be detailed. This description
will be the starting point to discuss the main capabilities and limitations of the phase-field method.

A. Numerical description of topological changes of the interface

One of the most difficult tasks in the numerical prediction of drop-laden turbulent flows is
the description of topological changes of the interfaces, namely the description of coalescence
and breakup events. Let us consider a coalescence event, which can be divided into four stages
[202]: (i) Approach: the two drops come closer and closer, and a thin liquid film is formed
in between; (ii) film drainage: the thin liquid film between the drops starts to drain; (iii) film
rupture: small-scale interactions lead to the rupture of the thin liquid film and to the formation of a
coalescence bridge; (iv) reshaping: surface tension forces reshape the drop. Of the different stages
mentioned above, film drainage and film rupture are governed by physical phenomena occurring
at very small scales. In particular, during the final part of the film drainage, the thickness of the
thin liquid film is about 10 to 100 nanometers [202–204]. Similar considerations hold for film
rupture. Although a fundamental understanding of this stage is still lacking [202,205], during film
rupture the main driving mechanisms are often assumed to be related to small-scale interactions as
van der Waals attraction forces [206], thermal and capillary fluctuations [207–209], and overlap of
diffusive interfacial layers [210]. The accurate simulation of these phenomena from first principles
is highly desirable to accurately determine the outcome of the collision event: the interfaces might
merge, leading to drop coalescence, or bounce off and separate. Unfortunately, such simulation
is not possible and, while the numerical description of the approach and reshaping stages can
be accurately described, the simulation of the film drainage and rupture stages is less accurate.
This issue, which leads to as numerical coalescence, is typical of nearly all interface-capturing
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methods, including the phase-field method (at least when interface-capturing methods are used in
the single color/marker function formulation). Indeed, as the coalescence is implicitly handled by
the method, two separate interfaces merge when they are closer than the grid spacing [211–214].
Thus, coalescence is influenced by the grid resolution, and the coalescence efficiency is often
overestimated: standard interface-capturing methods have a unitary coalescence efficiency (meaning
that all collisions result in a coalescence), while the actual measured coalescence efficiency is lower
[215–217]. When energy-based phase-field methods are employed, this problem is also linked to
two additional factors: (i) van der Waals attraction forces are not directly included, but they are
modeled via the mixing energy term [218]; (ii) the use of realistic values of the capillary width in
turbulent multiphase flow simulations is not possible and the interfacial layer has to be artificially
enlarged.

To improve the description of coalescence, we can identify four possible approaches: (i) the
coupling of molecular simulations to continuum simulations; (ii) the use of local or global mesh
refinements; (iii) use of sub-grid models that account for effects that are not completely resolved;
(iv) the use of multimarker phase-field formulation. The first possibility, coupling molecular dynam-
ics simulations with continuum simulations, is in principle the most accurate and reliable solution
[24,26,219]. However, this is usually difficult to implement, in particular when interface-interface
interactions have to be accounted for. Indeed, the physical mechanisms underlying the rupture of
the film are still unclear and are the object of ongoing investigations [202,205,220,221], and thus
cannot be properly included in numerical simulations. In particular, different mechanisms at the
core of the film rupture stage have been hypothesized: (i) small-scale interactions as van der Waals
attraction forces [206]; (ii) thermal and capillary fluctuations [207–209]; (iii) overlap of diffusive
interfacial layers [210]. An alternative solution is the use of dual grid resolution or adaptive mesh
refinement schemes. In this way, simulations are still performed in the limit of the continuum, but
the phase-field variable is computed on a more refined grid thus reducing the impact of numerical
coalescence on the results. Although beneficial, this solution offers only a partial improvement in
the simulation of coalescence events [25,222,223] since the actual scale at which coalescence occurs
is still orders of magnitude smaller than the resolved one. The third possible approach is based on
the inclusion of sub-grid models which try to mimic the unresolved small-scale physics [224,225].
This type of approach has been previously applied also to other interface-capturing [226–229] and
interface-tracking methods [25,222,223]. For phase-field methods, seminal works in this sense date
back to Körner et al. [230], who proposed a Lattice-Boltzmann-based phase-field method for the
study of metallic foams [230,231]. A similar approach was followed by Benzi et al. [232] for densely
packed systems to simulate the behavior of emulsions and foams [66,233]. The main idea is to
introduce a term in the governing equations which accounts for the disjoining pressure that arises
between two adjacent interfaces, which cannot be captured accurately by numerical simulations
due to the limited available grid resolution [218]. Another possible strategy involves the use of
multimarker phase-field method formulations [52,234,235]. The main idea behind this approach is
to use a separate color function for each drop, similar to what has been previously done for other
interface-capturing methods [229,236,237]. Within this framework, full control of the coalescence
process is obtained: from situations in which coalescence occurs as in standard formulations, to
situations in which it is tuned via ad-hoc models down to situations in which coalescence is
completely forbidden. The naive implementation of this concept to simulate systems with a large
number of drops is clearly not possible, for computational reasons (the computational cost would
increase with the number of drops). However, the required number of marker functions (and the
associated memory footprint) can be drastically optimized [234,236] thus making the use of this
approach more attractive.

