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Abstract

The role of deformability in the wall-drag modification produced by the dis-

persion of large deformable droplets in turbulence is investigated by Direct

Numerical Simulations (DNS) of a turbulent channel flow (Reτ = 150) cou-

pled with the Phase Filed Model (PFM) description of the droplets. The two

fluids have the same density and viscosity, and a wide range of interface de-

formability is considered by changing the Weber number: We = 0.18 ÷ 2.8.

The results show wall-drag modifications that depend on the droplets de-

formability: when the deformability is low (small We), a significant Drag

Enhancement (DE) is observed; increasing the deformability the DE is re-

duced and negligible effects are observed when the the Weber number is

sufficiently large. The DE is likely due to droplets velocity that reduces

increasing the deformability, introducing an obstruction to the flow and in-

creasing drag.
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1. Introduction

Swarms of large deformable bubbles dispersed in wall bounded turbu-

lence produce significant modifications of the wall drag; these effects have

been investigated by many authors, focusing on the quantification of drag

and evidencing situations where large amount of Drag Reduction (DR) can

be observed [1, 2, 3]. In spite of its practical relevance, the mechanism under-

pinning the wall-drag modification in presence of large deformable bubbles

is still not clear and only few recent studies proposed a detailed analyses of

the droplet-turbulence interactions [4, 5]. The Direct Numerical Simulations

(DNS) of Lu et al. [4] highlighted the role of bubbles deformability in the

wall-drag modification produced by a large number of bubbles with the same

viscosity of the surrounding fluid and with a small density ratio (ρf/ρd = 10).

They observed that deformable bubbles released in a turbulent channel flow

could produce Drag Reduction (DR) or Drag Enhancement (DE), according

to their deformability. Two mechanisms were proposed: i) bubbles char-

acterized by large deformability produced a near-wall streamwise vorticity

canceling, resulting in DR; ii) bubbles with small deformability were slowed

down by the near-wall flow field, producing an obstruction to the flow and

resulting to DE. The recent experimental work of Van Gils et al. [5] showed

important DR (up to 40%) when large deformable bubbles (with viscosity

ratio ρfνf/ρbνb = 100 and a density ratio ρf/ρd = 1000) were released in a

turbulent Taylor-Couette flow, emphasizing the central role of the the bub-

bles deformability. In order to further clarify the role of the deformability in

the contest of large deformable bodies dispersed in turbulent wall-bounded
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flows, in this work the problem has been simplified neglecting the density

and the viscosity differences between the two fluids, retaining the surface

tension σ only. The physical system defined through these simplifications is

governed by two leading effects: i) droplet deformability, that is controlled

by the surface tension; ii) droplet inertia that is comparable to that of the

surrounding fluid. As a result the problem is set to its simplest configuration,

highlighting the surface tension effects and allowing a parametric analysis of

the droplet deformability that can be varied between two limit cases: the

single phase flow (σ = 0, We → ∞) and the dispersion of rigid fluid spheres

(σ → ∞, We = 0). To the best of our knowledge this work represents one of

the first attempts to analyze and model the interaction between turbulence

and deformable droplets, considering only the surface tension effects.

2. Governing equations

In this work the wall-drag modification produced by a large number of

deformable droplets dispersed in wall-bounded turbulence has been studied.

The flow field evolution has been described with DNSs of a modified incom-

pressible Navier-Stokes equations coupled with the Phase Field Model (PFM)

description of the fluid-fluid interfaces.

2.1. The phase field model

In the PFM, the interface between two fluids is considered as a layer

of finite thickness rather than a sharp discontinuity. Across the interfacial

layer the physical properties of the fluid components vary in a smooth and

continuous way from one fluid to the other. The state of the system is de-

scribed, at any time, by a scalar order parameter φ, which is a function of
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the position vector x. The order parameter directly represents one of the

