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Abstract In this work, we propose and test the validity of a phase-field method tailored specifically for
modelingboilingphenomena.Themethod relies onnumerical solutions of theNavier–Stokes equations coupled
with a phase-field method and the energy equation. The continuity and Navier–Stokes equations have been
modified introducing a source term that accounts for phase change. Likewise, in the conservative Allen–Cahn
equation (phase-fieldmethod) a source term that accounts for the volume is introduced. The systemof governing
equations is solved using a projection-correction method and equations are discretized using a second-order
finite difference approach. Thanks to the numerical discretization employed, a constant coefficient Poisson
equation for pressure is obtained, which can be efficiently solved using FFT-based direct solvers. The proposed
method is validated against several benchmarks: an interface undergoing vaporization at a constant rate, the
Stefan problem, the adsorption problem, and the growth of a 2D vapor bubble. For all the benchmarks, the
present method well matches with analytical and archival literature results for a wide range of vapor-to-liquid
density ratios, from ρv/ρl = 1 down to ρv/ρl � 5 × 10−4 (where ρv identifies the vapor density and ρl the
liquid density).

1 Introduction

Boiling heat transfer represents one of the most effective ways of removing heat and it is commonly used in
many engineering applications characterized by large heat fluxes, like nuclear reactors and electronic devices
[1–3]. However, the prediction of boiling heat transfer coefficients in these systems still largely relies on
empirical correlations, often leading to unsatisfactory results. This is not surprising given the strong multiscale
character of the boiling heat transfer process. A wide range of scales is involved in the process, from the
molecular scales of the interface that control the nucleation process of vapor bubbles [4–6], to the microscale
phenomena that control the micro-layer behavior [7–9], to the larger flow scales that control vapor bubble
motion and eventually their breakage and coalescence [10,11].

In this context, numerical simulations play an important role by providing space- and time- resolved
information on the flow, interface properties, and temperature in the system. The development of numerical
tools for phase-changing flows is very challenging: the wide range of scales involved in the process and
their strong coupling requires very refined grids and fast and scalable approaches and eventually the coupling
between different approaches [6,9]. Depending on the range of resolved scales, we can distinguish among
different methodologies: i) Molecular dynamic (MD) [12–15], where all the nanoscopic scales are resolved
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and thus all the interactions are directly simulated from first principles; ii) Fluctuating hydrodynamics [5,16,
17], a mesoscopic approach that embeds thermal fluctuations, capable of describing spontaneous nucleation
phenomena; iii) Interface-resolved simulations, a class of methods where interfacial phenomena that occur at
scales comparable to the flow scales are resolved [18–20].

The available numerical approaches for interface-resolved simulations can be classified in two families:
interface tracking and interface capturing methods. The fundamental difference resides in the definition of the
interface: interface tracking approaches explicitly follow the position of the interface with Lagrangian markers
or interface-fitted meshes, while interface capturing methods define the interface position as a prescribed value
of a color function or phase-concentration field. Numerical methodologies for boiling phenomena have been
proposed for both families. For interface-tracking methods, most of the works rely on the front-tracking tech-
nique [21–25] where sets of connected Lagrangian points are used to follow the interface position. Considering
interface-capturing methods, numerical approaches have been developed for volume-of-fluid methods [26,27]
and level-set methods [28–31]. Recently, phase-field methods have also emerged as a viable tool to simulate
phase change phenomena. Specifically, phase-field approaches based on the Cahn-Hilliard equation [32] or
the conservative Allen–Cahn equation [10,33–36] have been proposed.

In thiswork,wepropose a a phase-fieldmethod (PFM) for boiling heat transfer that relies on the conservative
Allen–Cahn (CAC) for the description of the vapor-liquid interface. The PFM is coupled with a direct solution
of the mass conservation and Navier–Stokes equation to describe the flow field and the energy equation to
describe the temperature field. The continuity and Navier–Stokes equations have been opportunely modified to
account for phase change phenomena. The proposed methodology is tailored towards large-scale simulations
of phase-changing flows: i) With respect to other methodologies for interface-resolved simulations, present
method is interface blind, no geometrical reconstructions are required and thus the computational cost does
not depend on the interface topology; ii) From a numerical point of view, the implementation of the phase-field
method is relatively simple and efficient; iii) A constant coefficient Poisson equation is obtained for pressure,
this allows for the use of fast, scalable and efficient FFT-based direct solvers. Overall, these three aspects
enable the future parallelization and porting to GPUs of the method thus allowing for large-scale simulations.

The paper is organized as follows. In Sect. 2, the governing equations and the numerical method are
presented. In Sect. 3, the proposed method is validated against benchmarks for phase-changing flows and
archival literature data. Then, the proposed method is used to study the growth of a 2D vapor bubble with a
constant and uniform vaporization rate. Finally, we draw the conclusions and we discuss future developments
in Sect. 4.

2 Methodology

We consider a monocomponent system, composed of its liquid and vapor. To describe the dynamic of the
system, we couple direct solutions of the mass conservation and Navier–Stokes equations, used to describe the
flow field, with a phase-field method, used to describe the interface position, and the energy equation, used to
describe the temperature in the two phases.