Let us now consider the dynamics of a breakage event, which can be divided into three stages
[238,239]: (i) thread formation: the shear stresses stretch the drop, and a ligament is formed;
(ii) pinch-off: the thread elongates and capillary instabilities pinch-off the ligament; (iii) thread
breaking: the liquid thread breaks at the pinch-off section and the newly formed drops separate.
Upon separation, surface tension reshapes the drops, and the threads are retracted. Overall, breakage
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is a very quick phenomenon that can be well captured by the Navier-Stokes equations [211,240,241]
without resolving the dynamics at the molecular scale. Hence, the description of breakages using
Eulerian grids is considered to be rather accurate [242–244], although in the pinch-off region the
high curvature of the interface might not be perfectly resolved. In this context, the phase-field
method is very powerful as it allows for an implicit description of breakage events (being an
interface-capturing method), and at the same time it allows for an accurate computation of the
curvature and thus of the resulting surface tension forces. The description of breakage events can
definitely be improved employing dual grids or adaptive mesh refinement approaches: the adoption
of globally/locally refined grids improves the description of the dynamics at the pinch-off region,
which is characterized by high curvature values and thus high surface tension forces. Although in
most turbulent flows of interest, the Weber numbers evaluated using the integral scale of the system
are large, the contribution of surface tension forces—and thus the desire to accurately represent
them—is important when the dynamics of small drops (e.g., obtained from breakage of larger
interfacial structures) is described. Indeed, for these small drops, the Weber number evaluated using
local quantities (e.g., drop size) can be relatively small, thus suggesting an important role of surface
tension forces [19].

B. Description of small interfacial structures

An additional issue arising from the limited resolution that one can reasonably afford when
performing interface-resolved simulations is the minimum size of the interfacial structure that
can be described. In particular, when the size of the drop becomes comparable to the grid size,
the geometry of the interface is poorly defined, thus influencing curvature/surface tension forces
calculation and mass conservation. In fact, for phase-field methods, the issue of describing small
interfacial structures mainly influences mass conservation. As the transition layer is always nu-
merically resolved with a few grid points, curvature and surface tension forces are in general well
represented, even when small drops are described. Strategies aimed at improving the description
of small interfacial structures usually rely—similarly to what happens for breakage events—on
dual grid resolution or adaptive mesh refinement schemes. An alternative solution, however not
yet employed in phase-field methods, is the adoption of hybrid Eulerian-Lagrangian formulations
[245–251]: A drop is described by an Eulerian approach as long as its size is larger than a certain
threshold (usually, about few grid cells), while it starts to be described by a Lagrangian pointwise
approach when its size becomes smaller than the prescribed threshold.

In the context of phase-field methods, the description of small interfacial structures is also
influenced by the shrinkage phenomenon [104]. This phenomenon can be traced back to the
thermodynamic background present in the governing equations. In particular, a reduction of the free
energy of the system can be obtained by shifting the bulk values of the phase-field variable and at the
same time shrinking the drop/bubble [104]. This is a direct consequence of the attained equilibrium
profile: this profile represents the exact solution for a planar interface, but not for a curved interface
[126]. The impact of the shrinkage on simulation results depends on the employed phase-field
formulation: phase-field methods that are based on the standard Cahn-Hilliard equation or use
time-dependent Lagrangian multipliers in conjunction with the Allen-Cahn equation are expected
to be more influenced by this problem. Nevertheless, even when these formulations are employed,
the problem can be largely mitigated by a proper setting of the parameters [104].

C. Capabilities and limitations in the description of drop-laden turbulent flows

In the following, we will summarize capabilities and limitations of the phase-field method
to describing drop-laden turbulent flows. The main limitation, which is shared to some extent
with other interface-tracking and capturing methods, comes from the limited resolution one can
reasonably afford, and thus reflects into the impossibility to resolve all the small but potentially
significant scales of the system [7,25,222,243], from the large integral scale of the system down
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Callaghan & Deane (2014), exp., breaking waves.

Blenkinsopp & Chaplin (2010), exp., breaking waves.
Deane & Stokes (2002), exp., breaking waves.

Wang et al. (2016), DNS (VOF), breaking waves.
Deike et al. (2016), DNS (VOF), breaking waves.

Chan et al. (2021), DNS (VOF), breaking waves.
Mostert et al. (2022), DNS (VOF), breaking waves.

Di Giorgio et al. (2022), DNS (VOF), breaking waves.
Crialesi-Esposito et al. (2023), DNS (VOF), drop-laden HIT.
Mukherjee et al. (2019), DNS (PP-LB), drop-laden HIT.

Soligo et al. (2019), DNS (PFM), drop-laden TCF.Coalescence-dominated

Breakage-dominated

FIG. 5. Comparison of size distributions obtained from experimental and numerical investigations of
breaking waves and drop-laden turbulent flows [homogeneous isotropic turbulence (HIT) and turbulent channel
flow (TCF)]. The drop diameter is normalized using the Kolmogorov-Hinze scale for each case (estimated when
not enough information is provided) while the distributions are reported in arbitrary units due to the different
normalizations used. Data is taken from: Deane and Stokes [254] (field observations on breaking waves),
Blenkinsopp and Chaplin [255] (field observations on breaking waves), Callaghan et al. [256] (experiments on
breaking waves), Wang et al. [257] (breaking waves DNS-VOF, time average), Deike et al. [258] (breaking
waves DNS-VOF, time average), Chan et al. [264] (breaking waves DNS-VOF, time average), Mostert et al.
[259] (breaking waves DNS-VOF, higher Reynolds number case), Di Giorgio et al. [4] (breaking waves
DNS-VOF, higher Reynolds number case), Crialesi-Esposito et al. [253] (drops in homogeneous isotropic
turbulence, DNS-VOF, 10% volume fraction), Mukherjee et al. [65] (drops in homogeneous isotropic turbu-
lence, DNS-LBM, case P2), and Soligo et al. [211] (surfactant-laden drops in turbulent channel flow, higher
surfactant strength case). The analytic scaling laws for the coalescence- and breakage-dominated regimes,
d−3/2 and d−10/3, are also reported as a reference. A good agreement is obtained in the breakage-dominated
regime, i.e., for drops larger than the Kolmogorov-Hinze scale.

to the molecular scales (which, as already mentioned, control the dynamics of film rupture and
thus the outcome of drop-drop/bubble-bubble interactions, i.e., bouncing, sliding or coalescence).
This limitation is expected to influence mainly the interaction between small drops—in the limit of
low dispersed phase volume fractions—or densely packed systems like emulsions and foams—in
the limit of high dispersed phase volume fractions—where interface-interface interactions are the
main ingredient that controls the system topology and thus its behavior (e.g., effective viscosity,
size distribution). For the low volume fraction regime, which is the principal focus of this review,
the limitations on the grid resolution can have an influence on the results obtained in coalescence-
dominated conditions, typical of microsystems in laminar conditions. However, the limitation on
the grid resolution can be considered of secondary importance when the system is governed by
large-scale dynamics, as it occurs in turbulent flows where energy is transferred from the larger
integral scales down to the dissipative Kolmogorov scale. In this case, the dynamics of drops
is dominated by breakages, which are not much influenced by the unresolved molecular scales
behavior [25,222,223,243], and can be predicted accurately.

