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Computationally Efficient
and Interface Accurate Dual-Grid
Phase-Field Simulation
of Turbulent Drop-Laden Flows
In this work, we develop a dual-grid approach for the direct numerical simulations of
turbulentmultiphase flows in the framework of the phase-fieldmethod (PFM).With the dual-
grid approach, the solution of the Navier–Stokes equations (flow-field) and of the
Cahn–Hilliard equation (phase-field) are performed on two different computational grids.
In particular, a base grid—fine enough to resolve the flow down to the Kolmogorov scale—is
used for the solution of the Navier–Stokes equations, while a refined grid—required to
improve the description of small interfacial structures—is used for the solution of the
Cahn–Hilliard equation (phase-field method). The proposed approach is validated, and its
computational efficiency is evaluated considering the deformation of a drop in a two-
dimensional shear flow. Analyzing the computational time and memory usage, we observe a
reduction between ’30% and ’40% (with respect to the single-grid approach),
depending on the grid refinement factor employed for the phase-field variable. The
applicability of the approach to a realistic three-dimensional case is also discussed, by
focusing on the breakage of a thin liquid sheet inside a turbulent channel flow. Indications on
the grid resolution representing a good compromise between accuracy and computational
efficiency in drop-laden turbulence are also provided. [DOI: 10.1115/1.4065504]

1 Introduction

Turbulent flows laden with drops and particles are commonly
encountered in a number of natural and industrial processes.
Examples include the formation of raindrops in the atmosphere and
at the ocean surface [1–3], the atomization and spray generation in
fuel injection and combustion [4–6], the transmission of respiratory
diseases [7–9] and many other flow instances [10,11].
The key issue in the numerical analysis of turbulent multiphase

flows is the wide range of spatial and temporal scales involved in the
problem: from flow phenomena that occur within a range of scales
between the integral (large) and the Kolmogorov (small) scale, to
interfacial phenomena, that occur within a much wider range of
scales, from the drop/bubble scale down to themolecular scale of the
interface. Typically, the scale separation between flow and
interfacial scales is about eight to nine orders of magnitude, a
situationwhichmakes accurate simulations—taking into account all
flow and interfacial scales—extremely challenging to perform

[12–14]. In addition, the numerical description of an ever-moving
and deforming interface requires numerical methods able to capture
its deformation and topological changes. We can identify two
different macrofamilies of numerical methods: interface tracking
methods, where the interface is explicitly tracked with the use of
marker points, and interface-capturing methods, where the interface
is identified as the isovalue of a color (or marker) function. Because
of their flexibility, interface capturing methods (e.g., volume-of-
fluid, level-set and phase-field methods [15–17]) are widely used.
Yet, in the context of interface capturing methods, it is desirable to
solve the color/marker function variable on a grid that is refined as
much as possible, so that small drops/bubbles and thin fluid
ligaments can be accurately captured and topological changes better
described [14,18,19]. Naturally, there is a limit to the grid resolution
that can be afforded, even using cutting-edge high-performance
computing resources.
The challenge associated with the idea of resolving all the

involved length scales of the problem, along with the limitation on
themaximum grid resolution that can be used has driven researchers
toward the development of different strategies. Two possibilities are
available to increase the efficiency of the computational approaches
for multiphase flows: adaptive mesh refinements (AMRs) and
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dual-grid approaches. Using AMR schemes [20,21], the computa-
tional grid is locally refined near the interface, where most of the
marker function gradients are located, while a coarser grid (thus
reducing the computational cost) can be adopted farther from the
interface. This strategy has been applied to the most popular
interface capturing methods (using quadtree-, octree-based algo-
rithms), like volume-of-fluid [22–25], level-set [26–32], Lattice-
Boltzmann [33,34], and phase-field methods [35,36]. Differently,
using dual-grid approaches (or multiresolution strategies), the flow-
field is resolved on a base grid, fine enough to capture the smallest
flow scale (i.e., order of the Kolmogorov length-scale) while the
marker function is solved on a more refined grid so that smaller
interfacial features can be described [37–40]. Each of these
techniques has its own advantages and disadvantages. On one
hand, while in principle AMR schemes provide the most cost-
effective strategy (as the grid is only refined at the interface
location), it is not straightforward to balance properly the load
among the different parallel tasks (i.e., to have an optimum
scalability) as the load balance depends on the interface location.
In addition, AMR schemes, are mainly suitable for local methods (e.
g., finite difference, finite volume, finite-element, or Lattice-
Boltzmann methods) and less applicable to global methods, like
pseudo-spectral methods [41]. On the other hand, dual-grid
approaches are less effective in reducing the computational cost,
but are less influenced by scalability issues (as the computational
load per parallel process does not vary over time) and can be applied
to different numerical methods [37–40]. These differences are also
reflected in the ease of implementation of these two techniques.
Generally speaking, AMR is of more difficult implementation, and
external libraries [31,42] are often used, while the dual-grid
approach is easier to implement, as the solution schemes do not
require extensive modifications.
In this work, we develop and test a dual-grid approach for the

direct numerical simulation of multiphase turbulence. The proposed
approach relies on the pseudo-spectral direct numerical simulation
of turbulence—used to describe the flow-field—coupled with a
phase-field method—used to describe the interface dynamics. We
recall here that the phase-field method (PFM) is an interface-
capturing method that is based on the introduction of an order
parameter, /, which is constant and uniform in the bulk phases
(/ ¼ 61), while it undergoes a smooth transition across the
interface separating the two phases. As the solution of the
Navier–Stokes equations in very fine grids is extremely time- and
memory-demanding, we use two different computational grids: a
base grid for the flow-field (which must be fine enough to solve for
the flow-field down to the Kolmogorov scale), and a refined grid
for the phase-field variable. This allows for the accurate description
of the flow-field, while at the same time improving the description
of the small interfacial features (drops, ligaments). To the best of our
knowledge, the dual-grid approach is here applied for the first time to
pseudo-spectral simulations of multiphase turbulence.
The paper is organized as follows. First, the governing equations

and the numerical method are presented, Secs. 2 and 3. Then, the
proposed method is benchmarked for the case of a drop released in a
laminar shear flow, Sec. 4, and later used to study the breakage of a
thin liquid sheet in turbulence, Sec. 5. Finally, conclusions are
drawn, Sec. 6.