2.1 Phase-field method

We employ here a second-order phase-field method for the description of the interface position. The phase-
field method relies on a phase-field variable, φ, which is constant in the bulk of the two phases (φ = 1 in the
vapor and φ = 0 in the liquid) and that undergoes a smooth transition across a thin interfacial layer. The time
evolution of the phase field variable is described by the conservative Allen–Cahn equation [37–40], which
reads as follows:

∂φ

∂t
+ ∇ · (uφ) = ∇ ·

[
γ

(
ε∇φ − φ(1 − φ)

∇φ

|∇φ|
)]

+
...
m

ρv

, (1)

where ε is a numerical parameter that controls the characteristic length-scale of the thin transition layer. On the
right-hand side, we can distinguish three different terms. The first two terms are the diffusive and sharpening
terms, which are also present in the isothermal version of the conservative Allen–Cahn equation [37–39].
These terms allow to preserve the interfacial profile during the computation, e.g. a hyperbolic tangent profile.
The strength of these two terms is tuned via the numerical parameter γ , which should be set accordingly so as
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to obtain a bounder solution for the phase-field variable [39]. The last term at the right-hand side accounts for
the phase change phenomena:

...
m is the vaporization rate per unit volume expressed in kg/m3s, i.e. the amount

of liquid that vaporizes in the unit time and per unit volume, while ρv is the vapor density [33,34,41]. The
phase change term

...
m is computed from the vaporization rate per unit surface, m̈, expressed in kg/m2s [32],

as follows:

...
m = m̈|∇φ| = m̈

φ(1 − φ)

ε
(2)

where the property of the phase-field variable [37,42] has been used to approximate |∇φ| with a polynomial
expression. Specific details on the calculation of the vaporization rate per unit surface are reported in Sect. 2.4.

The main advantage of using the present phase-field method is that by properly selecting the parameters ε
and γ , it ensures a bounded solution for the phase-field variable [39]. This latter aspect is of great importance
when large density ratios are considered and the local value of density (and/or viscosity) is calculated from
the phase-field variable [42,43]. In addition, being a second-order partial differential equation, its numerical
treatment is easier compared to the Cahn-Hilliard equation where a fourth-order term is present [42,44].

2.2 Hydrodynamics

To describe the flow field, a one-fluid approach is employed and a single set of Navier–Stokes and mass
conservation equations is solved in the entire domain [18,20]. For themass conservation equation, by assuming
that the liquid and vapor phases are incompressible, the following equation is obtained [21]:

∇ · (ρu) = ...
m

(
1 − ρv

ρl

)
, (3)

where ρl is the liquid density and ρv the vapor density.We can observe that only for the special case ρv = ρl the
flow is divergence-free in the entire domain while, in the most general case where ρv �= ρl , the divergence-free
property is lost in the interfacial region (assuming a non-zero vaporization rate).

The mass conservation equation is coupled with the Navier–Stokes equations to describe the flow field.
Using a one-fluid approach, the momentum conservation equations can be written as follows:

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇ p + ∇ ·

[
μ

(
∇u + ∇uT

)]
+ fσ , (4)

where ρ and μ are the density and viscosity maps of the domain and fσ are the surface tension forces. In
particular, density and viscosity are defined as linear functions of the phase-field variable [43,45]. The density
map is defined as follows:

ρ(φ) = ρvφ + ρl(1 − φ) , (5)

where ρv and ρl are the vapor and liquid densities. Meanwhile, the viscosity map is defined as:

μ(φ) = μvφ + μl(1 − φ) , (6)

where μv and μl are the liquid and vapor viscosities. The surface tension forces are evaluated using the
localized continuous surface force method [46]. Specifically, the interfacial forces are computed as follows:

fσ = 6σκφ(1 − φ)∇φ , (7)

where σ is the surface tension and κ is the interface curvature, which is defined as follows:

κ = ∇ · n = ∇ ·
( ∇φ

|∇φ|
)

, (8)

where n is the unit normal vector.



A. Roccon

2.3 Energy equation

To describe the temperature in the system, the energy equation is solved. By neglecting the viscous dissipation
and pressure work due to the incompressibility of the two phases, the temperature in the system can be obtained
by solving the following equation:

∂T

∂t
+ ∇ · (uT ) = ∇ · (α∇T ) + St , (9)

where α = k/ρCp is the thermal diffusivity and St is the source term that accounts for the energy
adsorbed/released via the latent heat mechanism. The thermal diffusivity, like density and viscosity, is a
function of the phase-field variable:

α(φ) = αvφ + αl(1 − φ) . (10)

The source term, St , is defined as follows [33,47]:

St = −hlv
Cp

(
∂φ

∂t
+ ∇ · (uφ)

)
, (11)

where hlv is the latent heat of vaporization and Cp is the specific heat at constant pressure. In the present
work, where boiling phenomena are considered, it can be assumed that one phase (and thus the interface) is
always at saturation temperature. This implies that vaporization is driven by one phase solely, i.e. a superheated
liquid or vapor. Using this assumption, as the flow field and phase-field carry information related to the latent
heat mechanism, the source term St can be neglected [34,36,41,48]. Thus, it is sufficient to solve the energy
equation only in the superheated phase (the one driving phase change) while the other phase is kept at constant
and uniform saturation conditions.

