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Turbulent drag reduction in water-lubricated channel
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We study the problem of drag reduction (DR) in a lubricated conduit, in which a thin
layer of low-viscosity (e.g., water) fluid is injected in the near-wall region and facilitates
the transport of a core of high-viscosity fluid (e.g., oil). In the present investigation, the flow
instance is a channel flow, and consequently we have one thin layer of low-viscosity fluid
lubricating each wall. We run direct numerical simulations of this flow instance, respecting
the protocol of the constant power input approach. This approach prescribes that the flow
rate is adjusted according to current pressure gradient, so to keep constant the power in-
jected into the flow, it mimics closely real transport pipelines. A phase-field method is used
to describe the dynamics of the liquid-liquid interface. As this technique is tailored toward
the transport of very viscous fluids like oils, we study the drag reduction performance of the
system by keeping fixed the lubricating fluid properties (e.g., water) and by considering two
different types of oil characterized by different viscosities, 10 and 100 times more viscous
than water, respectively. As in real instances the presence of impurities and surfactants—
which act by locally reducing the local value of the surface tension—is inevitable, we
consider, for each type of transported oil, a clean and a surfactant-laden interface. For all
four tested configurations, we unambiguously show that significant DR can be achieved.
Reportedly, compared to the single-phase case, we observe a reduction of the mean
pressure gradient down to px/px,sp = 0.25 for the largest viscosity oil. By analyzing the
features of turbulence in the lubricating layer, and the close interaction with the perturba-
tions induced by the oil-water interface deformation, we elucidate the physical mechanisms
leading to DR and we underline the effects of viscosity ratios and of surfactants.

DOI: 10.1103/PhysRevFluids.9.054611

I. INTRODUCTION

Pipelines are the most straightforward and used system to transport heavy oil. However, due the
very high viscosity, moving heavy oil is an extremely energy-intensive process and requires high
pumping power [1]. To reduce the required pumping power and the corresponding operating cost,
different drag reduction (DR) techniques have been developed and tested in the past, including DR
by polymers, surfactants, and fibers, (which act to modify the rheological properties of the flow and
thus the apparent viscosity [2–10]); DR by riblets and active wall oscillations (which act to modify
the turbulence regeneration cycle [11–16]); or DR by injection of a low viscosity fluid (e.g., water)
in the near-wall region of the pipeline, so that the wall friction, induced by the low-viscosity fluid
in contact with the wall, is lower (so-called water-lubricated oil transport). Among the different
DR techniques, the water-lubricated oil transport has emerged as one of the most promising. This
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technique takes advantage of the natural tendency of water to form a stable layer that remains
in contact with the wall of the pipe and that lubricates the oil flow [17–19]. Although the cross
section available to the oil is reduced, this technique is appealing because of its simplicity and low
costs. Not surprisingly, the literature in the field of water-lubricated pipelining is vast [19,20] but
is mostly limited to theoretical studies focused on the stability of the flow configuration [17,21–23]
or to experimental studies measuring the overall. performance and effectiveness of this DR strategy
[24–27]. Accurate measurements of the flow field near the walls and at the liquid-liquid interface
remain challenging, mainly because of the unfavorable optical properties of the involved liquids
(i.e., opacity of oils) [28–30]. In this context, accurate simulations can be considered valuable
tools that, granting access to the entire flow field and to the corresponding liquid-liquid interface
deformation, can be used to fully characterize the underlying physics. Due to the challenges
associated with the description of turbulent multiphase flows [31–33], direct numerical simulations
of lubricated channels and pipes have been performed only in recent years [34–39] and have
shown the importance of viscosity and surface tension in selectively modulating turbulence, and
in generating the observed drag reduction.

In our previous works [38–41], we analyzed a simplified, yet relevant, flow configuration in
which a thin layer of a lubricating fluid is injected near the top wall of the channel, so as to favor
the transportation of the primary fluid. In the present work, we extend our previous studies to a
more practically relevant configuration by acting on three different aspects: (i) we consider the
presence of a lubricating layer on both the top and bottom walls, hence resembling the core-annular
flow configuration obtained in pipes; note that near-wall turbulence in pipes and channels (which is
the main character in the generation of the flow resistance) is very similar, in spite of the existing
geometrical difference; (ii) we consider a very large difference in viscosity between the two phases,
up to a viscosity ratio λ = ηo/ηw = 100, thus mimicking the crude oil-water cases; and (iii) we also
take into account the presence of impurities and surfactants, which are very often present in this
kind of applications and act by locally reducing the interfacial tension and introducing tangential
stresses at the interface.

In particular, we consider the flow of two immiscible fluids, heavy oil and water, inside a
rectangular flat channel. The top and bottom parts of the channel are occupied by two thin
lubricating layers of water having thickness hw, density ρw, and viscosity ηw, while the core part
of the channel is occupied by oil and has thickness ho, density ρo, and viscosity ηo. To mimic
a realistic heavy oil-water system, we consider two fluids with the same density (ρw = ρo = ρ)
but different viscosities, so that a viscosity ratio λ = ηo/ηw can be defined. As mentioned above,
in nearly all cases of practical importance for this kind of flows, contaminants, impurities, and
surfactants are commonly found at the interface between the two phases. Therefore, we consider
both surfactant-free (clean) and surfactant-laden systems. The dynamics of the system is captured
by coupling direct numerical simulation of the Navier-Stokes equations, used to describe the flow
field, with a two-order parameter phase-field method, used to describe the shape and deformation
of the interface and the concentration of surfactant [42–45]. Simulations are performed using a
constant power input (CPI) framework [39,46] which means that the flow is driven imposing a
constant amount of power—product between flow rate and pressure gradient—and thus adjusting
the imposed pressure gradient to the actual flow rate. In the study of drag reduction, this aspect is
very important aspect since the adoption of a CPI approach puts on a firmer and more objective
ground the comparison among different drag reduction techniques [46].

The paper is organized as follows: In Sec. II we present the governing equations and the numer-
ical approach. The main results of the simulations are illustrated in Sec. III: First, we characterize
the interface deformation and the surfactant distribution and then we analyze the interplay between
the interface dynamics and the turbulence activity in the water lubricating layers; in addition, we
evaluate the effects of the interface-turbulence interactions in the drag reduction performance by
looking at the behavior of the mean velocity, flow rate, and pressure gradient. Finally, conclusions
are outlined in Sec. IV.
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II. METHODOLOGY

We consider the flow of two immiscible fluids inside a rectangular flat channel. At the top and
bottom walls, two thin water lubricating layers are used to favor the transport of a thicker central
layer of heavy oil. To capture the dynamics of the system, we couple direct numerical simulation of
the Navier-Stokes equations, used to describe the flow field, with a two-order-parameter phase-field
method, used to describe the deformation of the oil-water interface and the surfactant concentration
[33,42–45].

A. Phase-field modeling of interfacial phenomena

In the framework of the two-order-parameter formulation of the phase-field method here em-
ployed, two scalar order parameters are used to describe the shape of the interfacial waves and
the surfactant concentration (when present). A first-order parameter, the phase field, φ, describes
the shape and position of the interface. A second-order parameter, ψ , is used to describe the
concentration of surfactant [47–49]. The dynamics of the phase-field variable and the surfactant
concentration are described by two Cahn-Hilliard-like equations, which in dimensionless form read:

∂φ

∂t
+ u · ∇φ = 1

Peφ

∇2μφ, (1)

∂ψ

∂t
+ u · ∇ψ = 1

Peψ

∇ · [ψ (1 − ψ )∇μψ ], (2)

where u = (ux, uy, uz ) is the velocity vector, Peφ and Peψ are the phase-field and the surfactant
Péclet numbers, and μφ and μψ are the corresponding chemical potentials. The two Péclet numbers
are defined as follows:

Peφ = u�h

Mφβ
; Peψ = u�hα

Mψβ2
, (3)

where u� is the characteristic velocity [properly introduced and discussed later, Equation (15)], h is
the channel half-height, Mφ and Mψ the phase-field and the surfactant mobilities, while α and β

are positive constants used in the dimensionless procedure. From a physical point of view, the two
Péclet numbers represent the ratio between the diffusive timescale, h2/(Mφβ2) or h2α/(Mψβ2),
and the convective timescale, h/u�.