physical properties of the fluid, such as its density, its molar concentration,

etc.; all the remaining properties are in turn modeled as proportional to the

scalar order parameter φ(x) [6, 7]. Due to the continuous description of the

interface, also the order parameter is continuous over the entire domain and

it shows smooth variations across the interface between single fluid regions,

where it assumes mostly uniform values. Coupling the continuous represen-

tation of the two fluid field with a transport equation of the order parameter,

the system evolution can be resolved in time. One of the best-known PFM is

the Cahn-Hilliard equation [8, 9], where the evolution of the order parameter

is driven by the minimization of a thermodynamical conservative chemical

potential. As a result the conservation of the phase field is ensured and

the diffusion of the interfacial layer is overcame, granting more accuracy in

the computation of the interfacial forces [7] and avoiding the major draw-

back of the most common interface-tracking methods [10]. The convective

Cahn-Hilliard equation is written as follows:

∂φ

∂t
= −u · ∇φ + M∇2μ, (1)

where u is the velocity field, M is the mobility parameter that controls

the interface relaxation time and μ is a chemical potential that controls the

interfacial layer behavior. Eq. (1) models the evolution in time of a diffuse

interface, in particular it can describe the conservative advection of a diffuse

interface [11, 12] and complex changes in the interface topology. The chemical

potential μ is defined in terms of the free energy functional f [φ] as follows:

μ =
δf [φ(x)]

δφ
, (2)
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where f [φ] is a conservative, thermodynamically consistent functional that

can assume suitable definitions according to the problem under analysis and

it. The PFM representation of an immiscible binary mixture of isothermal

fluids is given by the following free energy functional:

f [φ(x)] = fid +
1

2
κ|∇φ|2 =

α

4

(
φ −

√
β

α

)2(
φ +

√
β

α

)2

+
1

2
κ|∇φ|2. (3)

In this work, the scalar order parameter φ represents the relative concentra-

tion of the two fluid components. The first term on the right-hand-side of eq.

(3), fid, is the ideal part of the free energy that accounts for the tendency

of the system to separate into pure fluid clusters. For two immiscible fluids,

the phobic behavior is described by a double-well formulation which shows

two minima corresponding to the two stable fluid phases that are defined

through the positive constants α and β. The two fluids are allowed to mix

into the interfacial layer where they store a mixing energy which is accounted

by the non-local term 1/2κ|∇φ|2 of eq. (3) and which is the source of the

surface tension in the PFM. The relative concentration equilibrium profile

across the interface is given by the competition of the two terms appearing

in the free energy formulation and can be obtained by minimizing the free

energy functional with respect to the variations of the order parameter:

μ =
δf [φ]

δφ
= 0 ⇒ αφ3 − βφ − κ∇2φ = 0. (4)

Integration of eq. (4) for a one-dimensional planar interface, where φ(z →
±∞) = φ±, yields two stable solutions φ± = ±

√
β/α and the following

non-uniform solution:

φ(z) = φ+ tanh

(
z√
2ξ

)
. (5)
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The capillary width ξ =
√

κ/β is the interface length scale; 0.9φ− ≤ φ ≤
0.9φ+ in a layer of 4.164ξ that contains the 98.5% of the interface surface

tension [6, 12]. At the equilibrium, the surface tension σ is:

σ = κ

∫ +∞

−∞

(
dφ

dz

)2

dz =

√
8

3

κ
1

2 β
3

2

α
. (6)

Once the interface thickness ξ and the equilibrium solutions φ± are chosen,

eq. (6) allows to define the free energy parameters α, β and κ necessary to

achieve the desired surface tension value. The derivation described above has

been adopted and reviewed by several authors [13, 14] and the convergence

of eq. (1) to the “sharp interface limit” has been recently proven [15]. In

particular, although the fictitious widening of the interface necessary for its

numerical resolution1, the PFM can describe the desired value of σ by defining

the free energy functional coefficients and adopting a proper scaling between

the capillary width ξ and the interface mobility M [12, 15].