2.4 Calculation of the vaporization rate per unit surface

The last key ingredient required to close the set of governing equations reported above is a closure model for
the vaporization rate per unit surface. In archival literature, two different classes of methods are available:
energy (or heat conduction) models and kinetic models [32,34,41,49].

The first class of models relies on a balance of the heat fluxes at the interface, i.e. the Rankine-Hugoniot
jump condition [29]. Specifically, the net difference between the vapor-to-liquid and liquid-to-vapor heat fluxes
at the interface corresponds to the amount of heat absorbed/released at the interface via phase change (i.e.
latent heat adsorption/release). The balance of the heat fluxes at the interface can be written as follows:

m̈ = qv→l − ql→v = (kv∇Tv − kl∇Tl) · n
hlv

, (12)

where qv→l and ql→v are the vapor-to-liquid and liquid-to-vapor heat fluxes, kv and kl are the vapor and
liquid thermal conductivities, Tv and Tl are the temperatures of the vapor and liquid, hlv is the latent heat
of vaporization and n is the unitary normal vector. This type of model is commonly used in combination
with front-tracking [22,23], level-set [50] and phase-field [32,48] methods where accurate information of the
interface normal are readily available at run time.

The second class of models relies on the kinetic theory of gases to model mass transfer [51,52]. These
models are in general simpler to implement as they do not require the computation of temperature gradients
at the two sides of the interface. One of the most commonly used is the model proposed by Tanasawa [53],
which contains a linear dependence of the heat flux on the excess temperature of the phase boundary:

m̈ = 2χ

2 − χ

(
M

2πRg

)1/2
ρvhlv(T − Tsat )

T 3/2
sat

, (13)

where χ is a parameter of the model [49], Rg is the gas constant, M is the molecular weight. This model has
been mainly use in combination with volume-of-fluid approaches [27,54,55], although it can be combined
with other interface tracking/capturing approaches [56].
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In this work, we employ an energy-based model, equation (12), based on evaluating the temperature gradi-
ents at the two sides of the interface. The temperature gradients at the vapor and liquid sides are extrapolated
using the probemethod ofUdaykumar et al. [57], which has beenmainly applied in the context of front-tracking
method [22–24]. In particular, the procedure to compute the vaporization rate per unit surface is composed
of the following steps: i) The exact position of the iso-contour φ = 0.5, xi , is identified using the signed-
distance property of the phase-field variable [58]; ii) The temperature gradients at the two probes location,
xp = xi ±�n, are evaluated, where the distance � is set to be of the order of the grid spacing [22,23]; iii) The
vaporization rate per unit surface is evaluated and then smeared out in the interfacial layer using equation 2.
The present approach resembles the method adopted by Shad and Lee [48] and Haghani-Hassan-Abadi et al.
[34] where the vaporization rate is evaluated using a sharp-interface method.

2.5 Numerical method

All the governing equations are solved on a fixed, uniform, staggered grid. Velocity components are defined
at cell faces while scalar fields (pressure, phase-field, and temperature) are defined at cell centers. A finite-
difference method is used to discretize the equations. Specifically, all spatial derivatives are discretized using a
second-order central difference scheme. The time integration of the momentum equation is performed using a
first-order projection-correction method [59]. The solution of the phase-field equations and energy equations
is time advanced using a first order explicit Euler method.

To advance the solution from the step n to the step n+ 1, we follow the procedure reported hereunder. The
first step is the time advancement of the conservative Allen–Cahn equation to obtain the phase-field variable
at the time step n + 1. This equation is time advancement using an Euler explicit scheme [39]:

φn+1 = φn + �t An , (14)

where the term An includes the advection, diffusion, sharpening and vaporization terms. In particular, the
vaporization term is evaluated using the procedure presented in Sect. 2.4. Once obtained φn+1, the density,
viscosity and thermal diffusivity maps are evaluated.

The second step is the time advancement of the energy equation, which is performed with an explicit Euler
method [21,34,48]:

T n+1 = T n + �t Bn (15)

where the term Bn includes the advection and diffusion terms of the energy equation. Once known the temper-
ature T n+1, depending on the phase-field value, saturation conditions are imposed on the phase characterized
by constant and uniform saturation temperature conditions (i.e. the phase that does not drive phase change).
This is equivalent to imposing a saturation Dirichlet boundary condition at the interface.

The final step is the solution of the Navier–Stokes equations, which relies on a first-order projection-
correction method [59], opportunely extended to phase change flows [21]. We start by computing the new
intermediate field w∗ = ρn+1u∗ from the following equation:

w∗ − w
�t

= Cn , (16)

where Cn includes the advection, viscous and surface tension terms of the NS equations. Then, by taking the
divergence of the following equation:

wn+1 − w∗

�t
= −∇ p , (17)

wherewn+1 is the newvelocity field that satisfy themass conservation equation,we obtain a constant coefficient
Poisson equation for pressure:

∇2 p = ∇ · w∗ − ...
mn+1

(1 − ρv/ρl)

�t
, (18)

where the second term at the numerator represents the right-hand side of the mass conservation equation. This
term is non-zero only in the interfacial regione, where the occurrence of phase change induces a velocity jump.
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The main advantage of the present formulation for the NS equations is that FFT-based solvers can be readily
applied to solve equation (18). Finally, the correction step is performed to obtain the new field wn+1:

wn+1 = w∗ − �t∇ p , (19)

and the new velocity field un+1 is obtained as follows:

un+1 = wn+1

ρn+1 . (20)

Once the new velocity field un+1 is known, all the quantities (velocity, pressure, phase-field and temperature)
at the new time step n + 1 are available and the solution algorithm is complete.

