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Abstract In large-eddy simulation (LES) of turbulent dispersed flows, modelling and numerical inaccuracies
are incurred because LES provides only an approximation of the filtered velocity. Interpolation errors can also
occur (on coarse-grained domains, for instance). These inaccuracies affect the estimation of the forces acting
on particles, obtained when the filtered fluid velocity is supplied to the Lagrangian equation of particle motion,
and accumulate in time. As a result, particle trajectories in LES fields progressively diverge from particle
trajectories in DNS fields, which can be considered as the exact numerical reference: the flow fields seen by
the particles become less and less correlated, and the forces acting on particles are evaluated at increasingly
different locations. In this paper, we review models and strategies that have been proposed in the Eulerian–
Lagrangian framework to correct the above-mentioned sources of inaccuracy on particle dynamics and to
improve the prediction of particle dispersion in turbulent dispersed flows.

1 Introduction

Turbulent dispersed flows are multiphase flows in which a dispersed phase (particles, aerosols, droplets or
bubbles) is transported and spatially distributed by a continuous fluid phase (gas or liquid). These flows are
of paramount practical importance, as they are commonly encountered in a wide variety of environmental and
industrial applications. Examples range from atmospheric pollutant dispersion and sediment transport in water
bodies to dust/droplet separation, fibre suspensions, and spray combustion, to name a few. Turbulent dispersed
flows are also very rich in physics, as they are characterized by a complex multi-scale interaction between the
fluid turbulence and the particle distribution that still poses many challenging issues in terms of modelling,
simulation, and experiments. A general overview of these issues is provided by a number of review papers
[9,49,61,144], to which the reader is referred for a comprehensive survey of the state of the art in the field.

Owing to the wide range of length- and timescales that characterize turbulent dispersed flows, several
modelling approaches have been developed. Following the classification provided byFox [35], themost detailed
approach is based on direct numerical simulation of the microscopic governing equations (microscopic model,
wherein both phases are fully resolved). This approach provides the information about the small-scale flow
physics required to develop a continuum description of the flow based on suitable transport equations for
low-order moments such as mass continuity and momentum conservation (macroscopic model). Macroscopic
models can be developed using volume or ensemble averages of the microscopic governing equations (in this
case, suitable closures for fluctuations are required). Alternatively, they can be developed by the formulation
of an intermediate (mesoscopic) model that describes the mesoscale variables (e.g. velocity or volume) needed
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Fig. 1 Effect of filtering of the flow structures (identified by means of a 2D slice of the fluid vorticity) in HIT. a DNS, no filter
applied, b LES with filter width � = 5ηK , c LES with filter width � = 10ηK , where ηK is the Kolmogorov length scale. The
progressive loss of small-scale details of the flow, which are not felt by the Lagrangian particles as they evolve within the fluid
domain, is apparent. Reprinted from [18]

to describe the physics of the dispersed phase in terms of kinetic equations. The macroscopic model is then
obtained from the mesoscopic model using an averaging procedure to obtain the moments of the density
function appearing in the kinetic equations (for instance, the zero-order moment of the density function is
related to concentration, the first-order moment to the mean momentum) [35]. Recent work [82,83] has shown
that particle kinetic variables alone are not sufficient to ensure well-posedness of the model: Rather, extended
formulations, in which additional variables related to the underlying turbulent flow (like the fluid velocity
seen by a particle along its trajectory) appear in the particle state vector, should be adopted in line with what
is currently done in Lagrangian formulations [82,83,86]. Such hierarchical structure is the starting point for
several simulation techniques, which are discussed at length in [35]. Here, we are interested in Euler–Lagrange
(EL) simulations based on large-eddy simulation (LES) of turbulence. The reader is referred to [124] for a
comprehensive account of the theoretical foundation, modelling issues, and numerical implementation of the
Eulerian–Lagrangian approach for multiphase flows in this context. LES has emerged as a powerful simulation
technique that allows lower computational cost compared with microscopic models based on direct numerical
simulation (DNS) while retaining good statistical accuracy. This is because LES is based on the concept of
spatial filtering, by which a low-pass filter is applied to separate the flow into large-scale motions that are
directly computed (resolved on the computational grid using filtered flow equations) from small subgrid scale
(SGS) motions whose effects are modelled [97]. A visualization of LES spatial filtering effects is provided in
Fig. 1, which shows the impact on the flow structures in homogeneous isotropic turbulence (referred to as HIT
hereinafter) for different filter widths [18].