The chemical potentials μφ and μψ are defined as the functional derivative of a two-order-
parameter Ginzburg-Landau free-energy functional. The free-energy functional accounts for the
interfacial motion and the surfactant dynamic [45,47–49]. The resulting expressions of the chemical
potentials are as follows:

μφ = δF
δφ

= φ3 − φ − Ch2∇2φ, (4)

μψ = δF
δψ

= Pi log

(
ψ

1 − ψ

)
− (1 − φ2)2

2
+ φ2

2Ex
. (5)

From these expressions, the equilibrium profiles for the two order parameters can be derived; at
equilibrium, μφ and μψ are uniform in the entire domain and therefore:

∇μφ = 0; ∇μψ = 0. (6)

Considering a planar interface located at s = 0 (with s the coordinate normal to the interface), an
analytic solution can be derived for the two order parameters:

φeq(s) = tanh

(
s√
2Ch

)
, (7)

ψeq(s) = ψb

ψb + ψc(φeq )(1 − ψb)
, (8)
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where the auxiliary variable, ψc, is a function of the phase field, and is defined as follows:

ψc(φeq ) = exp

[
−1 − φ2

eq

2Pi

(
1 − φ2

eq + 1

Ex

)]
. (9)

The phase-field variable is uniform in the bulk of the two phases (φeq = ±1) and undergoes a
smooth transition following a hyperbolic tangent profile throughout the thin transition layer. Simi-
larly, the concentration of surfactant is uniform in the bulk of the two phases, ψb = ψeq (φ = ±1),
and reaches its maximum value at the interface, ψ0 = ψeq (φ = 0). The maximum value of the
surfactant concentration, ψ0, is determined by the surfactant parameters Pi and Ex and by the bulk
surfactant concentration, ψb, as indicated by Eqs. (7) and (8).

B. Hydrodynamics

To describe the hydrodynamics of the multiphase system, the two Cahn-Hilliard-like equa-
tions are coupled with the Navier-Stokes equations. The presence of a surfactant-laden
interface—and of the corresponding surface tension forces—is accounted for by introducing an
interfacial term in the Navier-Stokes equations. Surface tension forces are here calculated adopting
a geometrical approach [50]: The geometrical proprieties of the interface are evaluated using the
Korteweg tensor [51] while an equation of state (EOS) is used to describe the surface tension
reduction produced by the surfactant. Recalling that in the present study we consider two fluids with
the same density (ρ = ρo = ρw) but different viscosity (ηo �= ηw), continuity and Navier-Stokes
equations can be written as follows:

∇ · u = 0, (10)

∂u
∂t

+ u · ∇u = −∇� − ∇p + 1

Re�

∇ · [η(φ)(∇u + ∇u)] + 3Ch√
8We�

∇ · [ fσ (ψ )τc], (11)

where p is the pressure field, ∇� = (px, 0, 0) is the mean pressure gradient that drives the flow,
η(φ) is the viscosity map accounting for the viscosity contrast between the two phases [44], fσ (ψ )
is the surface tension equation of state, and τc is the Korteweg tensor. The Korteweg tensor [51],
used to account for the surface tension forces, is defined as follows:

τc = |∇φ|2I − ∇φ ⊗ ∇φ, (12)

where I is the identity matrix. The interfacial term, composed by the equation of state and the
Korteweg tensor, accounts for both the normal and the tangential components of the surface tension
that arise when the surface tension is not uniform.

The EOS adopted in this work is a modified Langmuir equation. While at low surfactant con-
centrations the Langmuir EOS follows well the experimental measurements, there is experimental
evidence for liquid-liquid [52,53] and gas-liquid systems [54] showing that the surface tension
never decreases below about 30% to 60% of the clean interface surface tension for any surfactant
concentration. This is a consequence of the saturation of the interface: Once a monolayer of
surfactant molecules is formed on the interface, no more surfactant can accumulate there, and the
surface tension remains constant [55]. However, the Langmuir EOS predicts an unbounded surface
tension decrease as surfactant concentration increases. Thus, we use a modified EOS, in which the
minimum surface tension value is set to half of the clean interface surface tension value [52–54].
The resulting EOS is as follows:

fσ (ψ ) = σ (ψ )

σ0
= max

⎡
⎢⎣1 + βs log(1 − ψ )︸ ︷︷ ︸

Langmuir EOS

, 0.5

⎤
⎥⎦, (13)
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where σ (ψ ) is the dimensional surface tension of the surfactant-laden interface, σ0 is the surface
tension of a clean interface, and βs the elasticity number. This latter parameter quantifies the strength
of the surfactant: For a fixed concentration of surfactant, a higher surface tension reduction can be
obtained with a stronger surfactant (higher βs).

The dimensionless groups appearing in Eq. (11) are the power Reynolds number, Re�, and the
Weber number, We�, which are defined as:

Re� = ρu�h

ηw

, We� = ρu2
�h

σ0
. (14)

The Reynolds number represents the ratio between inertial and viscous forces and is defined
based on the viscosity of the two lubricating layers (water), ηw, while the Weber number is the ratio
between inertial and surface tension forces. The Weber number is here defined using the surface
tension of a clean interface, σ0, as reference. These two dimensionless parameters, as well as the
Péclet numbers, are defined employing u� (discussed below) as a velocity scale.

As anticipated, in the present work we employ the CPI approach [39,46,56], which is based on
driving the flow by a constant pumping power, Pp. Naturally, to keep the pumping power constant
over time, the mean pressure gradient is dynamically adjusted according with the overall flow rate,
Qt . Within the CPI approach, the following velocity is introduced as a reference:

u� =
√

D

√
Pph

3ηw

, (15)

where, as stated above, ηw is the water viscosity (lubricating layers), while D is a coefficient used
to account for the presence of a core layer with different viscosity in the central part of the channel.
From a physical point of view, the characteristic velocity u� represents the bulk velocity (average
velocity across the channel section) of the actual two-phase flow configuration (i.e., two immiscible
fluid layers having different viscosity and flowing inside a channel under the action of a pumping
power Pp) but in laminar conditions. When the viscosity of the two layers is the same (single-phase
or λ = 1), the coefficient D is unitary and the characteristic velocity reduces to:

u� = usp
� =

√
Pph

3η
, (16)

matching the standard definition of the reference velocity under CPI conditions [46], where η

represents the viscosity of the system (which is uniform for a single-phase flow or for λ = 1). We
refer the reader to Appendix for additional details.

C. Numerical method

The governing equations (1), (2), (10), and (11) are solved using a pseudospectral method based
on transforming the field variables into wave-number space via a combination of Fourier series (in
the periodic stream and span directions) and Chebyshev polynomials (in the inhomogeneous wall
normal direction). The collocations points for all variables (velocity and phase field) are equally
spaced along the x and y directions while they are stretched along the wall-normal direction where a
finer grid resolution is obtained near the two walls. Navier-Stokes equations are solved using a wall-
normal velocity-vorticity formulation [57,58]. In particular, Navier-Stokes equations are rewritten
as a fourth-order equation for the wall-normal component of the velocity uz and a second-order
equation for the wall-normal component of the vorticity ωz. In contrast, the phase-field and the
surfactant concentration transport equations are directly solved in their original formulation. Further
details on the method can be found in Soligo et al. [49].

