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A B S T R A C T

We investigate the morphodynamics of an ice layer over a turbulent stream of warm water using numerical
simulations. At low water speeds, characteristic streamwise undulations appear, which can be explained by
the Reynolds analogy between heat and momentum transfer. As the water speed increases, these undulations
combine with spanwise ripples of a much greater length scale. These ripples are generated by a melting mecha-
nism controlled by the instability originating from the ice–water interactions, and, through a melting/freezing
process, they evolve downstream with a migration velocity much slower than the turbulence characteristic
velocity.
1. Introduction

The morphodynamics of basal melting and freezing of ice over warm
deep-water currents is characterized by complicated interface patterns
that are commonly observed under ice shelves (Rignot et al., 2013;
Pritchard et al., 2012; Hirano et al., 2023). These patterns depend on
heat and mass transfer but also on the water stream velocity (Gilpin
et al., 1980; Bushuk et al., 2019). In particular, above a certain velocity
threshold, the interface morphology exhibits features that can feedback
on global melt rates and ice pack stability (Joughin and Alley, 2011;
Alley et al., 2016). Precise appraisal of these phenomena has major
direct implications on the quantification of global melt rates (Davis and
Nicholls, 2019) and, in turn, on global climate predictions. Although
the attention of the scientific community is high and the morpho-
dynamics of ice–water interfaces has been widely studied (Washam
et al., 2023; Claudin et al., 2017; Ashton and Kennedy, 1972; Karlstrom
et al., 2013; Solari and Parker, 2013), a comprehensive explanation
of the physical mechanisms controlling the interface evolution is still
elusive (Bushuk et al., 2019). At present, most ice melting models
consist of empirical correlations (Holland and Jenkins, 1999) or heat
transfer estimates valid for isothermal flat plates, as in the case of basal
melting of icebergs (Cenedese and Straneo, 2023) or ice shelves (Din-
niman et al., 2016; Goldberg et al., 2019). As a consequence, melt rate
predictions can be inaccurate up to one order of magnitude (Jourdain
et al., 2020; Davis et al., 2023; Nakayama et al., 2019) and cannot
be reconciled with the large scatter of experimental data (Bushuk
et al., 2019). Morphodynamic effects on local heat and mass transfer
are crucially necessary to improve model accuracy and yet how this
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effect can be factored into existing parameterizations is still an open
issue (Bushuk et al., 2019).

In the pioneering works by Ashton and Kennedy (1972) and Hsu
et al. (1979), the formation of spanwise wavy patterns, later reproduced
in laboratory experiments (Gilpin et al., 1980; Bushuk et al., 2019),
was observed. Pattern formation was attributed to the occurrence of a
phase shift between the local heat transfer and the local ice thickness,
and a positive growth rate of the interface deformation was predicted
for phase shifts larger than 𝜋∕2 (Ashton and Kennedy, 1972). It was
also noted that turbulent mixing must be strong enough to trigger and
sustain the shift. In the direct numerical simulations (DNS) by Couston
et al. (2021), however, only streamwise-oriented canyons were found
to form spontaneously, their spacing being compatible with that of
near-wall turbulent velocity streaks. The emergence of these structures
can be explained via the Reynolds analogy: Velocity fluctuations bring
warm water to the ice–water interface and cold water away from it,
favoring melting in regions of high shear stress and freezing in regions
of low shear stress. Yet, the Reynolds analogy cannot explain the
pattern formation mechanism discussed by Ashton and Kennedy (1972)
and Thorsness and Hanratty (1979), which was hypothesized to depend
on anomalies in pressure and turbulent convection induced by the
surface morphology. The causal relationship between these anomalies
and the phase shift is still unclear, and no general closure model for
predicting the shift as a function of the water turbulence properties is
available.

In this work, we aim to reconcile the different morphodynamics just
discussed and clarify the role played by turbulence in the formation
(and possible coexistence) of the streamwise and spanwise interface
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patterns. In particular, we explore the physics behind the phase shift
and its dependence on the flow Reynolds number, which remains
unclear despite the numerous numerical studies on ice melting (Yang
et al., 2023a, 2024; Weady et al., 2022; Couston et al., 2021; Wang
et al., 2021a,c,b; Du et al., 2023). To do so, inspired by Ashton and
Kennedy (1972), we speculate that the change in pattern formation
is associated to the existence of a critical threshold for the water
stream velocity. We thus study how the features of the ice morphology
depend on the flow conditions, by performing DNS at both sub-critical
water velocity (only streamwise-oriented canyons are present) and
super-critical water velocity (when superposed ice ripples emerge).