2.2. Coupling with the flow field

The evolution of the velocity field u is described by the incompressible

Navier-Stokes equations provided by a phase field-dependent surface force

[16]:

∇ · u = 0, (7)

∂u

∂t
= −u · ∇u − ∇p + ν∇2u + μ∇φ, (8)

1At least three mesh-points are necessary to fully resolve the interface with the current

methodology employed. Larger number of mesh-points can be required according to the

accuracy of the numerical scheme adopted.
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where p is the pressure term and ν is the kinematic viscosity. The coupled

Chan-Hilliard/Navier-Stokes (CHNS) equations (1), (7) and (8) is the so-

called “Model-H” [17], where the surface tension forcing μ∇φ is derived from

the Korteweg stress.

3. Numerical simulations

3.1. Geometry and numerical scheme

In this work a swarm of droplets of diameter d dispersed in a fully devel-

oped turbulent channel flow is simulated; the two fluids are considered immis-

cible, incompressible, Newtonian, density-matched and viscosity-matched.

With this assumptions the system is set to its simplest configuration, allow-

ing to isolate the surface tension effects and the role of droplets deformability

on the wall-drag modification. With reference to figure 1 the coordinate sys-

tem is located at the center of the channel and x-, y- and z-axes point in

the streamwise, spanwise and wall-normal directions, respectively. The size

of the channel is 4πh × 2πh × 2h in x, y, and z directions, respectively, and

h is the channel half-height. The droplets are initialized by superposing the

phase field φ over a fully developed turbulent flow obtained from previous

single phase DNSs in a statistically steady state. The CHNS equations (1),

(7) and (8) have been rewritten in a non-dimensional form, where the super-

script “−” indicates non-dimensional quantities. The scaling variables here

adopted are Uτ , h, and φ+, where Uτ =
√

τw/ρ is the shear velocity based

on the wall shear stress τw and the fluid density ρ; φ+ =
√

β/α is one of the

two stable solutions given by the chemical potential (2).

∂φ−

∂t−
= −u− · ∇φ− +

1

Pe
∇2μ−, (9)
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∇ · u− = 0, (10)

∂u−

∂t−
= −u− · ∇u− − ∇p− +

1

Reτ

∇2u− +
3√
8

1

We · Ch
μ−∇φ−, (11)

μ = φ3− − φ− − Ch2∇2φ−. (12)

where the eq. (12) is the dimensionless chemical potential (2). The following

dimensionless groups appear:

Reτ =
Uτh

ν
, Pe =

Uτh

Mβ
, We =

ρU2
τ h

σ
, Ch =

ξ

h
. (13)

The shear Reynolds number (Reτ ) is the ratio between inertial forces and vis-

cous forces, the Peclet number (Pe) represents the interface relaxation time,

the Weber number (We) is the ratio between inertial forces and the surface

tension and the Cahn number (Ch) is the dimensionless capillary width. In

our approach, Reτ , Pe, We and Ch are governing parameters that defined

by considering the physical fluid properties, the flow regime, the simulated

surface tension and the phase field modeling. Once the shear Reynolds num-

ber is fixed, the value of the surface tension is chosen by changing the Weber

number. When considering immiscible fluids, the interface thickness depends

on the numerical algorithm only, thus the Cahn number can be fixed to the

smallest possible value. To obtain results independent from Ch, the Peclet

number should be properly chosen: for this reason the scaling proposed by

Magaletti et al. [15] has been adopted: Pe ∝ Ch−1. Equations (9)-(12) have

been solved using a pseudo-spectral approach where periodicity conditions

have been applied along the homogeneous directions x and y for both veloc-

ity field and order parameter; no-slip velocity and normal contact angle for

the interface have been imposed at the walls [12, 6]. The detailed numerical

procedure can be found in [18].
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3.2. simulation parameters

In this work the shear Reynolds number based on the half channel height

is Reτ = 150, leading to a fully developed turbulent flow. A large number

of droplets of diameter d− = 0.6 yielding a volume fraction ϕ = 0.053 have

been simulated considering wide range of Weber numbers: We = 0.18 ÷ 2.8.