2 Methodology

The numerical method that was previously developed to study the
dynamics of clean and surfactant-laden interfaces in turbulence
[19,43–45], is here extended to allow for the use of a dual-grid
approach: a base grid is used to solve for the flow-field, while a finer
grid is used to solve for the dynamics of the interface. The reference
geometry consists of a plane channel, whose reference length is the
half-height, h. In the following, the main features of the proposed
approach will be presented and discussed.

2.1 Phase-Field Method. The PFM is an interface-capturing
method used for the description of multiphase flows. The method is

based on the introduction of a marker function—the phase-field
variable/—that is uniform in the bulk of the phases (/ ¼ 61 in the
two phases) while it varies smoothly over the thin transition layer
that separates the two phases [17,46,47]. The time evolution of the
phase-field variable can be described by the Cahn–Hilliard (CH)
equation which, in dimensionless form, reads as

@/
@t

þ u � r/ ¼ 1

Pe
r2lþ fp (1)

where u ¼ ðux, uy, uzÞ is the velocity vector, l is the chemical
potential, and fp is the penalty flux term used in the profile-corrected
formulation of the phase-field method, and will be discussed better
below. The P�eclet number, Pe, represents the ratio between the
diffusive timescale, h2=Mb2, and the convective time scale, h=us

Pe ¼ ush

Mb
(2)

where us ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
sw=qc

p
is the friction velocity (with sw is the wall

shear-stress and qc is the density of the carrier fluid), h is the half-
channel height, M is the mobility parameter, and b is a positive
constant introduced in the dimensionless procedure.
The chemical potential,l, is obtained as the variational derivative

of the Ginzburg–Landau free-energy functional [17,19,48,49]. To
model the case of two immiscible fluids, the free-energy functional,
F½/,r/�, is composed by the sum of two different contributions
[17,48]

F½/,r/� ¼
ð
X
ðf0 þ fmixÞdX (3)

f0 ¼ 1

4
/2 � 1
� �2

(4)

fmix ¼ Ch2

2
jr/j2 (5)

The first term, f0, indicates the tendency for themultiphase system to
separate into the two pure stable phases, while the second
contribution, fmix (mixing energy), is a nonlocal term accounting
for the energy stored at the interface. The Cahn number, Ch ¼ �=h,
represents the dimensionless thickness of the interfacial layer
separating the two phases. By taking the functional derivative (with
respect to /) of the Ginzburg–Landau free-energy functional, we
obtain the expression of the chemical potential

l ¼ dF /,r/½ �
d/

¼ /3 � /� Ch2r2/ (6)

At equilibrium, considering that the chemical potential is constant
throughout the domain (rl ¼ 0), the following (equilibrium)
profile is obtained for a planar interface:

/eq ¼ tanh
sffiffiffi
2

p
Ch

� �
(7)

where s is the coordinate normal to the interface (located at s¼ 0).
From Eq. (7), the characteristic width of the thin interfacial layer
(identified as the region where �0:9 < / < 0:9, Ref. [50]) can be
approximated as 4:1Ch. Hence, the width of the transition layer
directly depends on the Cahn number, Ch.
Finally, the term fp in Eq. (1) is a penalty flux that is used to

overcome some drawbacks of the original formulation of themethod
used to solve theCHequation [51–53]. The expression of the penalty
flux reads as follows:

fp ¼ k
Pe

r2/� 1ffiffiffi
2

p
Ch

r � 1� /2
� � r/

jr/j
� �� �

(8)
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where k is a numerical parameter [43,52]. Note that, to converge
toward the sharp interface limit, the P�eclet number is set equal to
Pe ¼ 1=Ch for all simulations [54,55].

2.2 Hydrodynamics. To describe the flow-field of the multi-
phase system, the Cahn–Hilliard Eq. (1) is coupled with the
Navier–Stokes equations [14,56,57]. We consider here two
incompressible and Newtonian phases that can have different
densities and viscosities. With these assumptions, the
Navier–Stokes equations read as

r � u ¼ 0 (9)

q /ð Þ @u

@t
þ u � ru

� �
¼ �rpþ 1

Res
r � g /ð Þ ruþruTð Þ	 


þ fr

(10)

where p is the pressure-field and fr represents the surface tension
forces. These forces are here computed using a continuum-surface
stress approach as follows [58,59]:

fr ¼ 3ffiffiffi
8

p Ch

We
r � �sc½ � (11)

where �sc ¼ jr/j2I�r/�r/ is the Korteweg tensor used to
model surface tension forces [60]. The two functions qð/Þ and gð/Þ
are the dimensionless density and viscosity maps [43,61–64]

q /ð Þ ¼ 1þ qr � 1ð Þ/þ 1

2
, with qr ¼

qd
qc

(12)

g /ð Þ ¼ 1þ gr � 1ð Þ/þ 1

2
, with gr ¼

gd
gc

(13)

where qd and qc (respectively gd and gc) are the densities
(respectively viscosities) of the drops and carrier phases.
The dimensionless numbers that appear in the Navier–Stokes

equation (Eqs. (10) and (11)) are the friction Reynolds number

Res ¼ qcush
gc

(14)

which represents the ratio between the inertial and viscous forces,
and the Weber number

We ¼ qcu
2
sh

r
(15)

which represents the ratio between inertial and surface tension
forces (being r the surface tension). Note that both dimensionless
numbers are defined using the carrier phase properties as reference.