3 Results

In the following, the proposed phase-field method is validated against benchmarks for phase change problems
available in archival literature. First, we consider the vaporization of a flat interface at a constant rate. Second,
we consider the Stefan problem, i.e. the phase change driven by a motionless superheated vapor. Third, we
analyze the adsorption problem, where phase change is driven by a superheated liquid. Finally, we consider
the growth of a two-dimensional vapor bubble.

3.1 Vaporization of a flat interface at a constant rate

The first test case we consider is the vaporization of a flat interface at a constant rate, i.e. a constant value for
m̈ is assumed. In this problem, a heat flux, qw, is provided to the left boundary of the domain (wall), as shown
in Fig. 1. The left part of the domain is occupied by the liquid while the right part by the vapor. The vapor can
flow out from the outlet located at the right side of the domain.

Assuming a slow vaporization rate, the provided heat flux can be considered constant and the interface
moves from right to left with a constant velocity V [21,37]. In this scenario, analytical steady-state solutions
for the vapor velocity and pressure jump can be obtained. In particular, considering the jump conditions applied
at the vapor-liquid interface [37], the velocity in the liquid and vapor phases, ul and uv , are:

ul = 0 , uv =
(
1 − ρl

ρv

)
V , (21)

where V is the constant interface velocity (which is negative as the interface moves from right to left); the
resulting pressure jump can be computed as:

�p = ρl

(
ρl

ρv

− 1

)
V 2 , (22)

Fig. 1 Graphical sketch of the problem of phase change from a flat interface in the presence of a density difference. The left
boundary is a wall where a heat flux, qw is provided while the right boundary is an outlet where pressure is imposed. The left
part is occupied by the liquid phase while the right part by the vapor. The heat flux applied at the wall leads to the vaporization
of the liquid phase and the interface moves with a constant velocity, V . The liquid is motionless (ul = 0) while the vapor moves
with constant velocity (uv(t) > 0)
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Fig. 2 Behavior of velocity (panel a) and pressure (panel b) for a flat interface undergoing vaporization in presence of a density
difference. The liquid phase (left) is motionless while the vapor (right) moves with constant velocity; a pressure jump occurs
across the interface due to the phase change. The theoretical values of the liquid and vapor velocity (horizontal dashed lines) as
well as themixture velocity (Eq. 23, black solid line) are reported as reference. The phase-field profile is also shown in panel a with
a dot-dashed line (secondary axis on the right). The case shown considers a vapor-to-liquid density ratio equal to ρv/ρl = 0.02

In the context of a one-fluid approach, i.e. when a single set of Navier–Stokes equations is solved in the entire
domain, we can introduce the definition of mixture velocity [37]. The resulting mixture velocity in the entire
domain (liquid and vapor) can be computed as:

u = ρl(1 − φ)ul + ρvφuv

ρl(1 − φ) + φρv

= ρvφuv

ρl(1 − φ) + φρv

, (23)

where φ is the value of the phase-field variable (φ = 0 in the liquid and φ = 1 in the vapor); the second
expression is obtained by considering that ul = 0.

We can conveniently solve the problem in a moving reference frame that translates with the constant
interface velocity [37]. In this new reference frame, the liquid–vapor interface does notmove and the phase-field
variable remains constant over time (and its transport equation is not solved). We consider two incompressible
phases having density ρl = 1 kg/m3 and ρv = 0.02 kg/m3; the resulting density ratio is equal to ρv/ρl = 0.02.
The viscosity of the two phases is matched and set equal to μl = μv = 0.001 kg/ms. The interface velocity
V is set equal to 0.01 m/s. We consider a domain of dimension Lx = 0.1 m where the interface is located at
x = 0 m. At the left boundary (wall), no-slip conditions are applied (u = 0) while the right boundary is an
outlet where pressure is imposed (p = 0). The domain is discretized with Nx = 100 grid points and for the
phase-field method we set ε = 1.5�x .

After a short initial transient, a steady solution is obtained for the Navier–Stokes and mass conservation
equations and the resulting velocity and pressure profiles can be compared with the theoretical solutions.
Figure2a shows the numerical velocity profiles compared against the theoretical profile of the liquid, vapor
and mixture velocities. As a reference, the phase-field profile is also shown with a dash-dotted line (axis on the
right). We observe that the numerical profiles (red dots) are in excellent agreement with the analytical values
of the velocity in the two phases (i.e. ul = 0 m/s and uv = 0.49 m/s, black dashed lines). Likewise, the
velocity profile matches the analytical behavior of the mixture velocity (black solid line). It is interesting to
observe that the mixture velocity profile is not symmetric with respect to the phase-field profile: most of the
velocity jump occurs in the region φ > 0.5, in agreement with Sun and Beckermann [37]. Considering the
pressure profiles, which are shown in Figure 2b, we notice that the numerical behavior is in agreement with
the theoretical behavior (dashed lines). Specifically, pressure exhibits a jump across the interface while it is
constant in the bulk of the two phases. The value of the pressure jump is also in agreement with that obtained
from Eq. (22), i.e. �p � 0.049 Pa.