The use of LES is particularly justified in practical applications dealing with turbulent flows (shear-
dominated flows [94] or reacting flows controlled by large-scale mixing [95], in particular), where the sta-
tistical properties of the larger and most energetic scales are of interest. In order to accurately describe the
large scales, one must model the small scales in a faithful way. Due to the complex statistical properties of
turbulence, many models and methodologies have been proposed in the past (see [35,68,78,80,94–96] for a
comprehensive review). While none of the models is proposed can be considered as a substitute for DNS, still
the performance of some models can be considered fairly accurate: For instance, as far as the most common
Eulerian turbulence statistics in flows where the rate-controlling processes occur in the resolved large scales
are concerned [47,96]. Modelling capabilities are much less established in flows where these processes occur
at the smallest scales (e.g. molecular mixing and chemical reactions in turbulent combustion at high Reynolds
and Damkohler numbers [67,88,95,96,103,104], droplet break-up in liquid spray atomization at high Weber
number [7,15] or momentum transfer in near-wall flows at high Reynolds number [58,96]).

In this review, we focus on LES modelling for two-phase dispersed flows, where the dynamics of the
dispersed phase is intricately linked to the interplay that occurs between particles and turbulence at the particle
scale [20,48,74,120]. Modelling issues arise when spatial filtering affects such interplay, preventing particles
from interactingwith the unresolved SGS structures. As a result, particle trajectories in LESfields progressively
diverge from those that would have been obtained in a laboratory experiment or in DNS (regarded as exact
numerical experiment [76]). In the EL framework, trajectory divergence is mainly due to inaccurate estimation
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Fig. 2 Deviation of particle trajectory in coarse-grained HIT flow fields. Blue particle trajectory in DNS. Cyan particle trajectory
in LESwith filter width� = 5ηK , corresponding to a grid coarsening factor CF= 2 with respect to DNS.White particle trajectory
in LES with filter width � = 10ηK (CF = 4) (colour figure online)

of the forces acting on the particles and leads to a progressive loss of correlation between the flow field that
particles see in LES and the flow field they would see in DNS. This is nicely exemplified in Fig. 2, which
shows the diverging trajectories of one sample particle in the same fine- and coarse-grained flow fields of Fig.
1. Modelling issues become particularly challenging in the case of particle-laden wall-bounded flows, where
closure problems arise in viscosity-dominated regions with strong turbulence inhomogeneity and anisotropy.
In such regions, the complex phenomenology of the flow prevents the use of simple SGS models to predict
the effect of the unresolved flow scales on crucial phenomena such as dispersion, deposition and resuspension
[98]. A common approach, valid also for RANS [30,83], has been to extend models developed for simpler,
free-shear flows by incorporating the effect of near-wall gradients of turbulence intensity [81]. As we will try
to highlight in the following, however, direct extensions not grounded on well-established first principles may
easily produce poor results.

1.1 Governing equations and relevant modelling parameters

In the simplest situation, particles are treated as material points with density much higher than that of the fluid
(mimicking gas–solid or gas–liquid flows) and size much smaller than the smallest resolved length scale of the
flow (particles can thus be bigger than the Kolmogorov scale: This makes point-particle LES very attractive for
the investigation of high Reynolds number turbulence [10]). The corresponding equations of particle motion
are [38,79]:

ẍp = v̇p = fD(us − vp)/τp (1)

where xp = xp(t) is the instantaneous particle position, vp = vp(xp, t) is the instantaneous particle velocity,
fD is a drag correction factor that depends on particle inertia, us = u f (xp, t) is the instantaneous fluid velocity
u f evaluated at the particle position (referred to as velocity seen hereinafter), and

τp = ρpd2p
18μ

(2)

is the particle relaxation time (a measure of the timescale of momentum transfer between the particle and the
surrounding fluid). The fluid velocity seen can be decomposed as us = ūs +u′

s , where (.) represents a spatially
smoothed value in LES (or an averaged value in RANS of PDF statistical closures) and u′

s is the subgrid
(or fluctuating) part of us . With reference to Eq. (1), all modelling issues in the EL framework are related
to the estimation of us (or, as discussed in Sect. 3, u′

s according to the specific model formulation adopted),
which is fully available only in DNS. Yeh and Lei [138,139] were the first to investigate particle dispersion in
turbulent flow using LES. These authors assumed the effect of subgrid fluid turbulence on particle dynamics
to be negligible and solved for Eq. (1) using the filtered fluid velocity provided by LES. Other works followed
(see [6,7,26,27,66,69,70,131,132] among others), which were based on the same assumption. As discussed
in Sect. 2, however, the influence of the unresolved scales cannot be neglected unless the fraction of energy
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Fig. 3 Effect of filtering on the smallest resolved length scale η in turbulent channel flow (shown as a function of the wall-normal
coordinate, z). a Effect of filter width (square DNS, circle LES with filter width � = 5ηK , downtriangle LES with filter width
� = 10ηK ), b nondimensional filtered-to-unfiltered scale ratio, (ηFil − ηDNS)/ηDNS . Reprinted from [18]