2.3 Numerical Method. The Navier–Stokes equations are
solved using the wall-normal velocity-vorticity formulation by
which they are recasted as a set of four equations: (i) a second-order
equation for the wall-normal component of the vorticity; (ii) a
fourth-order equation for thewall-normal component of the velocity
vector; (iii) the continuity equation; and (iv) vorticity definition
[65–69]. To obtain the system of governing equations, it is useful to
first rewrite the Navier–Stokes equations as follows:

@u

@t
¼ S�rpþ 1

Res
r2u (16)

where the term S contains all the nonlinear terms present in the
Navier–Stokes equations. By taking the curl of the Navier–Stokes
equations, the pressure term vanishes thanks to the identity r�
rp ¼ 0 and a transport equation for the vorticity vector is obtained

@x
@t

¼ r� Sþ 1

Res
r2x (17)

By taking again the curl of the vorticity transport equation, the
following fourth-order equation for the velocity can be derived:

@r2u

@t
¼ r2S�r r � Sð Þ þ 1

Res
r4u (18)

We solve here for the wall-normal components of the vorticity xz

and velocity w. Hence, the following equations are solved:

@xz

@t
¼ @Sy

@x
� @Sx

@y
þ 1

Res
r2xz (19)

@ r2wð Þ
@t

¼ r2Sz � @

@z

@Sx
@x

þ @Sy
@y

þ @Sz
@z

� �
þ 1

Res
r4w (20)

Complemented by the continuity equation and the definition ofwall-
normal vorticity

xz ¼ @v

@x
� @u

@y
(21)

The Cahn–Hilliard equation, which is a fourth-order equation, is
split into two second-order equations [48]. In particular, the CH
equation is first rewritten in the following way:

@/
@t

¼ S/ þ sCh2

Pe/
r2/� Ch2

Pe/
r4/ (22)

where S/ represents the contribution of the nonlinear terms. The
operator splitting r2/ ¼ r2/ðsCh2 þ 1Þ � sCh2r2/ is then
applied [48] where the positive coefficient s has been chosen
considering the temporal discretization.
The governing equations (9) and (19)–(22) are solved using a

pseudo-spectral method: the variables are transformed from the
physical into the wavenumber space. In the periodic directions
(x and y), all the quantities are expressed by Fourier expansions. In
the nonhomogeneouswall-normal direction, they are represented by
Chebyshev polynomials. All calculations are carried out in the
wavenumber space but the nonlinear terms,which are first computed
in the physical space and then transformed back to wavenumber
space (pseudo-spectral method). This avoids the evaluation of
(computationally expensive) convolutions in thewavenumber space
[70,71]. The governing equations are discretized in time using an
IMplicit-EXplicit scheme, in which the nonlinear terms are
integrated with an Adams–Bashfort scheme, while the linear terms
are integrated by a Crank–Nicolson (Navier–Stokes) or by an
implicit Euler (Cahn–Hilliard) scheme.
This numerical scheme has been implemented in a parallel

Fortran 2003 MPI in-house proprietary code. The parallelization
strategy relies on a 2Ddomain decomposition to divide theworkload
among all theMPI tasks. The code can also exploit GPU-based high-
performance computing infrastructures [72]: the solver execution
can be accelerated using openACC directives while the execution of
Fourier/Chebyshev transforms can be accelerated exploiting the
Nvidia cuFFT libraries. Overall, the computational method adopted
allows for the accurate resolution of all the governing equations and
the achievement of an excellent parallel efficiency thanks to the fine-
grain parallelism of the solver.
Periodic boundary conditions are imposed along the streamwise

and spanwise directions (x and y). At the twowalls, no-slip boundary
conditions are imposed for the velocity, u, while no-flux boundary
conditions in the wall-normal direction are imposed for the phase-
field, /, and for its second derivative [73]

uðx, y, z=h ¼ 61Þ ¼ ðuw, 0, 0Þ (23)
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@/
@z

x, y, z=h ¼ 61ð Þ ¼ 0 (24)

@3/
@z3

x, y, z=h ¼ 61ð Þ ¼ 0 (25)

with uw is the value prescribed for the streamwise velocity at the
wall.

3 Dual-Grid Approach

The key idea of the dual grid approach is the definition of two
computational grids: a base reference grid (labeled BG), with Nx �
Ny � Nz nodes, used to describe the flow-field (which must be fine
enough to solve the flow down to theKolmogorov length-scale), and
a finer grid (labeled FG) withMxNx �MyNy �MzNz nodes (withMi

positive integer representing the refinement factor along the ith
direction) used for the phase-field variable. This strategy is
graphically rendered in Fig. 1. Accordingly, time advancement of
the solution is achieved by executing, at each time-step, the
following substeps:

(i) Velocity field, un, is defined and allocated on the BG; phase-
field, /n, is defined and allocated on the FG; variables are
transformed in the spectral space, ûn and /̂n.

(ii) The surface tension term, which depends on the phase-field
variable, is computed on the FG and then, using spectral
interpolation, projected onto the BG.

(iii) The nonlinear viscous and inertial terms, which can also
depend on the phase-field variable, are computed on the BG.