The governing equations are advanced in time using a mixed implicit-explicit scheme. For the
Navier-Stokes equations, the nonlinear diffusive term is first rewritten as the sum of a linear and a
nonlinear contribution [40,41,59]. The linear part is then integrated using a Crank-Nicolson implicit
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scheme while the nonlinear part, together with the nonlinear convective terms, is integrated using
an Adams-Bashforth explicit scheme. For the two Cahn-Hilliard-like equations (phase-field and
surfactant concentration), the linear terms are integrated using an implicit Euler scheme, while the
nonlinear term are integrated in time using an Adams-Bashforth scheme. Together with the time
advancement of the equations, also the applied mean pressure gradient is updated at each time step,
so to keep constant the power injected into the system (for further details, see Roccon et al. [39]).

D. Boundary conditions

The governing equations are complemented by suitable boundary conditions. For the Navier-
Stokes equations, no-slip boundary conditions are enforced at the top and bottom walls (z/h = ±1):

ui(z/h = ±1) = 0. (17)

For the phase field, surfactant concentration and the corresponding chemical potentials, no-flux
boundary conditions are enforced at the two walls:

∂φ

∂z
(z/h = ±1) = 0;

∂μφ

∂z
(z/h = ±1) = 0, (18)

∂ψ

∂z
(z/h = ±1) = 0;

∂μψ

∂z
(z/h = ±1) = 0. (19)

This is equivalent to imposing the following boundary conditions:

∂φ

∂z
(z/h = ±1) = 0;

∂3φ

∂z3
(z/h = ±1) = 0;

∂ψ

∂z
(z/h = ±1) = 0. (20)

Along the streamwise and spanwise directions (x and y), periodic boundary conditions are im-
plicitly applied for all variables. The adoption of these boundary conditions leads to the conservation
of the two order parameters (phase-field and surfactant concentration) over time:

∂

∂t

∫
�

φd� = 0;
∂

∂t

∫
�

ψd� = 0. (21)

where � is the domain considered. For the phase field, this does not guarantee the conservation
of the individual mass of the two phase, and some small leakages between the phases may occur
[60–62]. In the present cases, the mass leakage is always below 1%.

E. Simulation setup

The computational setup consists of a plane channel with dimensions Lx × Ly × Lz = 4πh ×
2πh × 2h. We run five different simulations: a reference simulation of a single-phase turbulent
channel flow and four multiphase simulations of water-lubricated oil channel flow. As sketched in
Fig. 1, for the water-lubricated cases, two lubricating layers, thickness hw = 0.15h, are injected in
the near-wall region of the channel, so to favor the transport of a central layer of oil, thickness
ho = 1.7h. All multiphase simulations consider water as lubricating fluid and oil—in one case 10
times more viscous than water (viscosity ratio λ = ηo/ηw = 10) and in the other case 100 times
more viscous than water (viscosity ratio λ = ηo/ηw = 100)—as transported fluid. For each value
of the viscosity ratio (i.e., type of oil), we perform the simulation of a clean system (constant
and uniform surface tension) and a surfactant-laden system (surface tension depends on the local
surfactant concentration). This strategy is followed to mimic what happens in the large majority of
cases, in which oil and water are not pure, but carry small quantities of impurities and surfactants.

All simulations are performed injecting into the system the same power Pp (CPI approach). For
the single-phase case, this leads to a Reynolds power number equal to Re� = 80 000 (which roughly
corresponds to a shear Reynolds number Reτ = 1000). For the water-lubricated cases, the resulting
power Reynolds number is different due to the effective viscosity of the system (and thus different
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FIG. 1. Sketch of the flow and of the computational setup used for the simulations. Two near-wall
lubricating layers of water (transparent), thickness 0.15h, are used to favor the transport of a core layer of
oil (gray), thickness 1.7h, inside a channel. The channel has dimensions Lx × Ly × Lz = 4πh × 2πh × 2h. A
constant power is injected into the system to drive the flow, which goes from left to right: the mean driving
pressure gradient, px , is dynamically adjusted according to the instantaneous value of the volume flow rate, Qt ,
so to keep constant the power (in physical units).

reference velocity u�). In particular, it ranges from Re� = 53 504 for λ = 10 to Re� = 50 080 for
λ = 100. The surface tension value of the liquid-liquid interface is set via the Weber number so to
be representative of an oil-water interface [63]. In particular, the Weber number is We = 1431 for
λ = 10, while it is equal to We� = 1254 for λ = 100, because of the different characteristic veloc-
ity. For the two surfactant-laden cases, the elasticity number is βs = 1.00, resembling the behavior
of a surfactant with a moderate strength. An overview of the simulation parameters is reported
in Table I.

Grid resolution is chosen to meet the requirements imposed by direct numerical simulations
(DNS) and at the same time to guarantee a proper resolution of the thin interface between the
two fluid layers and of the surfactant concentration field, see Table II. For the single-phase
reference case, we use Nx × Ny × Nz = 1024 × 1024 × 513 grid points; for the surfactant-free
cases, and because of the lower value of Re�, we use Nx × Ny × Nz = 1024 × 512 × 513; and
finally, for surfactant-laden cases, we use Nx × Ny × Nz = 2048 × 1024 × 513 grid points. The
Cahn number is set to Ch = 0.01 to allow an accurate description of the steep gradients present

TABLE I. Overview of the main simulation parameters. Five different cases have been considered: a single-
phase case and four water-lubricated configurations, considering different values of the viscosity ratio (λ = 10
and λ = 100) and considering the presence (or not) of surfactants (clean vs surf. simulations). All simulations
are performed driving the flow with the same pumping power Pp in physical units (CPI approach). For ease of
comparison with literature results, the value of the shear Reynolds number (Reτ ) (computed a posteriori) is
also reported.

System λ Re� Reτ

√
D We� βs Ch Peφ ψb Peψ Pi Ex

Single-phase — 80 000 1000 — — — — — — – — —
Multiphase (clean) 10 53 504 874 0.668 1431 — 0.01 16 050 — — — —
Multiphase (surf.) 10 53 504 879 0.668 1431 1.00 0.01 16 050 0.01 5350 1.35 0.117
Multiphase (clean) 100 50 080 769 0.626 1254 — 0.01 15 024 — — — —
Multiphase (surf.) 100 50 080 769 0.626 1254 1.00 0.01 15 024 0.01 5008 1.35 0.117
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TABLE II. Summary of the grid resolution employed for the different cases. The grid spacing along the
three directions is reported in wall units; for the wall-normal direction, where the grid is stretched, the grid
spacing is reported and evaluated at the wall. The Kolmogorov length-scale (evaluated at the wall), η+

k,w , is also
reported.

System λ Nx × Ny × Nz �x+ �y+ �z+
w η+

k,w

Single-phase — 1024 × 1024 × 513 12.27 6.14 0.020 1.43
Multiphase (clean) 10 1024 × 512 × 513 10.72 10.72 0.017 1.51
Multiphase (surf.) 10 2048 × 1024 × 513 5.39 5.39 0.017 1.52
Multiphase (clean) 100 1024 × 512 × 513 9.43 9.43 0.015 1.80
Multiphase (surf.) 100 2048 × 1024 × 513 4.71 4.71 0.015 1.77

at the interface [61]. The phase-field Péclet number (i.e., the mobility) is chosen according to the
scaling Peφ ∝ 1/Ch [64], which gives an asymptotic convergence to the sharp-interface limit. The
resulting Péclet number is Peφ � 15 000 and changes only slightly with the considered viscosity
ratio, because of the different characteristic velocity.

For surfactant-laden cases, the bulk concentration of the surfactant is kept fixed (in all cases) at
ψb = 0.01, while the surfactant Péclet number is set to Peψ � 5000. This value can be considered
representative of the behavior of nonionic and anionic surfactants in aqueous solutions [65]. The
temperature-dependent parameter and the surfactant solubility parameter are set to Pi = 1.35 and
Ex = 0.117, in agreement with previous works [45,49,66]. These parameters can be also set accord-
ing to the specific type of surfactant considered. However, their values affect only the surfactant
equilibrium profile and the bulk concentration while the main surfactant action (i.e., the surface
tension reduction) is determined by the elasticity number. Hence, similar results (in terms of
surface tension reduction) can be obtained changing these parameters together with the elasticity
number. We choose here to fix these values according to previous studies and to set the elasticity
number so that surface tension reductions commonly obtained in oil-surfactant-water systems are
obtained [67].