These considerations are confirmed by the comparison between the drop size distributions
obtained from phase-field simulations and those obtained from other simulation techniques and
experimental data, Fig. 5. In particular, we compare the drop size distributions obtained from phase-
field simulations [252] [65,211] of drop-laden turbulent flows (homogeneous isotropic turbulence,
HIT, and turbulent channel flow, TCF) against those obtained from VOF simulations of drop-laden
homogeneous isotropic turbulence [253] and experimental (exp.) of numerical (DNS) investigations
of breaking waves [4,254–259]. The analytical scaling laws [260], d−3/2 and d−10/3, for the
coalescence- and breakage-dominated regimes are also reported as reference. Analyzing Fig. 5,
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we can observe the emergence of two regimes depending on the Kolmogorov-Hinze (KH) scale,
dH , which identifies the critical diameter below which a drop/bubble will not undergo breakage
according to the KH framework [261,262]. For drops/bubbles smaller than the Kolmogorov-Hinze
scale, we observe the coalescence-dominated regime (left side of Fig. 5). In this regime, drops are
unlikely to break, as they are smaller than the critical scale; instead, they are more prone to change
their size by coalescence with other drops. For drops/bubbles larger than the Kolmogorov-Hinze
scale, we have the breakage-dominated regime, where the main mechanism by which drops change
their size is breakage. For the coalescence-dominated regime, it is difficult to infer the correct
trend as the different types of data (experimental, numerical, and analytical) are quite scattered.
For very small diameters, we can observe a deviation between phase-field simulation results and
the analytical scaling law. This can be traced back to two main reasons: (i) coalescence efficiency
is overestimated in interface-capturing simulations; (ii) using Eulerian methods, the grid resolution
limits the smallest drop/bubble that can be accurately resolved. In addition, it must be also noted that
due to the grid requirements imposed by DNS, the scale separation between the Kolmogorov-Hinze
scale and the dissipative Kolmogorov scale is at best about one order of magnitude for the most
recent simulations. This limits the range of scales in which the coalescence-dominated regime
can be observed. Moving to the breakage-dominated regime, we note a good agreement between
phase-field results, experimental data, analytical scaling laws, and numerical data obtained with
different methods. This highlights the capabilities of PFM-based simulations, and more in general
of interface-resolved simulation methods, to accurately describe breakage events. Finally, it is
interesting to observe that, despite the different flow configurations considered here (breaking
waves, HIT, TCF), a good agreement is obtained among the different studies, suggesting that the
idea of a turbulent break-up cascade can be applied with reasonable accuracy to most of the drop-
and bubble-laden turbulent flows [263,264].

V. BEYOND MULTIPHASE TURBULENCE: HEAT AND MASS TRANSFER

So far, we have discussed the capabilities of phase-field modeling in describing drop- and bubble-
laden flows. Multiphase turbulence is however not limited to systems composed of two pure phases.
Indeed, the transport of heat and mass in dispersed multiphase systems is the hallmark of many
industrial and natural phenomena: from vaporization of atomized fuel jets [19,265] in combustion
engines, to rain formation and atmosphere-ocean heat/mass exchanges [3,266]. Due to the relevance
of the problem, different techniques have been developed for the investigation of heat and mass
transfer in two-phase systems. These developments have been mostly focused on front-tracking
[267–269], volume-of-fluid [265,270–272], level-set [273,274], and Lattice-Boltzmann methods
[87,275–279]. Possible approaches for phase-field methods have been proposed only recently
[82,84,85,88].

The accurate description of heat and mass transfer phenomena in multiphase flows poses
additional challenges. In particular, even for the one-way coupling regime, in which the volume
changes associated to the heat/mass transfer are neglected, numerical schemes able to provide an
accurate evaluation of the interfacial heat and mass flux or to describe the surfactant concentration
are required. When the hypothesis of negligible volume changes produced by the mass transfer
process is lifted (two-way coupling regime), as common in evaporation and boiling processes, an
additional challenge arises: methodologies able to handle discontinuous and nonsolenoidal velocity
field, as well as to incorporate compressibility effects, are required. In addition, it must be also
pointed out that, for the case of practical interest, the relevant scales of the temperature/mass fraction
field (i.e., the Batchelor scale [280,281]) are smaller than the Kolmogorov scale, thus enforcing a
further restriction on the grid resolution. In the following, the challenges and the methodologies
available for the description of heat and mass transfer phenomena will be discussed. We will start
by considering the transport of surfactants and thermocapillary effects, and then move to heat and
mass transfer processes in the one- and two-way coupling regimes.
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A. Surface Tension gradients due to surfactants or thermocapillary effects