This operation is accomplished by spectrally interpolating
the phase-field variable on the BG.

(iv) Continuity and Navier–Stokes equations are solved (using
thewall-normal velocity-vorticity formulation) on theBG to
obtain the new velocity field, ûnþ1.

(v) The new velocity field, ûnþ1, is spectrally interpolated onto
the FG.

Fig. 1 Three-dimensional rendering of liquid drops in turbulence: drops are visualized by the
isocontour /50 of the phase-field (panel a). The contour shows the turbulent kinetic energy,
TKE5 ðux

021uy
021uz

02Þ=2, in a midplane of the channel (z5 0). Panel b shows a close-up view
of the rendering where the isolevel /50 is explicitly highlighted. In panels c–e, we show the
effect of increasing the grid resolution (and thus the adoption of smaller Cahnnumbers) on the
interface representation in the context of the phase-field method for different values of
the refinement factor (panelc refers toMi5 1; paneld refers toMi52; panele refers toMi53). In
particular, a band identifies the region in which the phase-field method undergoes a smooth
transition between/520:9 and/510:9. Increasing the grid resolution, smaller Cahnnumbers
can be adopted and this band narrows around the dot-dashed line (/50). Indeed, the
characteristic length scale of the thin transition layer is about ’4:1Ch. For computational
reasons, this layer needs to be discretized with at least three grid points (using a pseudo-
spectral method).

Fig. 2 Flow chart of the substeps required to advance the
solution in time from step n to step n1 1 using the dual-grid
approach (BG: base grid and FG: fine grid)
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(vi) Finally, the Cahn–Hilliard equation is solved on the FG to
obtain the new value of the phase-field, /̂nþ1.

A flowchart with the steps required to advance in time the
solution, from step n to nþ 1, is sketched in Fig. 2. Hat notation is
used to identify the spectral representation of the variables.

4 Validation

The proposed method is benchmarked considering the case of a
single drop immersed in a 2D laminar shear flow, as sketched in
Fig. 3. A circular drop of diameter d ¼ 0:8h is placed at the center of
a plane channel, in which the top and bottom walls move at a
constant velocity, uw, but in opposite directions. The main
parameters that control drop deformation are the capillary number
and the viscosity ratio between the two phases. The capillary number
controls the relative importance of viscous and surface tension
forces and can be computed as follows:

Ca ¼ We

Re

d

2h
(26)

where the ratio d=2h is used to rescale the capillary number on the
drop diameter (instead of the channel half-height). We consider
three values of the Capillary number: Ca¼ 0.0625, Ca¼ 0.1250,
andCa¼ 0.1875, and two values of the viscosity ratio gr ¼ 0:1 (drop
less viscous than the continuous phase) and gr ¼ 1 (same viscosity
for both phases). The Reynolds number—evaluated for this
benchmark using the wall velocity—is kept constant among all
simulations, Re¼ 0.1.
The initial condition for the flow field is a linear velocity profile

for the streamwise velocity, ux, along the wall-normal direction, z,
while the wall-normal velocity is set to zero. The phase-field, /, is
initialized so that the drop is located at the center of the channel. The
computational domain has dimensions Lx � Lz ¼ 2ph� 2h along
the x and z directions, respectively.
For each combination of the capillary number and viscosity ratio,

we kept fixed the grid resolution used for the NS equations
(Nx � Nz ¼ 256� 257) and we employed three different grid
resolutions for the CH equation: (i) a base grid (labeled G1),
consisting ofNx � Nz ¼ 256� 257 grid points along the streamwise
(x) and the wall-normal (z) direction, respectively (i.e., same grid
used for NS); (ii) a second grid, two times finer than the base grid
(case G2), consisting of Nx � Nz ¼ 512� 513 grid points along x
and z directions; and (iii) a third grid, three times finer than the base
grid (labeled G3), consisting of Nx � Nz ¼ 768� 769 grid points
along the x and z directions. Note that, as the grid resolution
employed for the CH equation is increased, the value of the Cahn
number, Ch, is also decreased, so to have always aminimumof three

grid points across the thin interfacial layer [69]. Accordingly, the
P�eclet number is set using the scaling Pe ¼ 1=Ch. As the thin
interfacial layer is represented by at least three grid points, using
larger refinement factors may not be beneficial from an accuracy
point of view. Indeed, this can reduce the accuracy of the
representation of the surface tension forces and of density/viscosity
variations, which are computed on the BG. An overview of the
simulation parameters is given in Table 1.
To compare present results with previous literature studies

[74–76], we evaluate the drop deformation by computing the
deformation parameter,D. Indicatingwith L andB are themajor and
minor axes of the deformed drop (see the sketch in Fig. 3), the
deformation parameter can be computed as follows:

D ¼ L� B

Lþ B
(27)

An analytical solution for the behavior of D as a function of the
capillary number was obtained by Taylor [74,75] for an unbounded
flow, and later extended by Shapira and Haber [76] to account for
lateral confinement effects

D ¼ 16þ 19gr
16þ 16gr

Ca 1þ CSH

3:5

2

d

4h

� �3
" #

(28)

whereCSH¼ 5.6996 is a numerical coefficient [76]. This equation is
proven to be accurate also for 2Dand 3Ddrops at small Ca, i.e., in the
limit of small deformations [77–79].

Fig. 3 Sketchof the simulationsetupused tostudy thedeformationof adrop ina shearflow.A
circular drop of diameter d50:8h is located at the center of the channel. The domain is 2Dwith
dimensionsLx3Lz52ph32h. Periodicity is appliedalongx, and the twowallsmove inopposite
directionswith constant velocityux5uw561. The imposed shear deforms the dropuntil a new
steady-state configuration is obtained (represented by the dotted line). Drop deformation is
then evaluated by computing the deformation parameter D5ðL2BÞ=ðL1BÞ, with L and B the
major and minor axes, respectively.