For all simulations, the initial condition is taken from a preliminary DNS of a single-phase
fully developed turbulent channel flow at Reτ = 1000 performed using a constant pressure gradient
approach. The flow field is rescaled in CPI units, and the simulation is complemented by a proper
definition of the initial phase-field distribution so that the two liquid-liquid interfaces are located
at distance hw = 0.15h from the two walls (top and bottom), and the interfacial profile follows
the hyperbolic tangent equilibrium profile, Eq. (7). When surfactant-laden cases are studied, the
concentration is initialized with the surfactant equilibrium profile, Eq. (8).

The numerical scheme has been implemented in a parallel Fortran 2003 MPI in-house propri-
etary code. The parallelization strategy is based on a two-dimensional domain decomposition to
divide the workload among all the MPI tasks. The solver execution can be offloaded to GPUs
via OpenACC directives and CUDA Fortran instructions. Likewise, Fourier-Chebyshev transforms
are performed using the FFTW libraries (CPU) or the Nvidia cuFFT libraries (GPU). Overall, the
computational method adopted allows for the accurate resolution of all the governing equations and
the achievement of an excellent parallel efficiency thanks to the fine-grain parallelism offered by the
numerical method. The computational cost of the simulations is approximately 80 million CPU h
and simulations have been performed on the Hawk supercomputer installed at the high-performance
computing center located in Stuttgart, Germany (HLRS). All simulation runs have been performed
using 64 or 128 computing nodes (64 for the smaller grid resolutions and 128 for the larger grid
resolutions). The resulting dataset has a size of approximately 20 TB.

In the following, and for the sake of comparison against archival literature, results are presented
in wall units (unless differently indicated), i.e., using uτ as reference velocity, h as reference length,
and h/uτ as reference time. As the Reynolds number (both power and friction Reynolds number)
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is different among the different cases, each case is normalized using its own value of uτ . Angular
brackets, 〈·〉, are used to indicate the average in space and time.

III. RESULTS

Given the complexity of the problem, results will be discussed first by focusing on the qualitative
structure of the flow and of the oil-water interface. Then these findings are used to provide a
physically based explanation for the flow behavior observed in the lubricating layers, which we
characterize by means of the wall-shear stress distribution. Finally, the drag reduction performances
are quantified computing the behavior of the mean velocity, the flow rate and the pressure gradient.
In the following, the results presented have been computed once a new statistically steady-state
configuration is attained for all systems. Indeed, all simulations exhibit an initial transient where the
flow adapts to the new configuration (water-lubricating layer and central core of oil). Once this new
steady-state configuration is attained, statistics are computed using a time window of approximately
�t+ = 6000.

A. Structure and deformation of oil-water interface

We start our discussion by looking at the flow field in the lubricating layers and at its connection
with the behavior of the oil-water interface. We highlight that for the range of parameters here
considered, no breakage of the interface is observed as the Weber number is below (or close to) the
critical one for wave breaking [68]. Results are reported in Fig. 2. Figure 2(a) shows an instanta-
neous three-dimensional sketch of the oil-water interface (referring to the case λ = 10). In Figs. 2(b)
and 2(c) we present a two-dimensional view from the top of the interface (for λ = 10 [Fig. 2(b)] and
λ = 100 [Fig. 2(c)]) while in Figs. 2(d) and 2(e) we present the corresponding volume rendering of
the turbulent kinetic energy, TKE = (u′2

x + u′2
y + u′2

z )/2, in the bottom lubricating layer. As indicated
in Fig. 2(a), the flow moves from left to right. Note that, because of the flow symmetry along z, a
specular situation happens at the top wall.

First, we examine the effect of the viscosity ratio focusing on the two clean cases only (λ = 10
and λ = 100). Considering the case λ = 10 [Figs. 2(b) and 2(d)], we notice that the interface
deformation is characterized by the streamwise and spanwise propagation of waves with different
amplitude and wavelength, which interact and generate an highly irregular interface shape. We
define crests as interface locations farther from the bottom wall (i.e., closer to the center of the
channel) and troughs as interface locations closer to the bottom wall [see Fig. 2(a)]. As expected, the
interface shape has a direct influence on the behavior of the flow field in the water lubricating layer
[Fig. 2(d)]. In particular, where the interface has high crests and rough shape, turbulence seems to
be active in the lubricating layer (see for example the turbulent spots in the region π < x/h < 2π );
where the interface has deep troughs—and smoother shape—turbulence activity in the lubricating
layer appears weak, since there is not enough room for the turbulence cycle to be sustained [69]
and the flow tends to laminarize (see laminar patches in the region 2π < x/h < 3π ). Overall, this
results into the coexistence of laminar and turbulent regions. These observations, which highlight
the existing strong correlation between the the interface deformation and the turbulence activity,
are consistent with previous investigations showing turbulence suppression and reactivation [38,39]
depending on the local thickness of the lubricating layer. Considering the case λ = 100 [Figs. 2(c)
and 2(e)], we notice that the interface is smoother and more regular. Given the relatively smaller
interface deformation, crests and trough are now less pronounced, indicating a more uniform, and
turbulent, flow field in the lubricating layer [Fig. 2(e)]. We also note that some modulation of the
TKE activity is possible and can generate localized laminar patches, but the characteristic size of
these laminar patches is much smaller compared to λ = 10.

To quantify the deformation of the oil-water interface, we compute the probability density func-
tion (PDF) of the interface elevation, ζ/h, i.e., the difference between the instantaneous interface
position and the nominal interface position (located at a distance z/h = 0.15 from the walls). The
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(a)

(b) (c)

(d) (e)

FIG. 2. Panel (a) shows a three-dimensional view of the oil-water interface near the bottom wall for the
case λ = 10. The middle row shows a top view of the instantaneous deformation of the oil-water interface for
the clean cases at λ = 10 (b) and λ = 100 (c), and corresponding volume rendering [(d) for λ = 10 and (e)
for λ = 100] of the turbulence kinetic energy, TKE = (u′2

x + u′2
y + u′2

z )/2, in the bottom lubricating layer. The
flow moves from left to right and the interface shape and volume rendering of TKE are shown at the same time
instant.

definition of the interface elevation is sketched in the inset of Fig. 3, using the lubricating layer
near the bottom wall as reference. We recall here that the interface deformation is controlled by
the interplay between the destabilizing effect of shear and turbulence and the stabilizing effect of
surface tension and viscosity (since there is no density difference between the oil and water phases).
Results, obtained considering the oil-water interface near both the top and the bottom walls, are
shown in Fig. 3. The location of the walls is explicitly indicated (hatched box at ζ/h = −0.15 on
the left of the picture). Positive values of ζ/h indicate interface crests, whereas negative values
of ζ/h indicate interface troughs (see the inset). The different cases are reported with different
colors: violet for λ = 10 and red for λ = 100. Continuous and dashed lines are used to identify the
clean and surfactant-laden cases, respectively. We immediately notice that the shape of the PDFs
strongly depends on the considered viscosity ratio. For λ = 10 (violet), the PDF has a peak at
ζ/h � −0.07, indicating that the interface preferentially deforms towards the wall, with interface
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FIG. 3. Probability density function (PDF) of interface elevation, ζ/h. Positive values of ζ/h identify
interface crests: Locations where the interface is above the average interface position (i.e., located towards
the center of the channel). Negative values of ζ/h indicate interface troughs: locations where the interface
is below the average interface position (i.e., close to the wall). The reference system used to define crests
and troughs is also shown in the inset. Results that refer to λ = 10 are reported with violet lines while those
referring to λ = 100 with red lines. Clean cases are reported with continuous lines while surfactant-laden cases
with dashed lines.