Surfactants are molecules that naturally collect at the interface between two fluids, thus modify-
ing the cohesive forces among fluid molecules and the surface tension value [282]. Their distribution
at the interface, which is in general not uniform, makes the interfacial dynamics more complex to
predict: not only the magnitude of capillary forces is reduced by the presence of surfactants, but also
the gradients of surfactants concentration along the interface generate Marangoni forces [283–285],
which act tangentially to the interface. Due to their importance in many industrial and environmental
flow instances [286–289], modeling and simulation of surfactant-laden flows receive ever-increasing
attention. The choice of the numerical approach used to describe surfactants depends on the
type of surfactant considered (nonionic, anionic, cationic, amphoteric, etc.), system configuration
(liquid/liquid or gas/liquid), and fluid properties (polar or nonpolar, etc.). Generally speaking, we
can categorize surfactants into two categories: soluble and insoluble surfactants [290]. Surfactants
do not dissolve in gases and their solubility in liquids depends on the surfactant and liquid chemical
properties [282,290]. Thus, based on the case considered, surfactants exhibit different dynamics:
soluble surfactants can move along the interface and can absorb/desorb in the bulk of the phase while
insoluble surfactants are limited only to the transport over the interface. The different characteristics
of surfactants are reflected in the approaches used to track the surfactant concentration in numerical
simulations [7]. For insoluble surfactants, a transport equation [291] is resolved on the interface or,
for numerical reasons, in a narrow band about the interface. For soluble surfactants, two possible
approaches are available: i) the single equation model [80,292,293], in which one equation is used
in the entire domain; ii) the multiple equations models [294,295], in which two or more equations,
coupled at the interface, are used to describe interfacial and bulk dynamics.

Several approaches for the description of insoluble and soluble surfactants (using single or multi-
ple equations models) are available for front-tracking [267,294,295], volume-of-fluid [296,297], and
level-set methods [274,298–300]. In the context of phase-field methods, soluble surfactants tracked
using single equation models is the most common approach [80,292,293]. Specifically, soluble sur-
factants can be straightforwardly described by introducing, in addition to the phase-field φ, another
order parameter that represents the surfactant concentration, ψ . Additional terms (which depend
on the surfactant concentration) are also included in the Ginzburg-Landau free energy functional.
These terms can account for different aspects of the surfactant dynamics [80,292,293,301–303]:
(i) preferential accumulation of surfactant molecules at the interface; (ii) entropy reduction obtained
when the surfactant is homogeneously distributed in the bulk of the phases; (iii) lateral interaction
between molecules (e.g., saturation effects); (iv) different solubilities in the bulk of the two phases;
(v) other effects. The surfactant concentration is governed by a Cahn-Hilliard-like equation:

∂ψ

∂t
+ u · ∇ψ = ∇ · (Mψ∇μψ ), (21)

where Mψ represents the surfactant mobility (which can be set as constant or variable) and μψ is the
surfactant chemical potential, which similarly to the phase-field chemical potential, can be obtained
as the functional derivative of the Ginzburg-Landau free-energy (with respect to the surfactant
concentration):

μψ = δF[φ,∇φ,ψ]

δψ
. (22)

The resulting order of the Cahn-Hilliard-like for the surfactant depends on the nature of the
additional terms included in the Ginzburg-Landau free energy functional [304]. When logarithmic
terms are employed [301,302], the mobility is usually defined as variable so that a diffusive term is
obtained and the governing equation is of second order. In contrast, when squared gradients terms
are employed [81,304,305], the mobility is commonly set as constant, and a fourth-order equation is
obtained.

Surfactants can have different solubility not only in gas/liquid flows (for example air and water),
but also in liquid/liquid flows (for example in flows with water and oil, see [306]), making the

090501-18



PHASE-FIELD MODELING OF COMPLEX INTERFACE …

(b) Thermally-induced Marangoni stresses(a) Surfactant-induced Marangoni stresses

FIG. 6. Development of Marangoni stresses in two different flow instances: interaction between surfactant-
laden droplets in shear flow (a), and migration of a droplet in a still fluid with top-down heating (b). In panel
(a), two surfactant-laden droplets collide in shear flow. The difference in surfactant concentration ψ (white-
low; black-high) between points A and B, generates a surface tension gradient and thus Marangoni stresses
(directed from point A to B). These stresses slow down the drainage of the thin liquid film and thus hinder
drop coalescence. Contour maps represent the value of the strain rate Sx = (∂u/∂z + ∂w/∂x)/2. The reader is
referred to Soligo et al. [83] for details. In panel (b), the migration of a droplet in a still fluid with a vertical
temperature gradient (top-down heating) is shown [307]. The temperature difference between the upper part
(high temperature) and the bottom part (low temperature) of the droplet generates a surface tension gradient
and thus Marangoni stresses. These stresses produce the upward migration of the droplet.

study of surfactants with different solubility very important in many different applications. In the
context of the phase-field method, this can be easily handled by introducing a skewed term in
the free energy functional, so to penalize the presence of the surfactant in one of the two phases. In
this case, the free energy functional F[φ,∇φ,ψ] usually employed for surfactant-laden drops [83]
is completed by a term that reflects and models the unequal solubility of the surfactant

fax(ψ, φ) = eψφ, (23)

where e is a parameter that controls the bulk concentration of the surfactant in the penalized phase
[303].

As already anticipated, surface tension not only depends on the presence of surfactants, as
discussed above, but might depend also on other factors, for example, electric and magnetic fields or
temperature [308,309]. Of specific practical and historical importance is the dependence of surface
tension on temperature. In many applications, a linear dependence of σ on temperature T can be
assumed [310]:

σ (T ) = σ0 − βT (T − T0), (24)

where σ0 is the value of the surface tension at the reference temperature T0, while βT is the surface
tension coefficient, i.e., βT = −∂σ/∂T |T =T0 . When the surface temperature is not uniform, surface
tension gradients