2. Physical problem and methodology

The physical problem investigated is the melting of an horizontal
layer of ice under which a fully-developed turbulent shear flow is
maintained. The flow domain is sketched in Fig. 1. To simulate a
deep-water stream, a free-shear condition is imposed to the bottom
boundary of the water layer, kept at bulk temperature 𝑇𝐻 . The ice–
water interface is kept at melting temperature 𝑇𝑀 , whereas a no-slip
condition is applied to the upper boundary of the ice layer, kept at
bulk temperature 𝑇𝐶 chosen to ensure 𝑇𝑀 − 𝑇𝐶 = 𝑇𝐻 − 𝑇𝑀 = 𝛥𝑇 .
Note that a different choice, namely 𝑇𝑀 − 𝑇𝐶 ≠ 𝑇𝐻 − 𝑇𝑀 would only
modify the vertical equilibrium position of the ice interface inside the
domain but would not have significant effects on the ice morphology.
To describe the evolution of temperature field  = (𝑇 −𝑇𝑀 )∕𝛥𝑇 (with 𝑇
the dimensional temperature) and the velocity field 𝐮, simulations are
performed solving the continuity, Navier–Stokes and energy equations
for incompressible water flow. The ice–water interface evolution and
the ice volume fraction are computed using a phase field method (Hes-
ter et al., 2020; Yang et al., 2023b; Roccon et al., 2023; Soligo et al.,
2021; Magnani et al., 2024), which allows to capture the interface
without introducing ad-hoc boundary conditions. These equations, in
dimensionless form, read as (Hester et al., 2020; Yang et al., 2023b):

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∇ ⋅ 𝐮 = 0

𝜕𝐮
𝜕𝑡

=
ℎ0

ℎRe𝜏,0
∇2𝐮 − 𝐮 ⋅ ∇𝐮 − ∇𝑝 −

𝜙2

𝜂𝑠
𝐮

𝜕𝜙
𝜕𝑡

= 6
5

ℎ0
ℎ Re𝜏,0Pr St

[

∇2𝜙 −
1 − 𝜙
𝜖2

𝜙 (1 − 2𝜙 +  )
]

𝜕
𝜕𝑡

=
ℎ0

ℎRe𝜏,0Pr∇
2 − 𝐮 ⋅ ∇ + St 𝜕𝜙

𝜕𝑡

(1)

The governing dimensionless numbers are the Stefan number, St,
Prandtl number, Pr, and shear Reynolds number Re𝜏,0, which are
defined as:

St = 
𝑐𝑝𝛥𝑇

Pr = 𝜈
𝜅

Re𝜏,0 =
𝑢𝜏ℎ0
𝜈

(2)

where , 𝑐𝑝, 𝜈 and 𝜅 are the specific latent heat, specific heat capacity,
the kinematic viscosity and thermal diffusivity, respectively. The shear
Reynolds number is based on the initial water layer height ℎ0 = 0.75ℎ,
with ℎ the total height of the computational domain. Finally, 𝑢𝜏 =
√

𝜏𝑤∕𝜌 is the shear velocity, with 𝜏𝑤 the average shear stress at the
ice–water interface and 𝜌 the water density. A volume-penalization im-
mersed boundary method, in which 𝜂𝑠 is the characteristic time scale, is
used to account for the presence of the solid ice boundary in the Navier–
Stokes equations. The phase field method is employed to obtain the
evolution of the phase indicator 𝜙, which physically represents the local
volume fraction of the ice phase (transitioning from 𝜙 = 1 inside the
ice layer to 𝜙 = 0 inside the water layer, the position of the ice–water
interface being located at 𝜙 = 0.5). The thickness of the transition layer
is determined by the parameter 𝜖: in our simulations, the value chosen
for 𝜖 is imposed by computational requirements and corresponds to
a thickness equal to 0.02ℎ. The formulation of the method is very
similar to the enthalpy-porosity method used to study the solidification
of metals (see for instance Brent et al., 1988). The main difference
2 
Fig. 1. Schematic of the computational domain and boundary conditions. The ice–
water interface (black dashed line) is initially flat and positioned at 𝑧 = ℎ0, with
ℎ0 = 0.75ℎ. As melting takes place, the interface deforms (blue line) and its position is
defined by the local ice thickness 𝜉(𝑡). Periodic boundary conditions were applied to
all flow quantities along the horizontal 𝑥 and 𝑦 directions.