troughs that can get rather close to the bottom wall, reducing the instantaneous thickness of the
lubricating layer and therefore promoting the local flow laminarization [as already discussed, see
laminar patches in Fig. 2(b)]. We also notice that the PDF is positively skewed, suggesting that
large positive fluctuations of the interface elevation are more likely to occur than large negative
fluctuations. This is an effect of the wall confinement, which limits the amplitude of the negative
fluctuations (trough close to the wall) but not of the positive fluctuations (crests far from the wall).
Moving to the case λ = 100, we observe that, compared to the case λ = 10, the peak of the PDF
is at ζ/h � −0.03, i.e., closer to the reference interface position and that the shape of the PDF is
less skewed. This indicates that waves are smaller in amplitude and therefore less influenced by
the presence of the wall. This is consistent with the qualitative results shown in Fig. 2(e), where
turbulence activity was rather uniform in the lubricating layer. The different behavior observed for
λ = 10 and λ = 100 is due to the interaction between the surface tension forces and the oil viscosity.
In particular, unlike the case λ = 10, where the viscosity ratio—and therefore the oil viscosity—is
not so large to play a significant role, for λ = 100, the oil viscosity is large enough to effectively
damp the interface deformation. This means that an increase of oil viscosity decreases the interface
deformation, very much like an increase of surface tension does.

We now focus on the influence of surfactants. For λ = 10, the presence of the surfactant slightly
modifies the shape of the PDF, making it even more positively skewed. In this case, the surfactant
acts on an interface that is already rather deformable and further increases its deformability (re-
ducing surface tension). This induces a slight increase of rare negative events and a corresponding
shift of the PDF peak towards the wall (i.e., the interface can be closer to the wall). Moderate
positive interface elevations are also slightly increased (0 < ζ/h < 0.1). For λ = 100, the difference
between the clean and surfactant-laden case is negligible. This is mostly due to the effect of
viscosity: Viscous forces stabilize the interface and balance the surface tension reduction induced
by the presence of surfactants.
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(a) (b)

(c) (d)

FIG. 4. Surfactant concentration (top row, dark-low; light-high) and interface elevation (bottom row, dark-
crests; white-troughs) for the different cases considered. The left column refers to λ = 10 while the right
column to λ = 100. Higher surfactant concentrations are obtained in proximity of interface troughs (negative
values of ζ/h, interface regions close to one of the walls) while lower surfactant concentrations are found close
to interface crests (positive values of ζ/h, interface regions far from the walls).

The differences observed in the interface structure between the clean and surfactant-laden cases,
can be better understood by looking at the surfactant distribution at the interface, i.e., at φ = 0.
Figure 4 shows the instantaneous value of the surfactant concentration (top row: dark-low, light-
high) together with the instantaneous value of the interface elevation ζ/h (bottom row: dark-crests,
light-troughs). The left column [Figs. 4(a) and 4(c)] refers to λ = 10, while the right column
[Figs. 4(b) and 4(d)] refers to λ = 100.

For λ = 10 (left column), we observe a rather uneven distribution of the surfactant at the
interface: Regions having high values of the surfactant concentration, and thus strong surface tension
reductions (light colors), coexist with regions having small values of the surfactant concentration,
and thus smaller surface tension reductions (dark colors). A vis-à-vis comparison between Figs. 4(a)
and 4(c) shows that regions characterized by small surfactant concentrations (dark colors) seem to
correlate with regions characterized by large values of the interface elevation (dark colors). This
correlation holds also for λ = 100 [Figs. 4(b) and 4(d)], even though waves are smaller and so are
gradients of surfactant concentration.

To quantify the correlation between the interface elevation, ζ/h, and the surfactant concentration
at the interface (φ = 0), we compute their joint probability density function (JPDF). Results are
shown in Fig. 5; Fig. 5(a) refers to λ = 10 (surfactant-laden case) while Fig. 5(b) refers to λ =
100 (surfactant-laden case). The interface elevation is shown in the x axis, while the surfactant
concentration is shown in the y axis. The equilibrium surfactant concentration [obtained from Eq. (8)
for φ = 0] is indicated by the dashed horizontal line, whereas the mean position of the interface is
indicated by the dashed vertical line. A light-dark colormap shows the probability density function.

Considering λ = 10 [Fig. 5(a)], we observe that for negative values of the interface elevation
(troughs), the surfactant distribution is rather wide, indicating that the high-concentration region and
low-concentration region are found inside the troughs (no clear correlation between the interface
elevation and the surfactant concentration). As we move towards larger values of the interface
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(a) (b)

FIG. 5. Joint probability density functions (JPDF) of surfactant concentration (evaluated at the interface
position, φ = 0) and interface elevation ζ/h. The equilibrium value of the surfactant concentration (at φ = 0)
is reported with a dashed horizontal line, while the mean interface position ζ/h is reported with a vertical
dashed line. Panel (a) refers to λ = 10 while panel (b) to λ = 100. A light-dark colormap is used to identify
contours of the probability density function.

elevation (crests), the picture changes, and the distribution is no longer centered about the surfactant
equilibrium concentration. In particular, for large values of interface elevation (ζ/h > 0.15), low
values of the surfactant concentration are more likely observed (ψ � 0.1). This indicates the
tendency for surfactants to leave the crests and accumulate into troughs. As a consequence, crests
are characterized by small surface tension modifications (small surfactant concentration), while
troughs are characterized by large surface tension modifications (large surfactant concentration).
This observation provides also a possible explanation for the different behavior of PDF(ζ/h)
(see Fig. 3) for negative (troughs) and positive (crests) events in case of a surfactant-laden system.
Indeed, most of the modifications are observed in the region corresponding to interface troughs,
where surfactant accumulates. Considering now λ = 100 [Fig. 6(b)], the distributions of surfactant

(a) (b)

FIG. 6. Joint probability density functions (JPDF) of the surfactant concentration and the instantaneous
interface velocity. Both quantities are evaluated at the interface position φ = 0. The equilibrium value of the
surfactant concentration at φ = 0 is shown by a dashed horizontal line. The mean velocity at the interface
position, 〈u+

x (z/h = ±0.85)〉, is shown by a vertical dashed line. Panel (a) refers to λ = 10 while panel (b) to
λ = 100.
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concentration and interface elevation become narrow, but the trend remains similar to the previous
case, and even more clear: High surfactant concentrations correlate with the presence of troughs and
low surfactant concentration with the presence of crests.

A possible explanation to the correlation existing between crests and low surfactant concentra-
tions (respectively, troughs and high surfactant concentration) can be found considering the different
value of the streamwise velocity near interface crests and troughs: near interface crests (far from
the walls) the streamwise velocity is higher, while near interface troughs (close to the walls) the
streamwise velocity is lower. Because of this relative velocity, surfactants are transported from
interface crests towards interface troughs. As a result, interface crests are depleted of surfactants,
which in turn accumulate at the interface troughs.

We test our conjecture computing the JPDF of the surfactant concentration, evaluated at the
interface position (φ = 0), and the instantaneous streamwise velocity at the interface location,
u+

x (φ = 0). Results are shown in Fig. 6 for λ = 10 [Fig. 6(a)] and λ = 100 [Fig. 6(b)]. The surfac-
tant concentration is reported along the vertical axis, while the instantaneous streamwise velocity
is reported along the horizontal axis. The equilibrium surfactant concentration is indicated by the
dashed horizontal line, while the mean streamwise velocity at the interface location, 〈u+

x (φ = 0)〉,
is indicated by a vertical dashed line. A light-dark colormap is used to identify the isocontours of
the probability density function.