3.2 Stefan problem

To test the proposedmodel with amore challenging problem,we consider the Stefan problem. This problem has
been extensively employed in archival literature to perform validation of numerical methods for phase-change
problems [26,28,60]. In this problem, an infinitesimally thin layer of vapor is located near the left boundary
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Fig. 3 Graphical sketch of the Stefan problem at a generic time instant t > 0. The left boundary is a wall, which temperature is
fixed to a value larger than the saturation temperature; the right boundary is an outlet where pressure is imposed. The vapor (left)
is superheated while the liquid (right) is at saturation temperature, as shown by temperature profile (red line). At the beginning
(t = 0), the vapor-liquid interface is initialized at the wall location. The wall superheat drives the vaporization. The vapor is
motionless (uv = 0) while the liquid moves with a constant positive velocity (ul(t) > 0). The distance of the interface from the
wall, δ(t), is also highlighted

(wall) while the remainder of the domain is occupied by the liquid phase; the right boundary is an outlet, see
Fig. 3. The temperature of the left wall is fixed to a value higher than the saturation temperature, Tw > Tsat ,
while the liquid temperature is equal to Tsat . The vapor near the wall experiences an increase in temperature
and becomes superheated; this drives the vaporization of the liquid. Therefore, the interface moves away from
the wall (from left to right) as more liquid is transformed into vapor. In this problem, the vapor is motionless
while the volume expansion generated by the vaporization makes the liquid flow from left to right, i.e. towards
the outlet (right boundary).

For this problem, an analytical solution is available [23,26,36,60]. Specifically, the interface position,
δ(t), evaluated as the distance of the vapor-liquid interface from the wall, can be calculated from the following
equation:

δ(t) = 2ξ

√
kvt

ρvCp,v
= 2ξ

√
αvt , (24)

where kv is the thermal conductivity and Cp,v is the vapor specific heat at constant pressure. In the second
expression of the equation reported above, the definition of vapor thermal diffusivity, αv = kv/ρvCp,v has
been introduced. The parameter ξ is obtained via the solution of the following transcendental equation:

ξ exp(ξ2) erf(ξ) = Cp,v(T − Tsat )

hlv
√

π
, (25)

where hlv is the latent heat of vaporization. By introducing the Stefan number definition, St = Cp,v(T −
Tsat )/hlv , the equation above can be rewritten as follows:

ξ exp(ξ2) erf(ξ) = St√
π

. (26)

Solving this equation for ξ , we obtain the interface position as a function of time. An analytical solution for
the temperature distribution in the vapor is also available:

T (x, t) = Tw − Tw − Tsat
erf(ξ)

erf

(
x

2
√

αvt

)
, (27)

where Tw is the wall temperature (which is fixed). Finally, once the interface position and vaporization rate
are known, from mass conservation, we can also obtain an analytical expression for the velocity in the liquid.

ul =
(
1 − ρv

ρl

)
ξ

√
αv

t
, (28)
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Fig. 4 Time evolution of the interface position (identified as the iso-contour φ = 0.5) for the Stefan problem. Four different
density ratios have been tested: from ρv/ρl = 1 down to ρv/ρl = 0.001. The analytical behavior is reported with continuous
black lines (for the four density ratios considered). As the density ratio is decreased, the resulting volume expansion is larger and
the vapor pushes the liquid towards the outlet the liquid. The results obtained by Sun et al. [60] using a volume-of-fluid method
are also reported as reference using black empty squares

where it is worth noticing that for ρv = ρl , no volume expansion occurs and thus ul = uv = 0 in the entire
domain.

We now numerically investigate the Stefan problem with the proposed method; we employ the setting
analyzed by Sun et al. [60] using a volume-of-fluid (VoF) methodology. We consider four different cases,
characterized by a different density ratio. In particular, we keep fixed the liquid density equal to ρl = 1 kg/m3

and we consider four different values of the vapor density: ρv = 1 kg/m3, ρv = 0.1 kg/m3, ρv = 0.01 kg/m3

andρv = 0.001 kg/m3,which correspond to a density ratio that ranges fromρv/ρl = 1 down toρv/ρl = 0.001.
The viscosity of the two phases is matched and set equal to μl = μv = 0.01 kg/ms. The domain has a length
equal to Lx = 0.2 m and the interface is initially located at x � 0m (for computational reasons, the leftmost
cells are initialized as vapor). The domain is discretized with Nx = 200 grid points and for the phase-field we
set ε = 1.5�x , the parameter γ has been set according to Brown et al. [47]. The wall superheat has been set
equal to�T = Tw−Tsat = 10 K ; the vapor specific heat at constant pressure toCp,v = 200 J/kgK , the latent
heat hlv = 104 J/kg and the vapor thermal conductivity to kv = 0.005 W/mK , thus replicating the values
chosen by Sun et al. [60]. The resulting values of the thermal diffusivity range from αv = 2.5 × 10−5 m2/s
(for ρv = 1 kg/m3) up to αv = 2.5 × 10−2 m2/s (for ρv = 0.001 kg/m3). The resulting Stefan number is
equal to St = 0.2 for all cases and the solution of the transcendental Eq. (26) gives ξ = 0.3064.