between the two methods is that the phase-field equation also includes
a term to control the thickness of the mushy layer over time in order
to keep it constant. The characteristic of the phase field depends on the
constant , which controls the dependence of the melting point on the
interface curvature. From a physical point of view, the parameter  is
associated to the energy of the interface that separates the two phases.
The value of , together with the local curvature of the interface,
affects the value of the temperature at the interface in conditions
of thermodynamic equilibrium (Gibbs–Thompson effect, Yang et al.,
2023b). Following Yang et al. (2023b), the Gibbs–Thompson effects can
be neglected for the present flow configuration and the value  = 10
can be chosen see Appendix A.

The system of Eqs. (1) is solved using a in-house pseudo-spectral
parallel flow solver FLOW36 (Soligo et al., 2019; Roccon et al., 2024)
in a three-dimensional Cartesian grid, where the axes 𝑥, 𝑦 and 𝑧 are
aligned with the streamwise, spanwise and wall-normal directions,
respectively. The solver relies on the wall-normal velocity–vorticity
formulation (Canuto et al., 2007), in which the Navier–Stokes equations
(NS) are replaced by the conservation of the wall-normal vorticity 𝜔𝑧
(wall-normal component of the curl of NS) and a fourth-order equation
for the wall-normal velocity 𝑢𝑧 (wall-normal component of the double
curl of NS). These two equations, together with the continuity equation,
the definition of wall-normal vorticity 𝜔𝑧, the phase field equation and
the energy equation, form a system of six equations and six unknowns
(𝑢𝑥, 𝑢𝑦, 𝑢𝑧, 𝜔𝑧, 𝜙, and  ). The resulting equations are advanced in time
using an IMplicit–EXplicit (IMEX) scheme, in which the linear terms
are integrated using an implicit scheme (Crank–Nicolson for Navier–
Stokes and implicit Euler for the other equations), while the non-linear
terms using an explicit scheme (Adams–Bashforth). At the initial time
step, an explicit Euler method is employed for the non-linear terms of
all the equations. The system of equation is then solved in the spectral
space performing a discrete Fourier transform along the homogeneous
directions and discrete Chebyshev transform along the wall-normal
direction of all the equations. This reduces the problem to a system
of linear algebraic equations. Details on the pseudo-spectral method
and the implementation of boundary conditions are described in Canuto
et al. (2007).

In line with Yang et al. (2023b), here we focus on the St = 0.1, Pr = 1
case. To examine both sub-critical and super-critical conditions, two
different Reynolds numbers, Re𝜏,0 = 170 and 636, were chosen. These
values were selected considering that the characteristic wavelength
𝜆+𝑥,𝑐𝑟 of unstable disturbances in our flow should be larger than 2100
in wall units, with the fastest growth rate being achieved at 𝜆+𝑥,𝑐𝑟 ≈
3500 (Hsu et al., 1979). The corresponding (estimated) critical Reynolds
numbers above which ice ripples are expected to form, are: Re𝑐𝑟𝜏 = 251
to have unstable modes, and Re𝑐𝑟𝜏 = 418 to have the fastest growing
mode. Wall units are obtained using the fluid kinematic viscosity 𝜈 and
the shear velocity 𝑢 .
𝜏
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Fig. 2. Morphology of melting ice over turbulent water flow in the sub-critical regime (panel a, Re𝜏,0 = 170) and in the super-critical regime (panel b, Re𝜏,0 = 636). The ice layer is
displayed on top while water flows underneath. In both panels, light blue represents regions of higher-than-mean ice thickness, 𝜉, where the thickness fluctuation in space, defined
as 𝜉′ = 𝜉 − ⟨𝜉⟩, are positive; dark blue represents regions of lower-than-mean thickness, where 𝜉′ < 0. Note that the ice layer is comparatively thinner in panel (b) due to stronger
heat convection in the water. The computational domain size, given in dimensionless wall units in the table, as well as the wavelengths 𝜆𝑥 and 𝜆𝑦 of the surface patterns are also
shown.
3. Results