For the case λ = 10 [Fig. 6(a)], a negative correlation between surfactant concentration and
interface velocity is observed, in particular for higher-than-mean velocity [u+

x > u+
x (φ = 0)] and

lower-than-equilibrium surfactant concentrations (ψ < ψeq). This indicates that crests (regions with
higher-than-mean velocity) are characterized by smaller surfactant concentrations. This correlation
is less pronounced for troughs [u+

x < u+
x (φ = 0)], where regions of large and small surfactant

concentration can be found. For the case λ = 100 [Fig. 6(b)], the distributions of the surfactant
concentration becomes narrower, but the trend is similar to the one observed for λ = 10. In fact, the
negative correlation between velocity and surfactant concentration is even more apparent: Crests
correlate with small surfactant concentration and trough with large surfactant concentration.

B. Turbulence features and wall shear stresses

As already anticipated, the dynamics of the oil-water interface has an influence on the behavior
of the flow field in the lubricating layer and in particular in the proximity of the wall. This aspect
can be properly investigated by looking at the streaky structure of the flow near the bottom wall. In
particular, we consider the spatial distribution of the instantaneous streamwise velocity, u+

x , in a x −
y plane located at z/h = 0.99, i.e., at distance 0.01h from the wall (roughly corresponding to 10 wall
units). Figure 7(a) shows the considered plane (shown in red) and its position with respect to the oil-
water interface: The plane is located entirely in the bottom lubricating layer and does not intersect
the deformable oil-water interface. Figures 7(b)–7(f) shows the contour map of the streamwise
velocity obtained for the five different cases: single-phase [Fig. 7(b)], λ = 10 (clean) [Fig. 7(c)],
λ = 100 (clean) [Fig. 7(d)], λ = 10 (surfactant-laden) [Fig. 7(e)], and λ = 100 (surfactant-laden)
[Fig. 7(f)]. Dark colors indicate high velocity values, while light colors indicate low velocity values.
In all panels, the flow moves from left to right along the x positive direction. Note that, because of
the flow symmetry, a similar behavior would be observed near the top wall.

For the single-phase case [Fig. 7(a)], we observe the classical streaky structure of wall tur-
bulence characterized by the presence of low-speed streaks, whose spacing scales in wall units
(ly ∼ 100 w.u.). We also observe the footprint of large-scale motions (LSM) as highlighted by
the clustering of low- or high-speed streaks with a streamwise length of � πh. Considering the
multiphase cases [water-lubricated channels, Figs. 7(c)–7(f)], we notice a very different flow
structures. We focus first on the clean cases only, Figs. 7(c) and 7(d). For λ = 10 [Fig. 7(c)],
turbulence is highly nonuniform and seems to show the typical patterns of laminar-turbulent flow
transition [70,71], characterized by the coexistence of nearly laminar regions (laminar patches) and
regions of very high turbulence activity (turbulence pockets or spots, with high-low speed streaks).
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. Instantaneous distribution of the streamwise velocity, ux , in a wall-parallel section (x − y plane)
located at a distance d/h = 0.01 from the bottom wall (roughly corresponding to 10 w.u.). Panel (a) shows
the location of the considered x − y plane: The plane is located inside the bottom lubricating layer and does
not intersect the oil-water interface. Panel (b) refers to the single-phase case; panels (c) and (e) to λ = 10;
and panels (d) and (f) to λ = 100. The middle row refers to the clean cases, while the bottom row to the
surfactant-laden cases.

For λ = 100 [Fig. 7(d)], the situation changes, and turbulence appears reactivated and almost evenly
distributed on the x − y plane. In fact, the situation is different compared to the single-phase case
[Fig. 7(a)]: The characteristic length scale of turbulence appears larger in the spanwise direction,
and there seems to be no-signature of LSM [clustering of low- or high-speed streaks like those in
Fig. 7(a)].

We look now at the influence of surfactants on the turbulence activity in the lubricating layers. For
λ = 10—but similar trends, though less emphasized, are also visible at λ = 100—laminar patches
are larger, and the turbulence seems a bit stronger than the clean case. This is due to the change of
the interface position, which comes closer to the wall when surfactants are present (see Fig. 3).

To characterize the different turbulence structure observed in the lubricating layers, we look at
the wall shear stress, and we compute its PDF [38,40,72–75]. Results are shown in Fig. 8. Note
that, given the definition of the wall shear stress, τw = ηw∂ux/∂z, negative values of τw represent
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FIG. 8. PDF of the wall-shear stress, τw . The behavior of the single-phase case is shown using a black line.
Results that refer to λ = 10 are reported with violet lines while those referring to λ = 100 with red lines. Clean
cases are reported with continuous lines while surfactant-laden cases with dashed lines. A dashed vertical line
indicates the critical condition τw = 0. The inset shows the PDFs in linear scale and vertical lines (same color
code) are used to mark the location of the PDF peak.

back-flow events, i.e., flow regions where velocity goes against the mean pressure gradient (i.e.,
against the mean flow velocity) [38,74,76].

The different cases in Fig. 8 are identified by different colors: black for the single-phase flow,
violet for λ = 10, and red for λ = 100. Continuous and dashed lines are used for the clean and
surfactant-laden cases, respectively. A dashed vertical line highlights the critical condition τw = 0
and the region where back-flow events occur. First, we focus on the single-phase case. In agreement
with previous literature studies [38,72–75], we notice that the PDF(τw) is asymmetric and positively
skewed, indicating that positive fluctuations are larger in magnitude and occur more frequently
than negative fluctuations (the maximum value is τw � 4, while the minimum is τw � −0.5). The
probability of observing negative events, despite being smaller than that of positive events, is non-
negligible and is found to increase for increasing Reynolds numbers [74].

The situation changes for the multiphase flow cases. For λ = 10 (violet lines), there is an
increased probability not only of large positive and negative τw but also of intermediate events,
0 < τw < 1, as clearly shown in the inset of Fig. 8. All these results are due to the modulation of the
wall-shear stress by the interface deformation. When the interface has a crest, there is room for the
flow in the lubricating layer to sustain and amplify turbulence fluctuations (i.e., larger probability of
τw < 0 and τw > 3). When the interface has a trough, there is no room for turbulence to develop in
the lubricating layer, and the flow becomes laminar. This explains the larger probability of observing
nearly laminar shear stress (0 < τw < 1).

The correlation between interface deformation (crests and troughs) and the wall-shear stress is
shown for λ = 10 in Fig. 9(a): Isocontours (white) of the interface elevation highlighting crests
and troughs are superposed to the contour maps of the wall-shear stress. It is clear that when the
interface is close to the wall (ζ/h < 0, troughs), laminar patches are present and these patches
are characterized by τw � 0.5 (orange). When the interface is far from the wall (ζ/h > 0, crests),
turbulence pockets appear, as highlighted by the fluctuations of the wall-shear stress (light to dark
colors).

Moving now to the case λ = 100 (red lines) in Fig. 8, the picture changes compared to the case
λ = 10, and the PDF becomes closer to the PDF of the single-phase case (though with a reduction of
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(a)

(b)

FIG. 9. Superposition of contour maps of the wall-shear stress at the bottom wall (colors, white-low;
dark-high) and isocontours (white) of the interface elevation ζ/h. For the interface elevation, continuous
lines identify positive interface elevations (crest) while dashed lines identify negative values (troughs). Panel
(a) refers to λ = 10 while panel (b) to λ = 100. For λ = 10, positive values of the interface elevations ζ/h
(continuous lines) correlate with large positive and negative fluctuations of the wall-shear stress, while negative
values of the interface elevation ζ/h (dashed lines) correlate with low values of the wall-shear stress (laminar
patches). For λ = 100 this correlation is not present, and the wall-shear stress distribution is more uniform.

the probability to observe extreme positive and negative events—because of the absence of LSM—
and slightly larger probability of observing moderate events, 0.5 < τw < 1). The uniform turbulence
activity obtained for this case can be also appreciated from Fig. 9(b), which shows the wall-shear
stress distribution at the bottom wall together with the isocontours of the interface elevation (white).
It is apparent that the distribution of the wall shear stress is more uniform in the entire x − y plane
and that is not correlated with the interface elevation (solid and dashed white lines do not correlate
with specific flow features at the wall). We finally note that the presence of surfactants induce only
minor changes to the picture (see dashed lines in Fig. 8).