Figure 4 shows the position of the interface δ(t) as a function of time for the four different density ratios
considered. First, we can observe that as the density is decreased, a larger expansion occurs and the interface
travels a larger distance (larger values of δ). This trend can be also observed from the analytical expression of the
interface displacement (Eq. 24), as the density is decreased, the thermal diffusivity of the vapor phase increases.
Comparing the different cases, we observe an excellent agreement among present results, the analytical profiles
and the archival literature data of Sun et al. [60] for the entire range of density ratios considered. Finally, it is
worth mentioning that the resulting temperature profiles are almost linear in the vapor phase (and constant in
the liquid phase).

We now move to verify the solution of the continuity and Navier–Stokes equations by considering the
behavior of the liquid velocity. Results are shown in Fig. 5 for the three unmatched density cases. In general,
we can appreciate how the velocity decreases as time advances. This is a direct consequence of the smaller
temperature gradient present at the interface (vapor side). Thus, a smaller vaporization rate is attained as the
interface moves from left to right (farther from the superheated wall). Comparing the numerical profiles (red
dots) and theoretical profiles (black lines), a very good agreement is exhibited for the entire range of density
ratios analyzed.
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Fig. 5 Time evolution of the velocity in the liquid phase for the Stefan problem. Three different cases are shown: ρv/ρl = 0.1,
ρv/ρl = 0.01 and ρv/ρl = 0.001. The case ρv/ρl = 1 is not shown: the two phases have the same density and no expansion
occurs during phase change and the velocity is zero in both phases. The analytical behavior is reported with continuous black
lines. As the density ratio is decreased, the resulting expansion due to phase change becomes larger and the liquid exhibit larger
velocity values

Fig. 6 Graphical sketch of the adsorption problem. The left boundary is a wall, which temperature corresponds to the saturation
temperature; the right boundary is an outlet where pressure is imposed. At the beginning, the vapor-liquid interface is located
close to the wall. The liquid superheat drives the phase change and as a consequence of the phase change expansion, liquid is
driven towards the left boundary. The vapor is motionless (ul = 0) while the liquid moves with constant velocity (ul(t) > 0).
The distance of the interface from the wall, δ(t), is also identified

3.3 Adsorption problem

We consider here the adsorption (or sucking interface) problem. In this problem, the vapor is at saturation
temperature, Tv = Tsat , while the liquid is superheated Tl = T∞ > Tsat and drives the vaporization. A typical
temperature profile is shown in Fig. 6. Compared to the Stefan problem, where heat is only transported by
diffusion (from the wall to the interface as the vapor is motionless), in this problem, heat is also transported
by convection in the liquid [26]. Indeed, the vapor is motionless while the liquid is characterized by a uniform
positive velocity. As a consequence, the thermal boundary layer in the liquid is not anymore linear and becomes
steeper. Apart from the difference in the driving vaporization mechanism, the behavior of the vapor-liquid
interface is qualitatively similar to the one obtained in the Stefan problem: the interface moves away from the
wall as more liquid is transformed into vapor.

An analytical solution is available also for the adsorption problem [23,26,61–63]. In particular, the interface
position can be predicted by the following equation:

δ(t) = 2ξ
√

αvt , (29)

where ξ is obtained from the solution of the following transcendental equation:

exp(ξ2) erf(ξ)

⎡
⎢⎣ξ −

(T∞ − Tsat )Cp,vkl
√

αv exp(−ξ2
ρ2

vαv

ρ2
l αl

)

hlvkv
√

παl erfc(ξ
ρv

√
αv

ρl
√

αl
)

⎤
⎥⎦ = 0 , (30)
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Fig. 7 Behavior of interface position (panel a) and liquid phase velocity (panel b) for the adsorption problem. The results are
obtained using the same setup tested by Irfan and Muradoglu [23] using the front tracking (FT) method. Irfan and Muradoglu
[23] results are shown using black empty squares. The simulation starts from the analytical profiles obtained for t0 = 24.7 s,
which corresponds to an interface location equal to δ = 0.1 m (vertical dashed line). The considered value of the vapor thermal
diffusivity is αv = 1.4 × 10−3m2/s while the solution of the transcendental equation gives ξ = 0.2689

where αi is the liquid/vapor thermal diffusivity and ki is the liquid/vapor thermal conductivity. An analytical
relation for the temperature in the liquid phase is also available:

Tl = T∞ +
⎡
⎣ T∞ − Tw

erfc(ξ ρv
√

αv

ρl
√

αl
)

⎤
⎦ erfc

(
x

2
√

αvt
+ ξ(ρv − ρl)

ρl

√
αv

αl

)
, (31)

while the vapor temperature is constant and uniform equal to Tv = Tsat . Finally, the velocity of the liquid
phase can be obtained as:

ul =
(
1 − ρv

ρl

)
ξ

√
αv

t
, (32)