Table 1 Summary of the parameters used to study the drop
deformation in a shear flow

Code Refinement factor,Mi Grid NS Grid CH Ch Pe

G1 1� 1 256� 257 256� 257 0.0200 50
G2 2� 2 256� 257 512� 513 0.0100 100
G3 3� 3 256� 257 768� 769 0.0067 150

Three values of the Capillary number, Ca¼ 0.0625, Ca¼ 0.1250, and
Ca¼ 0.1875, and two values of the viscosity ratio gr ¼ 0:1 and gr ¼ 1, have
been considered. For each combination of the capillary number and viscosity
ratio, three simulations with different refinement factors have been
performed. Specifically, the grid resolution of the NS equations is kept fixed
(Nx � Nz ¼ 256� 257, grid NS), while the grid resolution of the CH
equations (grid CH) is refined by the refinement factors,Mi. The simulations
are labeled according to the refinement factor used:G1 indicates a refinement
factor Mi¼ 1 (i.e., the same grid); G2 indicates a refinement factor Mi¼ 2,
and G3 a refinement factorMi¼ 3 (along all directions).
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The behavior of the deformation parameter,D, as a function of the
capillary number, Ca, is shown in Fig. 4: Panel a refers to the cases
with drop-to-fluid viscosity ratio gr ¼ 0:1,while panel b refers to the
cases with drop-to-fluid viscosity ratio gr ¼ 1. For all considered
cases, we find a good agreement between the numerical simulations
(symbols, each referring to a specific grid resolution for the phase-
field variable), and the analytical solution, with minor differences
for the viscosity ratio gr ¼ 0:1 (discrepancy between theoretical and
numerical results below 5%). In addition, we observe almost no
difference between the results obtained by the gridG1 (same grid for
NS and CH), gridG2 (CH grid two times finer than the NS grid), and
gridG3 (CH grid three times finer than the NS grid). This shows the
consistency of the proposed implementation and suggests that, when
the flow-field is resolved on a fine enough grid, the dual-grid
approach gives a final result that is comparable to the result that
could be obtained by a simulation performed on the finer grid for
both velocity and phase-field variables.
In the idea of performing large-scale simulations, it is important to

evaluate the computational efficiency of the proposed technique. To
evaluate it, we measure the wall-clock time required for a single
time-step (Fig. 5(a)) and the memory usage (Fig. 5(b)) using
different refinement factors,Mi. The results are reported normalized
considering as reference the same case run using the finer grid for
both the Navier–Stokes and Cahn–Hilliard equations. For example,
in case of a refinement factor equal to Mi¼ 3, the results are
normalized considering a simulation performed on a grid equal to
MxNx �MzNz ¼ 768� 769 (i.e., the finer grid resolution) for both
NS and CH equations. Current results indicate that, using the dual-
grid approach, it is possible to save up to 27% inwall-clock time and
memory usage for a refinement factor equal to 2 (i.e., CH is solved on

a grid that is two times finer than that used forNS, caseG2), and up to
38% in time and memory for a refinement factor of 3 (i.e., CH is
solved on a grid that is three times finer than that used for NS, case
G3), compared to the case inwhich the finest grid is used for bothCH
and NS. The efficiency of the dual-grid approach increases in 3D
cases (not shown here). Specifically, we observe a reduction of the
elapsed time per time-step up to 57% and a reduction of the memory
usage up to 46% for an expansion factor equal to 3 (equal along all
directions).

5 Breakage of a Liquid Sheet by Turbulence

The applicability of the proposed method to more computation-
ally intensive and scientifically relevant cases is considered here, by
studying the breakage of a liquid sheet in turbulence [4,80,81].With
reference to Fig. 6, a thin liquid sheet, thickness 0:15h, is initially
located at the center of a turbulent channel inwhich the flow is driven
by an imposed pressure gradient.At the twowalls, no-slip conditions
are enforced for the velocity field, while no-flux conditions are
enforced for the phase-field variable and its second derivative.
Periodicity is implicitly applied along x and y for all variables. The
initial condition for the flow-field is taken from a preliminary direct
numerical simulations of a single-phase fully developed turbulent
channel flow at Res ¼ 150, complemented by a proper definition of
the initial distribution of the phase, /, so that a thin liquid sheet
(thickness 0:15h) is placed at the channel centerline. The liquid sheet
and the carrier fluid have the same density and viscosity
(qr ¼ gr ¼ 1), while the Weber number has been set to We¼ 3.
We perform three different simulations (see Table 2) considering

a computational domain having dimensions Lx � Ly � Lz ¼

Fig. 4 Behavior of the deformation parameter, D, (see sketch in
Fig. 3) as a function of the capillary number, Ca, for a drop in a 2D
shear flow. The numerical results (symbols) are compared
against the analytical predictions [76]. Two different viscosity
ratios are considered: gr50:1 (panel a) and gr51:0 (panel b). The
different symbols refer to the different refinement factors
employed: squares, case G1; down-facing triangles, case G2;
upward-facing triangles, case G3.