C. Mean velocity, flow rates, and pressure gradient

The changes in the local flow structure discussed above result into a corresponding change in
the macroscopic flow properties. We start by considering the mean streamwise velocity, 〈u+

x 〉, as
a function of the wall-normal coordinate. Results are shown in Fig. 10 for the different cases:
single-phase flow (black), λ = 10 (violet), and λ = 100 (red). Continuous and dashed lines refer,
as usual, to the clean and surfactant-laden cases, respectively. In Fig. 10(a), velocity is expressed
in wall units (using the value of uτ evaluated for each case, see Table I) while the wall-normal
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(a) (b)

FIG. 10. Wall-normal behavior of the mean streamwise velocity, 〈u+
x 〉. Panel (a) shows the velocity profiles

in linear scale (outer units) while panel (b) in semilogarithmic scale (wall units). The different cases are
reported: single-phase flow (black line), λ = 10 (violet), and λ = 100 (red). Clean cases are reported with
continuous lines and surfactant-laden cases with dashed lines. Two vertical lines mark the average position of
the interface, z/h = ±0.85. Linear and logarithmic profiles are also reported as a reference with thin dotted
and dash-dotted lines, respectively.

coordinate is expressed in outer units, z/h. In Fig. 10(b), both velocity and wall-normal coordinates
are expressed in wall units, z+, and plotted in semilogarithmic scale (z+ coordinate). The classical
law of the wall, u+ = z+ and u+ = (1/k) log(z+) + 5.2 (with k = 0.41 the von Kármán constant),
is also reported as a reference [77]. The vertical dashed lines indicate the average position of the
interface: In Fig. 10(a), z/h = ±0.85; in Fig. 10(b), the average position of the interface is different
because of the different friction velocity.

Compared to the single phase case, and no matter the value of λ, we immediately notice that the
water-lubricated channel cases are characterized by a large increase of mean velocity. Specifically,
for λ = 10, we observe velocity values in the central part of the channel (oil phase), which
are approximately 50% larger than those obtained for the single-phase case. For λ = 100 we observe
similar results, though the shape of the velocity profile is different, in particular near the average
interface position. It is interesting to note that, the larger the viscosity ratio, the flatter becomes the
profile in the central region of the channel: The high oil viscosity in the core of the channel strongly
reduces the velocity gradients and the turbulent fluctuations in this region. This seems to indicate
that the oil layer at center of the channel moves as a plug flow, in particular for λ = 100. This aspect
becomes extremely clear in Fig. 10(b). While in the near wall region—occupied by the lubricating
layers—all velocity profiles match the classical law of the wall, 〈u+

x 〉 = z+ (first dotted line), from
z+ ∼ 25, the velocity profiles of the water-lubricated cases do depart from the logarithmic law
and follow a steeper increase. In particular, for λ = 100 (red line), the velocity profile follows a
linear behavior (second dotted line), closely recalling the Couette-Poiseuille flow instances [78].
The emerging picture is the following: The oil core, given its high viscosity, moves as a plug flow
inside the channel, very much like the moving solid boundary does in the Couette case; this plug
flow drives the motion inside the lubricating layer. Note that the presence of surfactants induces only
minor changes to this picture. In fact, for λ = 100, the clean and surfactant-laden cases perfectly
overlap.

We finally look at the drag reduction obtained by computing the flow rates and the pressure drop
of the water-lubricated channels. Results are normalized by the corresponding single-phase flow of
oil and are shown in Fig. 11. In Fig. 11(a), we plot the flow rate as a function of the applied pressure
gradient, i.e., (px, Qt ) pairs. The black solid line indicates the value of the power (proportional to
the product between px and Qt ), which is kept constant among all simulations (CPI approach, see
Sec. II). In Fig. 11(b), we plot the behavior of the pressure gradient, px, and of the flow rate of the
oil core and of the entire channel, Qo and Qt , respectively, as a function of the viscosity ratio, λ.
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(a) (b)

FIG. 11. Steady-state values attained by the oil flow rate, Qo, total flow rate, Qt , and pressure gradient
px in physical units and normalized by the single-phase value of the corresponding oil. Panel (a) shows the
achieved flow rates against the required pressure gradient; a black line is used to identify the constant power
input constraint. Panel (b) shows the effect of the viscosity ratios on the flow rates and pressure gradient. Clean
(surfactant-free) cases are represented with full symbols while surfactant-laden cases are shown with empty
symbols. For both viscosity ratios considered, it can be observed that the oil flow rate is obtained using the
water-lubricated technique is greater than that of the single-phase value of the respective oil.

Clean cases are represented by full symbols, while surfactant-laden cases are represented by empty
symbols. Different colors are used to indicate different cases: λ = 10 (violet) and λ = 100 (red).

Looking at Fig. 11(a), we can first observe that all simulation data collapse on the black solid line,
which represents the CPI constraint (isopower curve). Considering the various cases, we notice that
the total flow rate, Qt , is always larger than that of the single-phase flow (of the corresponding oil).
In particular, for λ = 10, the oil flow rate is 1.7 times larger than that of the corresponding single-
phase flow, while for λ = 100, it is 4 times larger. Since the simulations are performed keeping
constant the power input, an increase of the total flow rate corresponds to a decrease of the pressure
gradient applied to drive flow (px � 0.6 for λ = 10, and px � 0.25 for λ = 100). The presence of
surfactants induces only minor differences to the overall flow rates or pressure gradients: surfactant-
laden cases exhibit slightly smaller flow rates with respect to the surfactant-free counterparts. This
effect is a bit more visible for λ = 10, while it vanishes for λ = 100. Overall, these results indicate
that a remarkable DR is observed in water-lubricated oil channels, which clearly depends on the
considered viscosity ratio between the transported fluid and the fluid used to lubricate the flow. At
the same time, the presence of surfactants and impurities has only little effect on the drag reduction
performances, and this effect tends to vanish when larger viscosity ratios are considered (λ = 100).
Finally, it is interesting to observe that the mechanisms leading to drag reduction in the low- and
high-viscosity cases are slightly different: For λ = 10, the larger amplitude of the interfacial waves
leads to the generation of laminar patches, which induce lower strain rates and, together with the
smaller water viscosity, leads to drag reduction. This DR mechanism resembles the one observed
in our previous works [38,39] performed at moderate viscosity ratios with a single lubricating layer
where turbulence-interface interactions are the main factor leading to DR. For λ = 100, the former
drag reduction mechanism (generation of laminar patches) tends to vanish, and drag reduction is
mainly driven by the small viscosity of the lubricating layer (water). Hence, compared to previous
works [38,39], the observed DR mechanism is different and is mainly linked to the low viscosity of
the lubricating layer.

IV. CONCLUSIONS

We have performed direct numerical simulations of a water-lubricated channel flow, a flow
instance in which two near-wall thin lubricating layers of water are used to favor the transport
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of a more viscous fluid (e.g., oil). The simulations rely on DNS of turbulence, coupled with a
phase-field method, which is used to describe the dynamics of the oil-water interface and the
presence of surfactants or contaminants. Simulations have been performed using the CPI approach.
We considered a channel geometry, and by keeping the viscosity of the two lubricating layers fixed
(e.g., assuming water as lubricating fluid), we considered two different types of oil: an oil that is
10 times more viscous than the water of the lubricating layer (viscosity ratio λ = ηo/ηw = 10) and
an oil that is 100 times more viscous (viscosity ratio λ = 100). For each value of the viscosity
ratio, a clean (surfactant-free) case—characterized by a constant and uniform value of the surface
tension—and a surfactant-laden case—characterized by a surface tension value that depends on the
local surfactant concentration—have been studied.