∇sσ = −βT (I − n ⊗ n) · ∇T, (25)

exist and induce, very much like surfactants do, Marangoni stresses that act tangentially to the
interface. The action of Marangoni stresses is depicted in Fig. 6 for two different flow instances:
(i) interaction between two surfactant-laden droplets [Fig. 6(a)]; (ii) thermocapillary migration of
a droplet [Fig. 6(b)]. In the first case [Fig. 6(a)], Marangoni stresses drive fluid from low surface
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tension regions (high surfactant concentrations, black region at the drop interface, point A) to high
surface tension regions (low surfactant concentration, white region at the drop interface, point
B). In this case, Marangoni stresses hinder the drainage of the thin liquid film, thus avoiding
drop coalescence [284,287,311] (or at least delaying it). In the second case [Fig. 6(b)], a drop
is immersed in still fluid with top-down heating [307]. As a consequence, warmer regions at the
top of the drop surface will be characterized by smaller values of surface tension, while colder
regions at the bottom of the drop surface will be characterized by larger values of surface tension.
This induces Marangoni stresses in the direction of the surface tension gradient (i.e., from regions
of low surface tension, and higher temperature, to regions of high surface tension, and lower
temperature). It is the so-called thermocapillary effect [283,312]. The thermocapillary effect is
observed in various situations and has applications in different fields, including heat transfer in
microgravity conditions, melting and solidification patterns in material processing, film coating,
and of course bubble and droplet dynamics [309,313–315]. However, albeit extensively studied in
laminar conditions, thermocapillary effects are almost unexplored in turbulence, and may represent
a fertile field of research for the future.

B. Heat and mass transfer (one-way coupling regime)

We consider now the heat and mass transport when the associated volume change is neglected,
i.e., in the limit of small concentrations or small density effects. This implies that the heat and
mass transport does not have a feedback on the momentum and mass conservation equations,
if we exclude small density variations whose effect can be accounted for using the Boussinesq
approximation. To understand the challenges associated with the description of heat and mass
transfer in this regime, we briefly recall the physical mechanisms driving heat/mass transfer. For
heat transfer, the main driving mechanism is thermal equilibrium. At the interface, the temperature
is continuous and the following heat balance applies:

T1 = T2 ; k1(∇T1 · n) = k2(∇T2 · n), (26)

where T1 and T2 are the temperatures of the two phases and k1 and k2 the corresponding thermal
conductivities. Differently, the specific heat content, defined as qi = ρiCp,iTi, exhibits a jump across
the interface:

q1

q2
= ρ1Cp,1

ρ2Cp,2
= Hq, (27)

where Hq is the equivalent of the Henry coefficient for heat transfer. For mass transfer, the main
driving mechanism is the difference in chemical potentials. At the interface, chemical potentials can
be considered continuous; note that this is an approximation that holds as far as the flow is far from
sonic conditions [316,317]. Hence, this condition together with the mass balance equation at the
interface gives

μ1 = μ2 ; D1(∇c1 · n) = D2(∇c2 · n), (28)

where μ1 and μ2 are the chemical potentials of the two phases, D1 and D2 the mass diffusivities
and c1 and c2 the volumetric concentrations. The volumetric concentrations exhibit a jump across
the interface that is determined by the Henry law (obtained from chemical potential equilibrium):

c1

c2
= Hc, (29)

where Hc is the Henry coefficient.
From the above discussion, we can appreciate the similarity between heat and mass transfer, as

summarized in Fig. 7. For this reason, numerical techniques for heat or mass transfer are usually
developed referring to a generic variable θ , which can be either a conserved quantity (specific heat
content or volumetric concentration) or a continuous quantity (temperature or chemical potential).
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FIG. 7. Duality between heat and mass transfer processes in the one-way coupling regime. The two plots
show the behavior of the specific heat content qi, temperature Ti, chemical potential μi, and volumetric
concentration ci along the dashed line of the sketch reported below each plot. For heat transfer, the temperature
is continuous at the interface, while the specific heat content exhibits a jump at the interface. For mass transfer,
chemical potentials can be approximated as continuous, while the volumetric concentrations exhibit a jump at
the interface.

The models available in literature for heat and mass transfer problems can be classified into two
categories: one-scalar and two-scalar models [85,318,319].

One-scalar models rely on a single equation that is solved in the entire domain to describe the
heat and mass transfer in a one-fluid fashion:

∂θ

∂t
+ ∇ · (uθ ) = ∇ ·

[
D(φ)∇

(
θ

H (φ)

)]
+ fc, (30)

where D(φ) represents the effective diffusivity and H (φ) the effective ratio (used to remove the
interfacial jump), and are usually evaluated as a function of the phase field [84,319], while fc is
an additional flux that can be used to enforce transport consistency [319]. This approach, which
has been used in the context of volume-of-fluid [270,320,321], level-set [322–324], and phase-field
methods [84,85,319,325,326], provides an accurate estimate of the heat or mass transfer only when
the discontinuity in the field obtained at the interface is advected exactly as the interface boundary
[317]. Satisfying this requirement becomes difficult when the ratio between the two diffusivities or
the interfacial jump becomes larger (e.g., gas/liquid systems) and artificial mass leakage is observed
[85,319].

To avoid this issue, two-scalar models can be employed. These models rely on two scalar
equations, one for each phase, to describe the heat or mass transfer. This approach has previously
applied to volume-of-fluid methods [316,317,327,328] and recently extended to phase-field methods
[85,318,319]. The resulting set of equations is [329]

∂θ1

∂t
+ ∇ · (uθ1) = ∇ ·

[
D1

(
∇θ1 −

√
2(1 − φ)

ε
nθ1

)]
+ S, (31)

∂θ2

∂t
+ ∇ · (uθ2) = ∇ ·

[
D2

(
∇θ2 +

√
2(1 + φ)

ε
nθ2

)]
− S, (32)
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FIG. 8. Sketch of the thermodynamic pressure-temperature diagram for water. Two important points can be
identified: the triple point (bottom left) where solid, liquid, and vapor coexist and the critical point (right top),
the last thermodynamic state at which liquid and vapor coexist. For liquid/vapor transformations, the reference
curve is the vaporization curve that defines the saturation condition as a function of pressure and temperature,
and whose behavior can be inferred from the Clausius-Clapeyron equation.

where n is the interface normal vector and S are closure terms, here reported in a compact form and
whose complete definition can be found in Mirjalili et al. [85]. The resulting scalar concentration in
the domain can be obtained as θ = θ1 + θ2. The proposed two-scalar model exhibits accurate results
in terms of both heat and mass transfer predictions and can be also extended to the degenerate case
in which one phase has zero diffusivity [330].