Fig. 5 Computational efficiency (lower is better) of the dual grid
approach: elapsed time (wall-clock) for a time-step (panel a) and
memory usage (panel b). Results are normalized by the
corresponding values obtained when the finer grid is used for
both the Navier–Stokes and Cahn–Hilliard equations. ( ) refer to
caseG1 (samegrid), ( ) to caseG2 (refinement factor equal to 2),
and ( ) to caseG3 (refinement factor equal to 3). The same high-
performance computing-cluster and setup were used, and the
simulations were performed using the same number of MPI
tasks (32).
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2ph� ph� 2h along the streamwise (x), spanwise (y), and wall-
normal directions (z), respectively. Assessment of the domain size
(not shown here for brevity) has been performed upon comparison of
the flow statistics against available datasets. For all three
simulations, the flow-field is solved using a computational grid
consisting of Nx � Ny � Nz ¼ 256� 128� 513 points, which
grants resolution of the flow-field down to the Kolmogorov scale.
Specifically, the resulting grid spacing in wall units is: Dxþ ¼
Dyþ ¼ 3:69w:u: andDzþmax ¼ 0:92w:u: (at the channel center). The
Cahn–Hilliard equation is discretized on progressively refined grids.
In particular, we employ Nx � Ny � Nz ¼ 256� 128� 513 for G1
(refinement factor Mi¼ 1 along each direction), Nx � Ny � Nz ¼
512� 256� 1025 for G2 (refinement factor Mi¼ 2 along each
direction), and Nx � Ny � Nz ¼ 768� 384� 1537 for G3 (refine-
ment factorMi¼ 3 along each direction). This gives a Cahn number
(and a corresponding P�eclet number, Pe ¼ 1=Ch) Ch¼ 0.02
(Pe¼ 50) for G1, Ch¼ 0.01 (Pe¼ 100) for G2, and Ch¼ 0.0067
(Pe¼ 150) forG3, so to guarantee that the interfacial transition layer
is represented by at least three grid points. We recall that the
computational grid is uniform along x and y, whereas it is stretched
along the wall-normal direction where Chebyshev polynomials are
employed. This leads to a grid resolution that is finer near the two
walls and coarser at the channel center. An overview of the
simulation parameters is given in Table 2.

5.1 Results. The turbulent flow exerts shear and normal forces
on the thin liquid sheet, and leads to its fragmentation in drops of
different sizes. To characterize this transient dynamics, we consider
the behavior of the normalized interfacial area, AðtþÞ=A0, (defined
as the area separating the two liquid phases, withA0 its initial value).
The results are shown in Fig. 7, for the three different cases

considered here. All three simulations follow a qualitatively similar
behavior. Starting from the flat and straight initial condition, the thin
liquid sheet is first stretched and deformed by the flow. This induces
the initial increase of the interfacial area, AðtþÞ, with a maximum at
about tþ ’ 30 (see inset). After this point, the thin liquid sheet is so
stretched and narrow, that it breaks down forming ligaments and
drops (primary breakup). This induces a sharp decrease in the
interface area, AðtþÞ. Later in time, when the drops break up into
smaller drops, the overall interfacial area slightly increases again (at
about tþ ’ 400). This finally leads to a statistically steady-state
(tþ > 1000, white area), during which breakage and coalescence of
drops occur simultaneously, and dynamically balance each other, so
to induce fluctuations of interfacial area around a constant value.
We can observe that the grid resolution employed for the solution

of the Cahn–Hilliard equation, and thus the value of the Cahn
number, Ch, that can be adopted, has an influence on the dynamics.
In particular, from a vis-a-vis comparison between the results
obtained for G1, G2, and G3, we notice that the smaller is Ch, the
larger the increase of area during the initial transient, and also
the larger the increase of the steady-state area. Indeed, thanks to the
higher resolution (and the resulting smaller Cahn number) that can
be employed, higher deformations and finer/smaller drops and
structures can be described as the grid resolution is increased.
Interestingly, while the difference between the case G1 and G2 is
clearly visible, the difference between the cases G2 and G3 is less
pronounced and the two curves reach similar steady-state values.

Fig. 6 Sketch of the simulation setup used to investigate the breakage of a liquid sheet in a
turbulent channel flow at a friction Reynolds number Res5150. A thin liquid sheet, thickness
0:15h, is initially placed at the center of a plane channel. The channel has dimensions
Lx3Ly3Lz52ph3ph32h. A sketch of the mean streamwise velocity profile, u1

x

� �
, is also

shown.

Table 2 Summary of the parameters used to study the breakage
of a liquid sheet in a turbulent channel flowat a Reynolds number
of Res5150

Code Refinement,Mi Grid NS Grid CH Ch Pe

G1 1� 1� 1 256� 128� 513 256� 128� 513 0.0200 50
G2 2� 2� 2 256� 128� 513 512� 256� 1025 0.0100 100
G3 3� 3� 3 256� 128� 513 768� 384� 1537 0.0067 150

We keep the grid resolution used to solve for the NS equations fixed, and we
increase (introducing a refinement factor, Mi) the grid resolution used to
solve for the CH equation. Simulations are labeled based on the employed
refinement factor: case G1 (unitary refinement factor, same grid for NS and
CH); case G2 (refinement factor Mi¼ 2 along each direction); case G3
(refinement factorMi¼ 3 along each direction). As the grid resolution used
for the CH equation is increased, the Cahn number, Ch, is decreased. Fig. 7 Evolutionof the total interfacial area,Aðt1Þ, normalizedby

the initial area,A0. Results from the three simulationsG1,G2, and
G3 are shown using different symbols and colors, from light to
dark. The gray area represents the initial transient, after which a
statistically steady condition is reached. The insets focus on the
initial transient behavior of Aðt1Þ=A0 (for 0< t1 <100, left inset)
and on the deformation of the thin sheet (seen from the top) at
t1 ’ 100 for simulation G2 (right inset).
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Finally, it is also worth mentioning that for the case G3
(Ch¼ 0.0067), the thickness of the thin interfacial layer, which in
wall units can be computed as 4:1ChRes ’ 4w:u:, is comparable to
the Kolmogorov length-scale evaluated at the channel center, where
most of the drops gather (gþk ¼ 3:45w:u: for the Reynolds number
here considered). This indicates that Kolmogorov-size drops can be
accurately described using the finer grid resolution (case G3).
The behavior of the interfacial area described above reflects a