We test the capabilities of the proposed method in reproducing this benchmark by considering two setups
employed in archival literature. First, we reproduce the setup analyzed by Irfan and Muradoglu [23] using the
front-trackingmethod. In particular, we consider a liquid and a vapor having a density equal to ρl = 2.5 kg/m3

and ρv = 0.25 kg/m3, corresponding to a density ratio of ρv/ρl = 0.1. The viscosities of the two phases are
set equal to μl = 0.098 kg/ms and μv = 0.007 kg/ms. The thermal conductivities are kv = 0.0035 W/mK
and kl = 0.0015W/mK while the specific heat at constant pressure is set equal to Cp,v = Cp,l = 10 J/kgK .
Finally, the latent heat has been chosen equal to hlv = 100 J/kg. The liquid is superheated with a temperature
difference equal to �T = T∞ − Tsat = 2 K . The simulation is performed using a domain having dimension
Lx = 1 m and discretized with Nx = 200 grid points. For the phase-field method, we set ε = 1.5�x . For
this setting, the resulting vapor thermal diffusivity is equal to αv = 1.4 × 10−3m2/s while the transcendental
Eq. 30 gives ξ = 0.2689. The simulation starts from a time t0 = 24.7 s so to avoid the singular condition
obtained for t = 0 s; the simulation then continues up to t f = 250 s. This initial time corresponds to an
interface location equal to x = 0.1 m.

The results obtained for the adsorption problem using the setup of Irfan and Muradoglu [23] are shown in
Fig. 7. Panel a shows the interface position over time (red dots) while panel b shows the liquid velocity (red
dots) over time. The analytical solutions, Eqs. (29)-(32), are reported using black continuous lines while the
results obtained by Sun et al. [23] with black symbols. The initial simulation time, t0 = 24.7 s, is shown using
a dashed vertical lines. We can observe that for both interface position and liquid velocity, present results (red
circles) well match with the analytical results and archival literature data [23].

To further test the proposed method with a more challenging test case, we consider the setup analyzed by
Irfan and Muradoglu [26]. Specifically, In the setting considered by Welch and Wilson [26], water properties
at saturation conditions (standard pressure) are employed. The liquid and vapor densities are set equal to
ρl = 958.4 kg/m3 and ρv = 0.6 kg/m3; the corresponding density ratio is ρv/ρl = 6.2 × 10−4. The
viscosities of the two phases are μl = 2.8 × 10−4 kg/ms and μv = 1.2 × 10−5 kg/ms, respectively. The
liquid and vapor thermal conductivities are kl = 0.677W/mK and kv = 0.024W/mK . Likewise, the specific



A. Roccon

Fig. 8 Behavior of interface position (panel a) and liquid velocity (panel b) for the adsorption problem. The results refer to
the setting employed by Welch and Wilson [26]. The simulation starts from the analytical profiles obtained for t0 = 0.1 s,
which corresponds to an interface location equal to δ = 0.0022 m (vertical dashed line). The vapor thermal diffusivity is
αv = 1.4 × 10−3 m2/s while the solution of the transcendental equation gives ξ = 0.7763. Present results (red circles) are
compared against the analytical results (black lines) and archival literature data of Sun et al. [26] (empty squares), Kunkelmann
and Stephan [64] (empty circles), Giustini and Issa [27] (empty upward triangles) and Guedon [62] (empty downward triangles).
All archival literature results here reported have been obtained using a volume-of-fluid methodology

heat at constant pressure are set equal to Cp,v = 2077 J/kgK and Cp,l = 4216 J/kgK . Finally, the latent
heat is chosen equal to hlv = 2.25× 106 J/kg. The liquid is superheated with a temperature difference equal
to �T = T∞ − Tsat = 5 K . The domain has dimension Lx = 0.1 m and is discretized with Nx = 200 grid
points. For the phase-field method, we set ε = 1.5�x . For this setting, the resulting vapor thermal diffusivity
is αv = 2.0 × 10−5 m2/s while the transcendental Eq. (30) gives ξ = 0.7763. The simulation starts from
t0 = 0.1 s and is continued up to t f = 1.1 s. This initial time corresponds to an interface location equal to
x = 0.0022 m.

The resulting interface position and liquid velocity are shown in Fig. 8, in panels a and b, respectively.
Present results (red circles) are compared against the analytical results obtained from Eqs. (29)-(32), which
are reported using black continuous lines. Archival literature results are also reported as reference: Welch and
Wilson [26] (empty squares), Kunkelmann and Stephan [64] (empty circles), Giustini and Issa [27] (empty
upward triangles) and Guedon [62] (empty downward triangles). We can notice that also for this setting, which
employs water properties at saturation conditions (standard pressure), an excellent agreement is obtained
among present results, analytical results and archival literature results for both interface position and liquid
velocity.