Fig. 2 shows the morphological features of the ice–water interface
(provided here in terms of the local ice thickness 𝜉) at the end of
the simulations. The interface morphology at low Re𝜏,0 (sub-critical
case, panel a) is characterized only by the presence of streamwise-
oriented structures (Couston et al., 2021), becoming more complex at
high Re𝜏,0 (super-critical case, panel b), due to the emergence of promi-
nent spanwise-oriented wavy patterns superposed to finer streamwise-
oriented structures. These structures can be better appreciated in the
windward portions of the interface. The streamwise structures are
common to both flow regimes and indeed exhibit similar features when
rescaled in wall units, as can be seen in Fig. 3. Panels (a) and (b) in
this figure show the ice thickness maps at sub-critical and super-critical
conditions, respectively. Panel (c) shows the profiles of the ice–water
interface, 𝜉′+, corresponding to a 200 wall units long, spanwise portion
of the domain, indicated by sections A–A and B–B, respectively. The
typical length scale of the wavy patterns is roughly equal to 𝜆+𝑦 ∼ 115,
a value that is of the same order as the characteristic size of near-wall
turbulent streaks, 𝜆+ ≈ 100 (Bernardini et al., 2014).

The spanwise patterns that characterize the super-critical regime
are further examined in Fig. 4, which shows the ice thickness profile
taken from a streamwise slice of the ice–water interface at high Re𝜏,0.
The quasi-periodic behavior of the ice thickness can be traced back
to the ripples observed by Ashton and Kennedy (1972), Gilpin et al.
(1980) and extensively investigated by Hanratty (1981). Confirming
the predictions formulated in these studies, we find that ripples grow in
time but also shift downstream due to ice melting near the windward
portion of the ice–water interface and water freezing in the leeward
portion. The migration velocity 𝑐 of the ice ripples is computed from the
spectrum of the cross-correlation between 𝜉(𝑡) and 𝜉(𝑡𝑓 ), which allows
to measure the phase shift between the ice thickness at a generic time 𝑡
of the melting process and the thickness at the final time of the process
in the simulation, 𝑡𝑓 . For additional details, the reader is referred to
Appendix B. Once the time derivative of the phase shift 𝜑 is known,
the migration velocity can be computed as follows:

𝑐 = 𝜆+𝑥
𝜕𝜑
𝜕𝑡+

, (3)

where 𝜆+𝑥 is the characteristic wavelength of the ripples, in wall units.
The migration velocity 𝑐 of the ripples is found to be significantly
3 
smaller than the velocity scale of near-wall turbulence, namely the
shear velocity 𝑢𝜏 : 𝑐 ≈ 0.15𝑢𝜏 . To quantify the difference between the
sub-critical and super-critical ice patterns, we performed a spectral
analysis of the streamwise and spanwise ice thickness profiles, where
the Fourier coefficients are denoted with a hat symbol. The resulting
spectra are shown in Figs. 5(a) and 5(b), respectively. Both the ampli-
tude and wavenumbers (𝑘𝑥 and 𝑘𝑦 along the 𝑥 and 𝑦 directions) in these
panels are rescaled in wall units. From Fig. 5(a), we observe that the
sub-critical and super-critical spectra exhibit the same scaling in the
medium-high wavenumber range. This provides further evidence that,
in both regimes, the streamwise patterns are generated by the same
turbulence-controlled mechanism and their features do not vary with
the Reynolds number. The inset in Fig. 5(a) shows the pre-multiplied
spanwise spectra as a function of the wavelength 𝜆+𝑦 . These spectra
give an estimation of the spectral energy density associated with the
ice–water interface, and ultimately to the surface area (which scales as

Fig. 3. Ice thickness maps at low Re𝜏,0 (panel a) and high Re𝜏,0 (panel b). Thick
ice regions are color-coded in white, thin ice regions are color-coded in black. The
red segments labeled A–A and B–B in the insets have equal length in wall units and
correspond to the spanwise portion of the interface from which the profiles shown in
panel (c) are taken.
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Fig. 4. Morphodynamic evolution of the normalized ice thickness, 𝜉∕⟨𝜉⟩, along the
streamwise direction at two different times: 𝑡+1 (dashed line) and 𝑡+2 > 𝑡+1 (solid line).

𝑘+𝑦 |𝜉𝑦| for sinusoidal profiles). The region of maximum energy density
occurs around 𝜆+𝑦 ≈ 100: This maximum is associated with the typical
size of the near-wall turbulent coherent structures, and confirms the
role of turbulence in determining the characteristic spanwise spacing
observed in Fig. 3.