corresponding evolution of the number of drops. Figure 8 shows the
temporal evolution of the number of drops, NðtþÞ, for the different
grid resolutions employed (G1, G2, and G3). In general, we can
observe an increase in the number of drops by increasing the grid
resolution and thus decreasing the Cahn number. This is due to the
fact that a finer grid allows for the description of smaller drops with
respect to a coarser grid. Considering the different cases, we notice
that the larger difference can be observed between the cases G1 and
G2 while a smaller difference is observed between the casesG2 and
G3. The main difference between the cases G2 and G3 is in the
fluctuations of the number of drops: the case G3 is characterized by
much larger fluctuations. These fluctuations can be linked to the drop
dynamics, which is characterized by the simultaneous occurrence of
breakage and coalescence events, and by the interactions of drops
with a turbulent flow (which is characterized by velocity/pressure
fluctuations). Indeed, the number of drops is the result of the
competition between breakage events (which increase the number of
drops) and coalescence events (which reduce the number of drops).
The number of drops in the channel can be described by the
following population balance equation [19,82–84]:

dN tþð Þ
dtþ

¼ _Nb tþð Þ � _Nc tþð Þ (29)

where _NbðtþÞ and _NcðtþÞ are the drops breakage and coalescence
rates, which can be estimated by counting the number of breakup and
coalescence events over a given time interval, Dtþ. From the above
equation, we can appreciate how fluctuations in these rates can
induce fluctuations also in the number of drops. In addition, it must
be also pointed out that the number of breakage and coalescence
rates depends also on the number of drops,NðtþÞ, present at a certain
time instant, in such a way that larger dNðt�Þ=dtþ are expected for
larger NðtþÞ [19,43]. In this context, a smaller value of Ch, which
gives the possibility of capturing the dynamics of thin ligaments and
smaller drops, can give larger values of N(t). Note indeed the rich
dynamics (thin liquid bridges and ligaments, small drops) that can be
progressively captured by reducing the value of Ch (see inset in
Fig. 8, fromG1 toG3). These small interfacial structures have been
also recently observed in numerical investigations of drop breakage

in homogenous isotropic turbulence using the volume-of-fluid
method [85–87].
A quantity of fundamental importance in the study of mass/

momentum and heat exchanges in a drop-laden turbulent flow is the
drop size distribution (DSD). The DSD is the probability density
function of the drop diameter, and therefore provides a measure of
the number of drops as a function of their characteristic size. Since
in the present case drops can undergo large deformations, we
consider the equivalent diameter as characteristic size [69]

dþeq ¼
6Vþ

i

p

� �1
3

(30)

where Vþ
i is the dimensionless volume of the ith drop expressed in

wall-units. Compared with the overall number of drops presented
above, theDSD provides amore insightful picture of the topology of
the dispersed phase, as it evaluates more precisely the number of
drops for each characteristic size. For instance, for a fixed volume
fraction, a large number of small drops identify a larger surface-to-
volume ratio, hence maximizing the transport processes across their
surface. A wide range of different drop diameters is expected as a
consequence of coalescence (drop–drop interaction) and breakage
(drop–turbulence interaction) events.
The breakage of a drop is the outcome of the competition between

destabilizing actions like shear forces and turbulent fluctuations—
which tend to deform the drop—and stabilizing surface tension
forces—which tend to preserve the drop shape. When destabilizing
forces are larger than surface tension forces, a drop breaks. In
contrast, a coalescence event is observedwhen twodrops come close
to each other, so that the small liquid film that separates the drops
drains and leads to the formation of a coalescence bridge.
From a balance between stabilizing actions (surface tension

forces) and destabilizing actions (shear forces and turbulent
fluctuations), the maximum size of a drop that can be transported
by turbulence without breaking, the Kolmogorov-Hinze diameter
can be computed [88,89]. For a turbulent channel flowconfiguration,
the Kolmogorov-Hinze scale can be computed as follows
[19,45,64,90]:

dþH ¼ 0:725
We

Res

� ��3=5

j�þc j�2=5
(31)

where �þc is the turbulent dissipation at the center of the channel,
where deformable drops migrate. The Kolmogorov-Hinze scale is
not an exact threshold and should be taken more as a reference scale
about which the dynamics of drops change behavior (from surface
tension to the inertia-dominated regime) [91]. Results of the DSD
obtained by present simulations are shown in Fig. 9. In particular, we
compare the DSD curves—which are computed after the steady-
state condition is attained (tþ > 1000)—for the three different grid
resolutions employed in this study. The value of the reference
Kolmogorov-Hinze diameter, dþH , is explicitly indicated by the
vertical dashed line. Also shown in Fig. 9 are the theoretical
behaviors proposed in the literature [14,92–94]. In particular,
Garrett et al. [92] proposed a power-law scaling for drops smaller
than the Kolmogorov-Hinze scale (coalescence-dominated regime)

PðdþÞ / dþ�3=2 (32)

and a power-law scaling with a different exponent for drops larger
than the Kolmogorov-Hinze scale (breakage-dominated regime)

PðdþÞ / dþ�10=3 (33)