The droplet diameter is much larger than the Kolmogorov length scale η−

κ

at all the positions in the domain: the ratio between the Kolmogorov length

scale and the droplet diameter is 0.027 ≤ η−

κ /d− ≤ 0.063. The simulations

were run on a 512 × 256 × 257 fixed cartesian grid fine enough to resolve the

smallest length scale of the turbulent flow, while the time step Δt− = 10−4

has been chosen to resolve the smallest temporal scales and respond to the

numerical stability requirements associated with the grid resolution. The

pseudo-spectral scheme adopted can resolve accurately the interfacial layer

with a minimum number of three mesh-points [6, 7, 18]. The interface is

described by three mesh-points along x and y directions (where a uniform

discretization is adopted) and by a minimum number of seven mesh-points

along the z direction where a finer non-uniform discretization is adopted

(Chebyshev polynomials). With reference to eq. (5) the interface thickness

(a layer where −0.9 ≤ φ− ≤ 0.9) is fixed choosing Ch = 0.0185 and, adopting

the scaling law proposed by Magaletti et al. [15], the Peclet number is

Pe = 162.2. The PFM cannot completely fulfill local mass conservation [19];

thanks to the accuracy of the numerical and to the small interface thickness

adopted, however, the mass loss is in any case small2. A collection of the

2After the entire simulation (2 · 105 time-steps, corresponding to ∼ 50 channel length

covered by the mean flow), losses of volume V − (or equivalently of mass m) range from
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relevant parameters of each simulation is reported in Tab. 1.

4. Results and Discussion

Wall-drag modifications produced by large deformable droplets in a tur-

bulent channel flow have been studied focusing the analysis on the correlation

between the droplets deformability and the wall-drag modifications. Time-

independent statistical results have been obtained by time and ensemble

averaging (denoted by brackets “〈〉”); the time window adopted corresponds

to a ∼ 24 eddy turnover times Te = h/Uτ . All the results reported in this

section are measured in wall-units “+” obtained by normalizing with Uτ , ρ,

ν and φ+.

4.1. Qualitative analysis

Figure 2-a and figure 2-b show the detail of one droplet moving in the

near wall region for a small Weber number case (WE1) and a large Weber

number case (WE6), respectively. The streamwise component of the velocity

field relative to the droplet velocity (u+
r = u+ −u+

d ) is shown by the contour

plot reported on a x − z slice that spans all the channel height (300w.u.).

The droplets are modified by the turbulent structures encountered in their

motion: when the Weber number is small (We = 0.18), the small defor-

mations observed are limited to the near wall region and are probably due

to the wall mean shear; when the Weber number is large (We = 0.71), the

deformations are much larger and the droplet assumes an elongated shape

that is oriented in the direction of the stream flow. The relative velocity

2% to 10%.
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u+
r increases reducing We: higher magnitude are measured in the channel

center, while the regions of negative u+
r shrink toward the walls. This effect

is due to the droplet velocity u+
b that decreases with We: in this particular

case the less deformable droplet (WE1) has a mean velocity u+
d = 13.5, while

the more deformable droplet (WE6) has an higher mean velocity u+
d = 16.7.

Droplets with small deformability are slowed down by the near wall veloc-

ity field where they move in a negative relative velocity region, as observed

in the fluid regions near the droplet of (figure 2-a). The shape of droplets

with large deformability show deformations that correlate with the relative

velocity field: the droplet seems to be forced and deformed by two opposite

sign flow regions (figure 2-b): a region of positive u+
r acting on its back side

and a region of negative u+
r insisting on its front side. As a result the flow

field modifications are larger the smaller is the Weber number and droplets

with large deformability can be more easily deformed by the surrounding

flow field.

4.2. Turbulence statistics

To analyze the effects of the droplets dispersed in the turbulent channel

flow, first the the streamwise mean velocity 〈u+〉 is measured. Since the

simulations are run with fixed average pressure gradient, the flow rate de-

pends on the shear stress at the wall; small mean velocity fluctuations are

ruled out by the ensemble and time averaging procedure. Figure 3 shows

that the mean streamwise velocity profile is shifted down when decreasing

the Weber number (and thus the droplets deformability). Compared with

the turbulence wall law, 〈u+〉 is reduced when We is small (WE1 ÷ WE4)

and the resulting velocity profile is characterized by a logarithmic region that
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is shifted down and reduced in slope. In agreement with the observations of