Examining the streamwise spectra in Fig. 5(b), a peak at 𝑘+𝑥 ≃
1.5×10−3 is visible at high Re𝜏,0. At low Re𝜏,0, instead, no peak is present
because no prominent spanwise structure is formed. The peak value
corresponds to 𝑘𝑥𝐿𝑥 = 8, implying that there are 8 crests across the
domain length 𝐿𝑥, indicating that the peak can be directly associated
to the spanwise patterns caused by the morphodynamic instability. The
inset in Fig. 5(b) shows that this peak, and hence the amplitude of the
ripples, grows over time: The peak is not present in the early stages
of ice melting, but forms gradually and reaches its maximum value at
the end of the simulations. A necessary condition for the instability
to occur is that the heat transfer must be shifted at least by a phase
angle 𝜑𝑞−𝜉 = 𝜋∕2 with respect to the interface position (Gilpin et al.,
1980). The mechanism that determines this phase shift is not fully
understood but several authors (Ashton and Kennedy, 1972; Bushuk
et al., 2019; Hanratty, 1981) have suggested that it could be due
to turbulent fluctuations. What we observe is that, in super-critical
conditions, regions of high turbulent kinetic energy form downstream
of the crests; in these regions turbulent mixing is enhanced and, in
turn, both the local effective momentum and thermal diffusivity are
increased. As a result, the regions of maximum heat flux and maximum
wall shear stress are shifted upstream by a phase angle that depends
on the local strength of the turbulent mixing. It can be concluded that,

Fig. 5. Ice thickness spectra along the spanwise direction (|𝜉+𝑦 |, panel a) and the
streamwise direction (|𝜉+𝑥 |, panel b). Dashed lines: sub-critical Re𝜏,0 = 170 case; solid
lines: super-critical Re𝜏,0 = 636 case. Values are computed taking the quadratic average
of the spectra in time and space, along the streamwise direction for |𝜉+𝑦 | and spanwise
direction for |𝜉+𝑥 |. The inset in panel (a) shows the pre-multiplied spanwise spectrum,
|𝜉+𝑦 |∕(𝜆

+
𝑦 )

2 = (𝑘+𝑦 )
2
|𝜉+𝑦 |, as a function of the wavelength 𝜆+𝑦 and highlights the region of

maximum energy density. The inset in panel (b) shows the time evolution of the peak
in the streamwise spectrum, |𝜉+𝑥 |, over the entire span of the Re𝜏,0 = 636 simulation.
4 
Fig. 6. Iso-temperature ( = 0.15𝑚𝑎𝑥, thick dotted curve) and iso-velocity (𝑢𝑥 =
0.25𝑢𝑥,𝑚𝑎𝑥, thick dashed curve) lines close to the ice–water surface (thick solid curve)
between two consecutive crests. The colormap shows the normalized pressure, 𝑝∕𝑝𝑚𝑎𝑥,
in the water. Also shown are the normalized vertical heat-flux, 𝑞𝑧 (thin solid curve), and
the shear stress, 𝜏𝑥𝑧(thin dashed curve), at the interface: The region of maximum heat
flux, 𝑞𝑧,𝑚𝑎𝑥, is upstream of the region of maximum shear stress, 𝜏𝑥𝑧,𝑚𝑎𝑥. All quantities
are time-averaged and refer to the same streamwise 2D slice of the domain.