Results are shown in Fig. 9. We note that regardless of the grid
resolution, all DSDs present a similar behavior, characterized by a
transition between the two theoretical scalings occurring around the
Kolmogorov-Hinze diameter, dþH . The main effect of using a finer
grid (in particular G3) is the presence of a larger number of smaller

Fig. 8 Timebehavior of the number of drops,Nðt1Þ, for the three
simulations,G1,G2, andG3. The shaded area roughly represents
the extensionof the initial transient, afterwhich apseudo-steady-
state condition is reached (t1>1000). Qualitative pictures (panels
b–d), show a snapshot of the drops at the end of the simulation
(t1 ’ 5000).Thick lines represent thedatafilteredusinga running
average procedure while thin lines are used to identify the raw
signal.
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drops (with diameter of about ’6 wall units), given the better
representation obtained for these drops. We recall here that this can
be also qualitatively assessed in Fig. 8, by looking at the distribution
of drops at the channel center for the different cases (G1, G2, and
G3), at the time instant (tþ ’ 5000). The capability of finer grids to
capture small scales dynamics is clearly visible (see, for example,
the formation of thin liquid bridges/ligaments for simulation G3,
Fig. 8(b)). Interesting indications about the influence of the grid
resolution (i.e., value of Ch) on the effectiveness of the simulation in
capturing the drops dynamics can be inferred by looking at the
cumulative distribution function, which can be expressed as the
integral of the DSD curves shown in Fig. 9

CDFðdþeqÞ ¼
ðdþeq
0

PDFðsÞds (34)

where s is a dummy variable sweeping the considered range of
diameters. The CDFðdþeqÞ represents the fraction of the overall

volume of drops having diameter smaller than dþeq. Results for the
three simulations G1, G2, and G3 are shown in Fig. 10. We notice
that, regardless of the value of Ch, the cumulative distribution
function (CDF) increases monotonically for increasing dþeq, and
reaches the value CDF¼ 1when even the largest drop in the domain
(dþeq ’ 200) has been considered in the calculation. As expected, the
smaller is Ch, the better is the representation of small drops, and
therefore the higher is the local value of the CDF in the region of
small dþeq. In other terms, the number of small drops is higher at
smaller Ch. What is also very interesting to note is the tendency for
simulation G2 (Ch¼ 0.01) to collapse on top of simulation G3
(Ch¼ 0.0067) for dþeq � dþH . This indicates that simulation G2
captures very well the distribution (and in turn the dynamics) of
drops with dþeq � dþH . This tendency is explicitly shown in the inset
of Fig. 9, where we plot the ratio between theCDF of simulationsG1
andG2 compared to that of simulationG3, i.e., CDFðG1Þ=CDFðG3Þ
and CDFðG2Þ=CDFðG3Þ. I t is apparent that CDFðG2Þ=
CDFðG3Þ ! 1 for dþeq � dþH . This observation, along with all other
considerations given before (on the overall interface area, number of
drops and DSD, see Figs. 7–9) suggests that the use of Ch¼ 0.01 in
the simulation of drop-laden turbulence represents a good
compromise between accuracy (i.e., capability of capturing the
overall dynamics of drops) and computational efficiency. Naturally,
when the research interest is on the description of ligaments and
liquid bridges formation and breakup, then the use of a smaller Ch is
recommended.

6 Conclusions

In this work, we have presented a dual-grid approach for direct
numerical simulations of turbulent multiphase flows, and using the
PFM to track the interface shape, deformation, and topological
changes. The approach is based on a pseudo-spectral discretization
of the governing equations (continuity, Navier–Stokes, and
Cahn–Hilliard). The dual-grid approach is based on the definition
of two different computational grids: a base grid for the solution of
the Navier–Stokes equations, and a finer grid for the solution of the
Cahn–Hilliard equation (phase-field method). It is important to note
that the computational grid used for the solution of the
Navier–Stokes equations must be fine enough to solve the flow-
field down to the smallest flow scale (order of the Kolmogorov
length scale).
The computational efficiency of the proposed approach have been

evaluated in terms of elapsed time per time-step and memory usage
for the case of a drop that deforms in a two-dimensional shear flow,
showing a reduction up to ’ 40% in term of computational time and
memory usage for 2D simulations and up to 50% for 3D simulations
(compared to the case in which all equations are solved on the same,
finer, grid). The applicability of the approach to a realistic three-
dimensional case has also been discussed, upon evaluation of the
breakage of a thin liquid sheet inside a turbulent channel flow.
Results show that, by increasing the grid resolution used to describe
the phase-field (and consequently decreasing the Cahn number), the
dynamics of liquid bridges/ligaments breakup, and the formation of
small drops can be progressively better captured. In addition, our
results seem to suggest that a resolution for the phase-field
corresponding to Ch¼ 0.01 represents a good compromise between
the multiphase flow description and the computational cost, in
particular for the simulation of drop-laden turbulence (this threshold
can be slightly relaxed when the interface does not undergo frequent
breakups).
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Fig. 9 DSD in log–log scale, for the three simulations G1
(circles), G2 (squares), and G3 (triangles). The theoretical
scalings, d1

eq
23=2 and d1

eq
210=3, for the coalesce-dominated and

the breakage-dominated regimes are also represented by a
dotted line. The Kolmogorov-Hinze scale, d1

H , is indicated with a
vertical dashed line.

Fig. 10 CDFof theequivalentdropdiameter,measuredbasedon
the DSD distribution of Fig. 9. The ratio between the CDF
measured for the different simulations, i.e., CDF(G1)/CDF(G3),
CDF(G2)/CDF(G3), and CDF(G3)/CDF(G3), i.e., an horizontal line
at value 1—is shown in the inset.
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