Lu et al. [4], droplets with small deformability produce Drag Enhancement

(DE). On the contrary, when the We is large (simulations WE5 ÷ WE8),

〈u+〉 is slightly increased with respect to the single phase flow, but no sig-

nificant Drag Reduction (DR) is observed. In order to correlate DE and DR

with We and with the droplet deformability, the averaged friction coefficient

Cf has been computed:

Cf =
τw

1

2
ρ〈u0〉2

, (14)

where 〈u0〉 is the flow average bulk velocity. Figure 4-a shows the friction

coefficient normalized with its value measured for a single phase flow Cf,s;

plain dots refer to simulations where DE is observed, while filled dots are

cases of no DE (or slight DR). The friction coefficient increases up to 11%

for the smaller Weber number (simulation WE1), while a slight reductions

of 1%÷2% is observed for large Weber numbers (simulations WE6÷WE8).

The DE observed in [4] for small Weber number bubbles was addressed to the

flow obstruction produced by droplets with streamwise velocity smaller than

the surrounding fluid. Based on this evidence the average droplets velocity

u+
d has been investigated. Figure 4-b shows that increasing the Weber num-

ber, the droplet average velocity increases reaching an almost uniform value

when the DE vanishes (filled dots); this result confirms the qualitative be-

havior observed in figure 2 and it is in agreement with [4]. In particular, the

droplet average velocity seems to correlate well with the inverse of the friction

factor represented by the dashed line in figure 4-b, confirming that the DE

observed for small Weber number droplets is likely due to the slip velocity

between the droplets and the surrounding fluid. While the DE mechanism
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and its dependence on We is recovered, the DR effect is in fact negligible in

this simulations. In a flow where large and highly deformable bubbles are dis-

persed, the DR is mainly due to the streamwise vorticity canceling produced

by the bubble motion in the near-wall region [4, 5]. Figure 5 shows the near-

wall behavior of the Root Mean Square (RMS) of the streamwise vorticity

fluctuations 〈RMS(ω′+
x )〉; when We is small (simulations WE1 and WE2),

the vorticity fluctuations at the wall are increased with respect to the single

phase flow, while, when We is large (simulations WE5÷WE8), 〈RMS(ω′+
x )〉

collapses over the single phase flow vorticity. Thus the presence of small We

droplets is responsible for the enhancement of the near-wall streamwise vor-

ticity fluctuations, while large We is not affecting 〈RMS(ω′+
x )〉. In figure

6 the RMS of the spanwise vorticity fluctuations 〈RMS(ω′+
y )〉 is shown; in

near-wall region there is an enhancement of 〈RMS(ω′+
y )〉 that is larger the

smaller is We and the profiles collapse over the single phase flow curve when

the We is large. In this region the wall-normal vorticity component (not

displayed for brevity) has no major deviations from the single phase behav-

ior. In the channel center (in a region from 70w.u. to 230w.u.) the spanwise

vorticity fluctuations are increased reducing We; this behavior is observed

also in the wall-normal vorticity component (not displayed for brevity) which

is affected in a similar way, but on a wider region ( 40w.u. to 260w.u.). The

vorticity behavior suggests that when a droplet moves from the channel cen-

ter towards the wall, it transports an higher streamwise velocity in the near

wall region producing an increment of the near wall vorticity components. At

the same time the droplet velocity is slowed down thus, when the droplet is

transported again towards the center of the channel, it introduces a smaller
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streamwise velocity in that region. As a result the droplet is accelerated and

the local vorticity fluctuations are enhanced. This mechanism is much more

effective when the droplet behaves like a rigid body: once the velocity in some

regions of the droplet surface are slowed down, also the neighborhood regions

velocity are reduced because of the limited displacements allowed by the high

surface tension. On the contrary when the droplet deformability is large, the

interface can deform and adapt to the velocity difference in different regions,

introducing a smaller obstruction to the flow (figure 2-a).