C. Heat and mass transfer (two-way coupling regime)

When the hypothesis of negligible volume change is removed, heat, mass, and momentum
transfers mutually interact. The two most important flow instances of this kind are evaporation and
boiling processes, and we restrict here to these for the sake of brevity. To appreciate the challenge
associated with the numerical description of evaporation and boiling, it is worth briefly recalling
the physical mechanisms governing these processes. We start by considering the thermodynamic
pressure-temperature diagram for water reported in Fig. 8. We can identify two important points: the
triple point (bottom left), in which the solid, liquid, and gas coexist, and the critical point (top right),
the last thermodynamic condition at which liquid and gas can coexist. These points are connected
by the so-called vaporization line; this line defines the saturation condition as a function of pressure
and temperature and can be inferred from the Clausius-Clapeyron relation. For a given pressure,
using this diagram, we can discriminate between evaporation and boiling: the former occurs at
temperatures lower than the saturation condition (obtained from the vaporization curve) while
the latter occurs at temperatures equal to or larger than the saturation temperature. The physical
mechanisms leading to evaporation and boiling are therefore different: evaporation occurs only at
the liquid/gas interface, and is due to the motion of molecules with high enough energy to leave the
liquid interface [331]; boiling occurs in the entire bulk of the liquid with the nucleation of vapor
bubbles. For this reason, boiling is generally a much more complex phenomenon, characterized by
different regimes and configurations (e.g., pool boiling, flow boiling).

In case of evaporation and boiling, the interfacial boundary conditions (jump conditions) are
modified to accommodate the resulting volume change [332], Fig. 9. For the velocity field, using
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FIG. 9. Sketch of the jump conditions at the gas/vapor-liquid interface for evaporation (left) and boiling
(right). The configuration resembles the Stefan problem, where the left boundary is a wall and the right is
a free outlet (see sketch). During the evaporation/boiling process, the interface advances from left to right.
The qualitative behavior of velocity, pressure, temperature, and vapor mass fraction (for evaporation) is also
reported. The main difference between evaporation and boiling can be also appreciated: for evaporation, the
interface is not always in saturation condition, while for boiling saturation conditions are found at the interface
and in the bulk of the liquid.

the Rankine-Hugoniot condition we obtain

u1 · n = u2 · n + ṁ

(
1

ρ1
− 1

ρ2

)
, (33)

where subscript 1 identifies the vapor/gas and 2 the liquid, ṁ is the mass flux (positive for
evaporation/boiling and negative for condensation) and n is the interface normal vector. For the
pressure, we have

p1 = p2 − σκ + 2[μ1nT · ∇u1 · n − μ2nT · ∇u2 · n] − ṁ2

(
1

ρ1
− 1

ρ2

)
, (34)

where the first term accounts for surface tension forces [333] and the other two terms account for
the different viscosity of the two phases, and for the Stefan flow generated by evaporation/boiling.
It is worth observing that these jump conditions do not depend on the mass transfer mechanism
considered. The mechanism, instead, influences the jump conditions on the transport of energy and
mass fraction. For evaporation, the transport of energy and of vapor fraction must be solved, subject
to the following jump condition for the temperature field at the interface:

k1(∇T1 · n) = k2(∇T2 · n) + ṁ[hv + (Cp,1 − Cp,2)(Ti − Tsat )], (35)

where hv is the latent heat of vaporization, Ti and Tsat the interface and saturation temperatures, and
the following condition the vapor mass fraction

ρ1D1∇Y1 · n = ρ2D2∇Y2 · n − ṁ(Y1 − Y2) = ṁ(1 − Y1), (36)

where the last simplification is valid for a single-component liquid (Y2 = 1 and ∇Y2 = 0). For
boiling, pure liquid and vapor systems are usually considered, and only the energy equation is solved
assuming saturation condition at the interface Ti = Tsat. Thus, the jump condition (35) simplifies as

k1(∇T1 · n) = k2(∇T2 · n) + ṁhv. (37)
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The mass flux ṁ can be computed from equation (36) valid for evaporation:

ṁ = ρ1D1∇Y1 · n
1 − Y1

, (38)

and from Eq. (37) valid for boiling

ṁ = (k1∇T1 − k2∇T2) · n
hv

, (39)

other closure relations for the mass flux evaluation can be found in Kharangate and Mudawar [334].
The analysis of the jump conditions gives a complete overview of the challenges associated with

the description of evaporation and boiling phenomena. In addition to the evaluation of the interface
shape and its topological changes, and to the description of concentration/temperature fields in
systems that can have very different thermophysical properties, the accurate numerical description
of phase change requires methods that can handle a discontinuous and nonsolenoidal velocity field,
possibly incorporating also effects of compressibility in the vapor/gas phase.

The first seminal works in this context were based either on the front-tracking [335] or volume-
of-fluid methods [336]. Improvements to the original methods were later developed [269,272,337],
and also proposed for other interface-capturing methods, like the level-set methods [338–341] (see
Rajkotwala et al. [342] and Kharangate and Mudawar [334] for reviews on the topic) even for the
case of turbulent flows [343,344]. The above-mentioned works rely on a one-fluid formulation,
in which proper extensions of the velocity fields into the vapor/liquid phase are used to account
for the velocity jump that arises at the interface. Alternatively, ghost-fluid methods, which are
generally combined with a level-set-based representation of the interface, have been also employed
[273,338,339,345]: thanks to the possibility of directly imposing jump conditions on the veloc-
ity/pressure field using ghost nodes, this class of methods represents an attractive option for flows
with discontinuous velocity fields.