while turbulent mixing affects both temperature and momentum trans-
port, the analogy between heat transfer and momentum transfer is not
applicable anymore, confirming the findings of Ashton and Kennedy
(1972). This failure can be understood considering the presence of
pressure anomalies induced by the ice ripples, which affect momentum
transport but not temperature transport. An example of such pressure
anomalies is provided in Fig. 6, which refers to a near-interface portion
of the domain comprised between two consecutive ripples. A colormap
is used to visualize the normalized pressure, 𝑝∕𝑝𝑚𝑎𝑥, in the water layer.
Also plotted are the iso-temperature line  = 0.15𝑚𝑎𝑥 (thick dotted
line) and the streamwise velocity iso-line 𝑢𝑥 = 0.25𝑢𝑥,𝑚𝑎𝑥 (thick dashed
line). The two lines overlap near the first upstream ice crest on the
left-end part of the plot, but separate downstream in the leeward
portion of the ripple: Here, the iso-temperature line gets closer to the
interface than the iso-velocity line. The separation is caused by a local
adverse pressure gradient, which hinders momentum transfer from the
bulk of the flow towards the ice–water interface, but does not affect
heat transport. Further downstream, the pressure gradient becomes
favorable but only momentum transfer is enhanced. As a result, the two
iso-lines rejoin near the second crest. Overall, the effect of the pressure
gradient is to shift the region of maximum shear stress downstream
with respect to the region of maximum heat flux. We provide visual
evidence of the shift in Fig. 7, where the time-averaged profiles of
the normalized vertical heat flux, 𝑞𝑧, shear stress, 𝜏𝑥𝑧, and melt rate,
̃̇ = −�̇�, all evaluated over the same streamwise portion on the ice–
water interface, are shown. The heat flux (solid orange line, panel a)
exhibits an upstream shift relative to the shear stress (dashed blue line,
panel a), leading to a larger phase angle measured relatively to the
interface (dotted line): 𝜑𝑞−𝜉 > 𝜑𝜏−𝜉 . The same is found for the melt
rate ̃̇𝑚 (solid purple line, panel b). The phase shifts of the heat flux and
melt rate, computed from the cross-spectra 𝐶𝜉,𝑞𝑧 and 𝐶𝜉,�̇� (details on
the computation are discussed in Appendix B), are 𝜑𝑞−𝜉 ≈ 0.59𝜋 and
𝜑�̇�−𝜉 ≈ 0.51𝜋, slightly above the instability threshold, while for the
shear stress the value is 𝜑𝜏−𝜉 ≈ 0.32𝜋, much lower than the instability
threshold. The values of 𝜑𝑞−𝜉 and 𝜑�̇�−𝜉 , both close to 𝜋∕2, indicate that
the amplitude of the spanwise instability is nearly steady over time,
implying that the main contribution to the ripple evolution is controlled
by a characteristic migration velocity (Hanratty, 1981), much like the
celerity of advancing desert or underwater dunes (Duran Vinent et al.,
2019; Naqshband et al., 2014; Pähtz and Durán, 2020). Our findings
indicate that this velocity is solely determined by melting and freezing,
which regulate the morphodynamics of the ice–water interface, being
considerably smaller than the typical velocity scales associated with the
mean flow of the water stream and turbulence.
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Fig. 7. Time-averaged vertical heat flux, 𝑞𝑧 (solid orange line, panel a), shear stress,
𝜏𝑥𝑧 (dashed blue line, panel a), and melt rate, ̃̇𝑚 (solid purple line, panel b), at the
ice–water interface. For reference, the normalized ice thickness, 𝜉∕⟨𝜉⟩, is also shown
(dotted line). The space lags 𝛥𝑥 between the profile of  (with  representing melt
rate, heat flux or shear stress) and the ice thickness, 𝜉, are reported. The angular phase
𝜑 is given in the upper axis of panel (a), with the average wavelength of the ice ripples
being equal to 2𝜋.

4. Conclusions

To gain predictive understanding of basal melting and freezing of
ice, in this paper we use direct numerical simulation coupled with a
phase field method and an immersed boundary method to study the
morphodynamics of an ice layer over a turbulent stream of warm water.
Through extremely accurate simulations, we provide a sound charac-
terization of the melting/freezing phenomena that shape the ice–water
interface, revealing new insights into the mechanisms that control
the interface morphodynamics. At low water speeds, only streamwise
undulations are observed and their formation is explained by the
Reynolds analogy between heat and momentum transfer. However, for
progressively higher velocities of the water stream, a threshold change
of the interface morphology exists, which is controlled by the instability
originating from the ice–water interactions. This instability leads to
the formation of spanwise ripples that co-exist with the streamwise
undulations, resulting in complex interface patterns that evolve along
the water stream direction with a migration velocity much slower than
the turbulence characteristic velocity. Our results demonstrate that
the combined melting and freezing mechanisms triggered by turbu-
lence and the morphodynamic instability cannot be explained by the
Reynolds analogy, due to the occurrence of a phase shift between the
local heat transfer and the local momentum transfer. We have been
able to establish a causal relationship between the phase shift and the
anomalies in pressure distribution and turbulent convection that are
induced by the surface morphology. Considering the pivotal role played
by melting and freezing in ice loss beneath ice shelves, we believe that
our findings enhance the current understanding of ocean circulation
within ice-shelf cavities and lay the groundwork for refining physics-
based, geometry-dependent parameterizations of the melting process in
large-scale ocean circulation models.
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Appendix A. Relevance of the Gibbs–Thompson effect