5. Conclusions

The wall drag modification produced by large deformable bubbles or

droplets dispersed in turbulent wall-bounded flows has large practical rel-

evance but, due to the complexity of the analysis, only few detailed investi-

gations are available. Recent results have shown that the droplets/bubbles

deformability is central factor for the wall drag modification mechanism,

thus, in this work, the wall drag modification produced by large droplets

released in a turbulent channel flow is analyzed focusing on the role of the

droplets deformability. The presence of the droplets produces an increment

of the wall drag that decreases with the droplet deformability: significant

DE is produced by the less deformable droplets, while these effects reduce

increasing the deformability. When the deformability is sufficiently large, no

DE is observed and an almost negligible DR is produced. The analysis of the

droplet average velocity and of the vorticity fluctuations suggest that the DE

is likely due to the droplet slip velocity. The absence of the vorticity canceling

can be explained keeping into account the differences between the physical
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system considered here and the system considered by [4] and [5]: the inertia

of the droplets considered in this work is much larger, thus the droplets can

easily decorrelate from the vortical structures encountered. As a result the

droplets do not produce the near-wall streamwise vorticiy canceling and they

act as a flow obstruction when their slip velocity increases.
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Simulation We Reτ Ch Pe ϕ

WE1 0.18 150 0.0185 168.2 0.053

WE2 0.21 150 0.0185 168.2 0.053

WE3 0.25 150 0.0185 168.2 0.053

WE4 0.28 150 0.0185 168.2 0.053

WE5 0.35 150 0.0185 168.2 0.053

WE6 0.71 150 0.0185 168.2 0.053

WE7 1.41 150 0.0185 168.2 0.053

WE8 2.83 150 0.0185 168.2 0.053

Table 1: Collection of simulation parameters

Z
, 
w

Y, v

X, u

2πh

4π
h

2
h

O

Figure 1: Schematics of the problem under analysis: dispersion of a swarm of large de-

formable droplets in a turbulent channel flow.
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(a) (b)

-3     -2      -1       0       1      2      3  

Streamwise relative velocity

Figure 2: Detail of the near-wall motion of a droplet for different Weber numbers: (a)

simulation WE1, (b) simulation WE6. The contour plot of the streamwise velocity u+
r

relative to the droplet streamwise velocity u+

d is depicted on a x − z plane passing across

the droplet. The droplet interface is located by the iso-surface φ = 0 and is rendered in

green. The entire computational domain along the wall-normal direction z is shown, while

only a portion of ∼ 300w.u. is shown along the streamwise direction.
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Figure 3: Mean streamwise velocity profile 〈u+〉 along the wall-normal direction z+ for dif-

ferent Weber numbers. Arrow points in the increasing Weber number direction (increasing

deformability)
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Figure 4: Average friction coefficient Cf normalized with the single phase flow friction

coefficient Cf,s for different Weber numbers (panel a). Droplets average velocity u+

d for

different Weber numbers (panel b). Plain dots refer to simulations where DE is observed;

filled dots refer to simulations with no DE.
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Figure 5: Root Mean Square of the streamwise vorticity component fluctuations 〈ω′+
x 〉

along the wall-normal direction z+.Arrow points in the increasing Weber number direction

(increasing deformability)
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Figure 6: Root Mean Square of the spanwise vorticity component fluctuations 〈ω′+
y 〉 along

the wall-normal direction z+.Arrow points in the increasing Weber number direction (in-

creasing deformability)
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To Professor Stéphane Vincent, Editor

Manuscript highlights

Dear Professor Vincent,

please find below the highlights of the manuscript “Wall drag modification by large deformable
droplets in turbulent channel flow” by Luca Scarbolo and Alfredo Soldati which we would like
to submit to your attention for publication in Computer and Fluids as a contribution to the
special issue Multiphase Flows.

Highlights:

• The wall drag modifications produced by large deformable droplets are investigated.

• The wall drag increases reducing the droplets deformability.

• The droplets average velocity reduces increasing the deformability.

• Vorticity fluctuations are increased in the wall region and in the channel center.

• The drag enhancement is due to the droplets slip velocity.

We believe this study will add insights to the research on wall drag modification produced by
large droplets and bubbles in turbulence.

Yours sincerely,