3.4 Growth of a vapor bubble with a constant vaporization rate

In this final section, we test the method by considering the growth of a two-dimensional vapor bubble [27,
34,50,65,66]. We replicate here the setting proposed by Tanguy et al. [50]. In particular, we consider a vapor
bubble having an initial radius equal to R0 = 0.001m, located at the center of a squared domain, with a spatially
uniform and temporally constant vaporization rate per unit surface m̈ = 0.1 kg/m2 s, the bubble will grow for
a time equal to �t = 0.01 s, until its radius is twice the initial one. The length and height of the computational
domain are set equal to Lx = Ly = 0.01 m. Outflow boundary conditions are imposed on the sides of the
domain: pressure is imposed (p = 0 Pa) while a zero normal derivative condition is imposed for the velocity
(∂u/∂n = 0). A uniform grid spacing is used along the two directions. The liquid and vapor densities are
set equal to ρl = 1000 kg/m3 and ρv = 1 kg/m3, corresponding to a density ratio of ρv/ρl = 0.001 and
resembling water properties at saturation temperature and standard pressure conditions. The viscosities of the
two phases are set equal to μl = μv = 1 × 10−3 kg/ms. The surface tension is set equal to σ = 0.07 N/m.
As the vaporization rate per unit surface is constant and prescribed, no additional thermodynamical properties
need to be defined, e.g. latent heat or specific heat. For the phase-field, we set ε = �x .

As the phase change rate is constant and uniform, the radius of the bubble will grow linearly over time:

R(t) = R0 + m̈

ρv

t , (33)
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Fig. 9 Panel a shows the time evolution of the vapor bubble radius as a function of time. The analytical time evolution is reported
with a thin black line while numerical results are shown with red symbols. Different grid resolutions have been tested: 32 × 32
(squares), 64× 64 (circles), 128× 128 (upward triangles) and 256× 256 (downward triangles). Panel b shows a contour map of
the velocity magnitude at t = �t/2 = 0.005 s using a grid resolution equal to 128× 128. A white dashed line is used to identify
the interface position (iso-contour φ = 0.5). White arrows are used to identify the flow direction and magnitude

where R0 is the initial bubble radius.
To assess the accuracy of the present method, we compare the theoretical evolution of the bubble radius

(Eq. 33) against the numerical results. We test four different grid resolutions: 32× 32, 64× 64, 128× 128 and
256 × 256. The results are shown in Fig. 9a. The theoretical behavior is reported with a thin black line while
numerical results, which refer to different grid resolutions, are reported with red symbols: 32 × 32 (squares),
64× 64 (circles), 128× 128 (upward triangles) and 256× 256 (downward triangles). We can observe that for
all cases, the bubble growth is in good agreement with the analytical prediction. Specifically, by increasing
the grid resolution, the agreement between numerical and analytical results improves and, for the largest grid
resolution considered, the two lines perfectly overlap. Interestingly, we can observe that the overshot reported
by Tanguy et al. [50] [Fig. 1] using the delta formulation (i.e. when a one-fluid approach is used to solve the
Navier–Stokes equations in the entire domain, as in the present work) is here not observed. The reason for the
better agreement between numerical and theoretical results obtained here can be traced back to the asymmetry
of the phase-field profile and the smoothed velocity jump across the interface, as can be observed in Fig. 2a and
also reported by Sun and Beckermann [37]. This avoids the generation of spurious currents with a magnitude
similar to the induced velocity jump that can negatively affect the advection of the phase-field variable and thus
the bubble growth. The asymmetry (or offset) of the phase-field profile and velocity jump can be appreciated
qualitatively in Fig. 9b. Clearly, this offset becomes smaller as the capillary width is reduced. Panel b shows a
contour map of the velocity magnitude (blue-low; red-high) while a white dashed line identifies the interface
position (iso-contour φ = 0.5). White arrows are used to show the velocity magnitude and its respective
direction. The plot refers to the grid resolution 128× 128. Looking at the qualitative figure, we can appreciate
that the velocity jump (i.e. the transition from the zero velocity region located inside the vapor bubble and the
non-zero velocity outside) is slightly offset compared to the interface location (white dashed line).

4 Conclusions

We propose a phase-field method for the description of boiling phenomena. The phase-field method, which
relies on the conservative Allen–Cahn equation, is coupled with numerical solutions of the mass conservation
and Navier–Stokes equations, used to describe the flow field, and energy equation, used to describe the temper-
ature field. To close the set of governing equations, an energy-based model is used to compute the vaporization
rate [49]. The proposed method is tailored towards large-scale simulations of phase-changing flows: i) For
the interface description, the method employs a phase-field method that does not require any geometrical
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reconstruction [42]; ii) For the flow-field description, the employed numerical discretization allows for the use
of FFT-based direct solvers for the pressure Poisson equation.

The proposed approach is validated against different benchmarks: i) A flat interface that undergoes vapor-
ization at a constant rate; ii) the Stefan problem, a flow instance in which a superheated vapor drives the vapor-
ization of a liquid at saturation conditions; iii) The adsorption problem, a flow instance where a superheated
liquid drives the vaporization of a vapor at saturation conditions; iv) The growth of a two-dimensional vapor
bubble. For all the benchmarks, the proposed method exhibits an excellent agreement with analytical solutions
and archival literature results for a wide range of density ratios, from ρv/ρl = 1 down to ρv/ρl � 5 × 10−4.
Future works will focus on more complex scenarios, as for instance film boiling and the parallelization and
porting to GPUs of the proposed method.
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