The value of  is associated to the Gibbs–Thompson effect, which
generally refers to variations in vapor pressure or chemical potential
across a curved surface or interface that may produce a shift of the
melting and freezing temperatures of a confined substance with respect
to the bulk system. This shift is dictated by the Gibbs–Thompson
equation, which for the case of the phase field used in our simulations,
reads as follows (Yang et al., 2023b):
 − 𝑇𝑚
𝛥𝑇

= 𝜖

𝛾. (4)

For ice–water interfaces, the Gibbs–Thompson effect is relevant only
for very large curvatures. From the Gibbs Thompson equation, using
the physical properties of ice and water, it can be estimated that, in
our problem, (𝑇 − 𝑇𝑚)∕(𝛥𝑇 𝛾) = (10−10). This implies that the Gibbs–
Thompson effect can be neglected for the interface curvatures that
characterize our flow. The same assumption was made by Yang et al.
(2023b) and Couston et al. (2021). The value of  to be used in the
simulations shall then be chosen large enough so that Gibbs–Thompson
effect can be considered negligible, yet it must not be too large to avoid
numerical instabilities (the problem becomes stiff at high ). In the
present simulations, we empirically observed that an optimal trade-off
between negligible Gibbs–Thompson effects and numerical stability is
reached for  = 10. Simulation results exhibit a weak sensitivity to
the value of . This is in line with the findings of Howland (2022),
who used the same numerical method as in our work to run several
benchmark calculations: These calculations showed that melting is
almost unaffected by the value of  in the range 1 <  < 100.

Appendix B. Computation of the phase shift

The phase shift 𝜑𝑞−𝜉 between the local ice thickness 𝜉 and the local
heat transfer 𝑞𝑧 has been computed by means of the spectrum 𝐶𝜉,𝑞𝑧 of
the cross-correlation 𝑅𝜉,𝑞𝑧 along the streamwise direction 𝑥. The same
computation has been performed to obtain the phase shift 𝜑𝜏−𝜉 between
the local ice thickness and the local shear stress 𝜏𝑥𝑧, as well as the
phase shift 𝜑�̇�−𝜉 between the local ice thickness and the local melt rate
̇ . Indicating with  any of the quantities cross-correlated with 𝜉, the

following general definition can be applied:

𝑅𝜉,(𝑠) =
1

𝐿𝑥𝐿𝑦 ∫

𝐿𝑦

0 ∫

𝐿𝑥

0

𝜉′(𝑥 − 𝑠, 𝑦)
⟨𝜉⟩

′(𝑥, 𝑦)
⟨⟩

d𝑥d𝑦, (5)

where angular brackets ⟨∙⟩ indicate quantities that have been averaged
in both 𝑥 and 𝑦, while the prime symbol indicates the fluctuating
component of that quantity (e.g. ′ =  − ⟨⟩). The cross-spectrum
𝐶𝜉, is computed performing a Fourier transform:

𝐶𝜉, = 𝑥
[

𝑅𝜉,
]

= 1
𝐿𝑥 ∫

∞

−∞
𝑅𝜉,(𝑠)exp

(

−2𝜋𝑖𝑠𝑘𝑥
)

d𝑠. (6)

Exploiting the properties of the Fourier transform, 𝐶𝜉, can be also
computed as follows:

𝐶𝜉, = 1 𝐿𝑦
𝑥

[

𝜉′
]

𝑥

[

′ ]∗
d𝑦, (7)
𝐿𝑦 ∫0 ⟨𝜉⟩ ⟨⟩
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where the star symbol indicates the complex conjugate, which in its
discrete form can be expressed as:

𝐶𝜉,(𝑘) =
1

𝐿𝑦⟨𝜉⟩⟨⟩

𝑁𝑦
∑

𝑗=𝑖
𝜉′𝑥(𝑘, 𝑗)̂

′
𝑥(𝑘, 𝑗)

∗. (8)

ere, the notation ∙̂𝑥 indicates the discrete Fourier transform in the
direction. To compute the phase shift between  and 𝜉 (which is

efined as positive if  precedes 𝜉 in the 𝑥 direction), the phase 𝜑 of
𝜉, must be evaluated at the characteristic wavenumber corresponding

o the peak in the modulus, which is found to occur at 𝑘𝑥 = 8 for each
quantity  we analyzed.

Appendix C. Supplementary material

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ijmultiphaseflow.2024.105007.
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