First, we analyzed the interplay between the interface deformation and the turbulence activity
in the two lubricating layers. For λ = 10, we observed large interface deformations, which are
larger towards the channel center than towards the wall (wall-confinement effect). Therefore, the
interface strongly interacts with the near-wall turbulence cycle: laminar regions appear where the
interface is close to the wall (and there is not enough room in the lubricating layer to develop and
sustain turbulence), while turbulence regions appear where the interface is farther from the wall.
Naturally, this induces large fluctuations of the wall-shear stress τw. For λ = 100, the large oil
viscosity acts as a stabilizing agent to the interface, which becomes less deformable. As a result,
the interface deformations are smaller in magnitude and almost symmetric (there is only a slight
asymmetry between deformations towards the channel center and deformations towards the wall).
This reduces the interactions between the near-wall turbulence cycle and the interface itself: laminar
patches are no longer present near the wall, and instead a rather uniform turbulence activity can
be observed in the two lubricating layers. For both cases, the addition of a surfactant is found
to have little effect, with more pronounced modifications observed for λ = 10. However, further
investigations are required to confirm present findings: surfactant dynamic is controlled by many
different parameters (e.g., strength, diffusivity, adsorption or desorption, solubility).

Finally, we considered the behavior of the macroscopic flow parameters. We observed that the
mean velocity profiles follows the classical law of the wall up to z+ < 30 w.u. in the two lubricating
layers. For larger values of the wall-normal coordinate, the profiles deviate from the logarithmic law,
not only because of the presence of the interface, but also because of the pluglike flow of oil at the
core of the channel (due to the high oil viscosity). Considering the drag reduction performance, we
observe that oils, 10 and 100 times more viscous than water, can be transported appling a remarkable
lower pressure gradient, px. Specifically, compared to the corresponding single phase of oil, we
observed a reduction down to px/px,sp � 0.25 for λ = 100. Present results highlight the potential
of the water-lubricated technique in effectively reducing the drag and thus favoring the transport
of highly viscous fluids. However, further studies are required before applying this technique in
industrial configurations as one limitation of the present work is the moderate Reynolds number
considered (due to the computational requirements of DNS of multiphase turbulence).
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APPENDIX: EXTENSION OF THE CPI APPROACH TO VISCOSITY
STRATIFIED MULTIPHASE FLOWS

We present here the extension of the CPI approach to viscosity stratified flows. We start by
briefly summarizing its derivation for a single-phase flow [46,56]. In particular, we consider the flow
inside a plane channel bounded by two walls located at z = ±h, Fig. 12(a). The flow is Newtonian,
with viscosity η. A constant pumping power per unit area, Pp, is used to drive the flow along the
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(a) (b)

FIG. 12. Sketch of the channel configurations used to derive the laminar flow solution: single phase (a) and
viscosity stratified (b). For the single phase, the viscosity, η, is uniform and thus a symmetric velocity profile,
ux , is obtained. For the viscosity stratified case, the thin lubricating layer (mh < z < h) has viscosity ηw while
the primary layer (−h < z < mh) has viscosity ηo and an asymmetric velocity profile (ux,w in the lubricating
layer and ux,o in the primary layer) is obtained. For both panels, the maximum velocity, um, and the bulk
velocity, ub, have been highlighted.

streamwise direction. Assuming a laminar flow, the following velocity profile is obtained:

ux(z) = 1

2η
(z2 − h2), (A1)

where px is the pressure gradient along the streamwise direction. The bulk velocity (i.e., the average
velocity across the channel section) can be computed integrating the velocity profile along the wall-
normal direction:

ub = 1

2h

∫ z=h

z=−h
uxdz = 1

3η
(−px )h2. (A2)

The power dissipated by the viscous forces can be computed as:

ε = 1

2

∫ z=h

z=−h
η

(
dux

dz

)2

dz = 1

η
(px )2 h3

3
= 3η

h
(px )2 h4

9η2︸ ︷︷ ︸
u2

b

= 3ηu2
b

h
, (A3)

At equilibrium (i.e., fully developed flow), the power dissipated by the viscous forces is equal to
the power injected in the system. Matching the expression of Pp with Eq. (A3), we can identify a
velocity scale, u�, for the problem:

ub = u� = usp
� =

√
Pph

3η
. (A4)

To extend the CPI approach to viscosity stratified flows, we can proceed in a similar way. We refer
to the sketch in Fig. 12(b). The top and bottom lubricating layers are characterized by viscosity ηw

while the central layer is characterized by viscosity ηo. The flow is laminar and the interface between
the two layers is located at z = ±mh (note that m = 0.85 in the present work). No-slip boundary
conditions are applied at the two walls, while continuity of velocity and stress is enforced at the
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interface [79, p. 198]. The resulting streamwise velocity profile is

ux(z) =

⎧⎪⎨
⎪⎩

ux,w(z) for mh < z < h

ux,o(z) for −mh < z < mh

ux,w(z) for −h < z < −mh

, (A5)

where ux,w is the velocity in the two lubricating layers and ux,o is the velocity profile in the core
layer. These two velocities are defined as follows:

ux,w(z) = 1

2ηw

(px )(z2 − h2), (A6)

ux,o(z) = 1

2ηo
(px )(z2 − Ah2), (A7)

where the coefficient A, which depends on the thickness of the lubricating layer (i.e., on the
parameter m) and on the viscosity ratio λ = ηo/ηw, is defined as:

A(λ, m) = λ − λm2 + m2. (A8)

The bulk velocity can be computed integrating the velocity profile along the wall-normal direction
(i.e., the two velocity profiles over the corresponding thickness). Using the symmetry of the system,
we can write:

ub = 1

h

[∫ z=h

z=mh
ux,wdz +

∫ z=0

z=mh
ux,odz

]
= 1

η1
(−px )

h2

3
B, (A9)

where the coefficient B is defined as:

B = 1 − 3

2
m + m3

2
− m3

2λ
+ 3mA

2λ
. (A10)

The coefficient B highlights the main difference with the expression of the bulk velocity for a single-
phase flow [Eq. (A2)]. From a physical point of view, the ratio ηw/B can be interpreted as the
equivalent viscosity of the system.

Similarly, the power dissipated by the viscous forces can be computed from the expression of the
velocity profiles:

ε =
[∫ z=h

z=mh
ηw

(
dux,w

dz

)2

dz +
∫ z=mh

z=0
ηo

(
dux,o

dz

)2

dz

]
. (A11)

After some algebra, we can simplify the expression as follows:

ε = 1

ηw

(px )2h3D, (A12)

where the coefficient D is defined as:

D = 1 − m3 + m3

λ
. (A13)

Viscous dissipation can be rewritten as:

ε = 3ηw

h

D

B2
(−px )2 h4

9η2
w

B2

︸ ︷︷ ︸
u2

b

. (A14)

Consistently with the previous derivation, the bulk velocity is used as reference velocity scale and
its expression can be obtained by matching the expression of the viscous dissipation [Eq. (A14)]
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with that of the pumping power. This gives:

u� = ub =
√

B2

D

Pph

3ηw

=
√

B2

D

√
Pph

3ηw︸ ︷︷ ︸
usp

�

. (A15)

Under CPI conditions, the coefficient
√

B2/D is used to account for the presence of two lubricating
layers of different viscosity near the two walls [Eq. (A4)]. Thanks to the symmetry of the system, it
is worth to observe that, on substitution of the expression of Eq. (A8) in Eq. (A10), we have B = D
and Eq. (A15) can be rewritten as follows:

u� =
√

D

√
Pph

3ηw

=
√

Dusp
� (A16)
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