Recently, phase-field methods have been developed to describe evaporation and boiling phe-
nomena. In particular, methodologies based on the Cahn-Hilliard equations [88] or the Allen-Cahn
equations [86,346] have been proposed and have shown promising results. Lattice-Boltzmann
phase-field methods have also proved to be a viable approach for the description of phase-
change phenomena, either using an approximation of the Cahn-Hilliard or Allen-Cahn equation
[87,276–279].

VI. FUTURE PERSPECTIVES AND CONCLUSIONS

In this paper, we have discussed the main capabilities and limitations of phase-field methods
in describing drop-laden turbulent flows, and we have outlined the challenges associated with the
description of more complex flows, i.e., when heat and mass transfer phenomena are also present.
The phase-field method, coupled with direct numerical simulation of the Navier-Stokes equations,
represents a powerful tool capable of accurately describing the dynamics of dispersed multiphase
flow. This method, because of its Eulerian nature, is capable of accurately describing arbitrary
interface shape and deformation as well as its topological changes (e.g., coalescence and breakage)
without the need for additional algorithms for geometrical reconstruction or topology handling. This
favors the development and use of fast, efficient, and scalable parallel solvers, which can be used to
readily solve the governing equations [197], and makes the phase-field method particularly suited
for large-scale simulations of drop-laden turbulent flows in cutting-edge HPC infrastructures. In
addition, as different phase-field formulations are available, from fourth-order formulations based
on the Cahn-Hilliard equation to second-order formulations based on the Allen-Cahn equation, a
vast number of numerical techniques can be employed.

Considering the description of multiphase turbulence, the phase-field method allows for an accu-
rate description of the flow field: As the phase variable is a smooth field, curvature, surface tension
forces, and the corresponding exchanges of momentum can be accurately described without the need
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for additional kernels or interpolation operations. Moving to the description of topological changes
of the interface, the method well describes breakage events, as confirmed by the size distributions
obtained in the breakage-dominated regime when compared to archival experimental [254–256],
numerical [4,253,257–259,264], and analytical [260] data. Similarly to nearly all interface-capturing
methods, predictions of coalescence events is less accurate, because of the unresolved small-scale
physics which happens beyond the grid resolution limits. Local or global grid refinements—dual
grid resolution schemes [58,117] or automatic mesh refinement techniques [118–122,347]—can be
used to improve the description of coalescence, although their use is not completely resolutive.
Further improvements in this sense can be achieved using multimarker formulations, coalescence
models, and combination thereof [226–229]. While these approaches have been applied in the
past to other interface-capturing techniques showing promising results, their use in the context
of phase-field methods is an almost unexplored field of research and only recently multimarker
phase-field formulations have been tested [52,234]. Finally, considering the description of small
interfacial structures, improvements in this sense can be obtained by employing dual grid resolution
schemes or automatic mesh refinement techniques. More involved techniques, for instance, the use
of hybrid Eulerian-Lagrangian approaches [245–251], have not been well explored and represent a
possible way for future developments.

Going beyond isothermal multiphase turbulence, and moving to systems where also heat and
mass transport processes take place, capabilities of phase-field methods have not been fully tested
yet. Specifically, while for the description of surfactant-laden interfaces, a considerable number of
works that employ the phase-field method is available in archival literature [80,292,293,301–303]
(thanks also to the straightforward implementation of surfactant description in phase-field methods),
the number of works in which heat and mass transfer is accounted for is much more limited. This
is due to the additional numerical challenges associated with the description of heat and mass
transfer. Indeed, in most cases of practical interest, two additional issues arise: (i) the properties
of the two phases (e.g., thermal and mass diffusivities) are very different, thus requiring the
use of proper schemes to avoid artificial heat/mass leakage [85,319]; (ii) the relevant scales of
the temperature/mass fraction field (i.e., the Batchelor scale [280,281]) become smaller than the
Kolmogorov scale, thus posing further restrictions on the grid requirements. When phase change
phenomena are considered (two-way coupling regime), the nondivergence flow field obtained at
the interface poses a further challenge, thus requiring proper modifications of the flow solver
[86–88,276–279,346]. Overall, despite the current number of works that employ the phase field
for the description of heat and mass transfer is limited, the number of contributions in this sector is
expected to grow in the future.
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APPENDIX A: CONSERVATION OF TOTAL MASS AND INDIVIDUAL PHASE MASS

The use of governing equations that satisfies the global mass conservation constraint combined
with the employment of a conservative numerical method leads to the mathematical and numerical
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conservation of the phase-field variable over time; in mathematical terms:
∂

∂t

∫
φd� = 0, (A1)

where � is the computational domain considered. Equation (A1) enforces the global mass conser-
vation of the entire system; however, it does not guarantee the conservation of the mass of each
individual phase, i.e., the mass enclosed by the interface [104,105,124,125,191]. This drawback
of phase-field methods is due to different factors, depending on the phase-field formulation em-
ployed. We discuss this issue first for Cahn-Hilliard-based methods and then for Allen-Cahn-based
methods. For Cahn-Hilliard-based methods, the mass conservation of each individual phase is not
guaranteed (shrinkage and coarsening phenomena) for two main factors: (i) the chemical potential
has no volume-preserving stationary solution for interfaces with finite curvature [126]; (ii) the
Cahn-Hilliard fails to satisfy maximum bound principle (MBP) due to the fourth order bi-harmonic
operator [348,349]. As a consequence, it is possible to obtain unbounded solutions of the phase
field (i.e., undershoots and overshoots) when a double well potential is employed [348–350]. As
shown by Yue et al. [104], even in the absence of flow, we can have a flux of energy between the
two contributions of the free-energy functional, f0 and fmix, and the total energy can be reduced by
shifting the bulk value of the phase field and at the same time reducing the amount of interfacial area
[104,301,351] (i.e., the region in which |∇φ| �= 0). This issue can be mitigated adopting one of the
strategies reported in Sec. II A: (i) use of penalty fluxes, which further enforce the equilibrium profile
[105,111,112]; (ii) use of variable or degenerate mobility coefficients [113–116]; (iii) adoption of
dual grid resolution methods [58,117]; (iv) employment of mass redistribution algorithms [123]; (v)
modifications to the free-energy functional [125,126].

For Allen-Cahn-based methods, the problem of mass conservation (shrinkage) can be traced back
to the presence of curvature-driven motion in the original formulation of the Allen-Cahn equation,
and to the way in which the above-mentioned curvature-driven flux is removed to make the Allen-
Cahn equation conservative. The formulation which is affected the most by the shrinkage problem
is the one relying on time-dependent Lagrangian-multipliers [138,144,352]. Indeed, for the above-
mentioned case, only a nonlocal correction is used to satisfy the total mass conservation constraint;
however, the diffusion process is a local process that depends on the local value of curvature. For
formulations that employ space- and time-dependent Lagrangian multipliers or the conservative
version of the Allen-Cahn equations, the curvature-driven motion is removed via local corrections
and thus spontaneous shrinkage of interfacial structures characterized by high values of curvature
does not occur [93,138,144]. Finally, for formulations that employ the conservative version of the
Allen-Cahn equation, this problem should not arise as the curvature-driven flux is canceled out, at
least to leading order [92]; in addition, with a proper choice of the discretization scheme, bounded
solutions of the phase field can be obtained [93]. Nevertheless, a small mass leakage can still occur
when interfacial features with a size comparable to the grid spacing are described.

APPENDIX B: CURVATURE-DRIVEN MOTION AND DERIVATION OF CONSERVATIVE
ALLEN-CAHN EQUATION

We discuss here some features of the Allen-Cahn equation. To highlight the curvature-driven
motion present in the Allen-Cahn equation, we can start from the following equation that describes
an interface moving with a velocity proportional to its curvature, κ , and advected by an external
flow field [92,124]:

∂φ

∂t
+ u · ∇φ = bκ|∇φ|, (B1)

where b is a generic constant and u is the velocity vector. Recalling that n = ∇φ/|∇φ| is the
interface normal vector, the curvature can be written as

κ = ∇ · n = ∇ ·
( ∇φ

|∇φ|
)

= 1

|∇φ|
[
∇2φ − ∇φ · ∇|∇φ|

|∇φ|
]
. (B2)
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From the equilibrium profile φeq = tanh(s/
√

2ε), we also have

|∇φ| = ∂φ

∂s
= 1 − φ2

√
2ε

;
∇φ · ∇|∇φ|

|∇φ| = ∂2φ

∂s2
= φ(φ2 − 1)

ε2
. (B3)

Upon substitution of the latter expression (second relation) in Eq. (B2), and setting b = ε2, we
obtain

∂φ

∂t
+ u · ∇φ = bκ|∇φ| = ε2

[
∇2φ − φ(φ2 − 1)

ε2

]
= ε2∇2φ − φ3 − φ = ε2∇2φ − f ′

0, (B4)

where in the last expression the right-hand side of the Allen-Cahn Eq. (5) can be recognized. We
can get to similar conclusions using the kernel φeq = [1 + tanh(s/2ε)]/2 [93,124], for which we
have

|∇φ| = ∂φ

∂s
= φ(1 − φ)

ε
;

∇φ · ∇|∇φ|
|∇φ| = ∂2φ

∂s2
= φ(1 − φ)(1 − 2φ)

ε2
. (B5)

From the expressions derived above, Eqs. (B3)–(B5), the conservative form of the Allen-Cahn
equation can be derived. To this aim, we substitute in Eq. (B1) the expression for the curvature
obtained in Eq. (B2) and we enforce the divergence-free condition on the flow field, obtaining

∂φ

∂t
+ ∇ · (uφ) = b

[
∇2φ − ∇φ · ∇|∇φ|

|∇φ|
]
. (B6)

We then remove the curvature-driven motion so that the two terms cancel out at the leading order
[92]:

∂φ

∂t
+ ∇ · (uφ) = b

[
∇2φ − ∇φ · ∇|∇φ|

|∇φ| − κ|∇φ|
]

= b

[
∇2φ − ∇φ · ∇|∇φ|

|∇φ| − |∇φ|∇ · ∇φ

|∇φ|
]
.

(B7)

Using Eq. (B3) for |∇φ|, we have

∂φ

∂t
+ ∇ · (uφ) = b

{
∇2φ − ∇φ

|∇φ| · ∇
[

1 − φ2

√
2ε

]
− 1 − φ2

√
2ε

∇ · ∇φ

|∇φ|
}
, (B8)

where, using the chain rule, we have

∂φ

∂t
+ ∇ · (uφ) = b

[
∇2φ − ∇ ·

(
1 − φ2

√
2ε

∇φ

|∇φ|
)]

. (B9)

Defining the coefficient γ = b/(
√

2ε), we finally have

∂φ

∂t
+ ∇ · (uφ) = γ∇ ·

[√
2ε∇φ −

(
(1 − φ2)

∇φ

|∇φ|
)]

, (B10)

which is the conservative Allen-Cahn Eq. (14). The expression of the conservative Allen-Cahn
equation reported in Mirjalili et al. [93] and Chiu and Lin [124] can be obtained using the expression
of Eq. (B5) instead of Eq. (B3) as these works assume the kernel φeq = [1 + tanh(s/2ε)]/2.
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