removed from the fluid velocity field is small (namely, the LES is well-resolved [8]). In fact, several studies
have shown that subgrid fluid velocities must be taken into account to provide reliable calculations of particle
kinetic properties and/or preferential concentration phenomena [61,83]. The first formulation of particle SGS
model accounting explicitly for u′

s in Eq. (1) was proposed byWang and Squires [131] (see Sect. 3 for details).
Since this early and simple closure, which proved to have minimal influence on particle statistics when applied
in turbulent channel flow, many other proposals have been made [83]. These will be recalled in Sect. 3, while
their application to particle-laden flow is thoroughly discussed in Sect. 4.

To understand the conceptual difficulties associated with the development of SGS closures for the
Lagrangian equation of particle motion, we remark here that, while in DNS the only length scales that char-
acterize particle dispersion in turbulent flows are the particle diameter dp, the size l of the large-scale eddies,
and the Kolmogorov length ηK , in LES an additional scale must be considered: the filter width �, which
determines the smallest characteristic length of the resolved turbulence structures. Figure 3 shows the wall-
normal behaviour of ηK , in turbulent channel flow (data are taken from the same database described in [18],
with filter widths � = 5ηK and � = 10ηK ). In this case, filters of increasing width are applied to DNS fields
in a priori tests. The length scale increases with �, and the increase is higher in the centre of the channel
than near the walls, in both absolute (Fig. 3a) and relative (Fig. 3b) terms. This means that filtering removes
more “information” in the centre of the channel, where particles become exposed to a narrower range of flow
scales (read structures), thus leading to under-prediction of pair separation over short times, as demonstrated
in [18]. Timescales are also crucial: These are the particle relaxation time and the characteristic flow timescale
(for instance the eddy turnover time). Their ratio defines the scale-dependent Stokes number St = τp/τ f and
determines the range of eddies for which the particles behave as tracers (this happens when St << 1).

Following [10,125], two types of SGS effects can be observed in LES of turbulent dispersed flows: the effect
of the subgrid turbulence on particle dynamics, which occurs in one-way coupling regimes, and the effect of
the energy transferred from the particles to the fluid, whichmay cause significant variations of SGSmomentum
(and therefore turbulence modulation) under sufficiently large mass loading (two-way coupling regime). To
characterize these effects in the one-way coupling regime, a subgrid Stokes number can be conveniently defined
as [10,125]:

StSGS = τp/τ� (3)

where τ� ∼ (�2/ε)1/3 is the cut-off timescale and ε is energy dissipation. The value of StSGS is intermediate
between Stl = τp/τl , which is the minimum value of St based on the turnover dynamics of the large eddies
(τl = l/ul with ul the turnover velocity of the large eddies), and StK = τp/τK >> Stl , which is the maximum

value of St based on the Kolmogorov timescale τK . Note that StK /Stl ∼ Re1/2l , where Rel = ull/ν with ν
the fluid kinematic viscosity.

When StSGS << 1, particles are SGS-non-inertial with respect to subgrid eddies (here we adopt the
terminology of [125]): They are sensitive to the high-frequency fluctuations of subgrid turbulence (which are
filtered) while behaving as tracers with respect to the large eddies. In this limit, which is encountered, for
instance, in solar-power receivers (where StK ∼ O(1) and Stl << 1), a particle SGS model is required to
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Fig. 4 a Conceptual classification of Eulerian–Lagrangian modelling approaches to the simulation of particle-laden flows as a
function of two parameters: The subgrid particle timescale, StSGS , and the ratio between the grid resolution and the Kolmogorov
length scale, �/ηK . Solid and dashed lines in this panel are simply conceptual dividers. b Sample database of simulation results
from archival literature. Symbols refer to different studies and different flow configurations:Marchioli et al. [72,73] (filled squares
channel flow at shear Reynolds number Reτ = 150 based on the half channel height); Innocenti et al. [51] (open squares, channel
flow at Reτ = 300); Fede and Simonin [31] (diamonds HIT at Taylor-microscale Reynolds number Reλ = 34.1); Gobert and
Manhart [44] (circles HIT at Reλ = 52); Cernik et al. [21] (triangles decaying HIT with initial Reλ = 74). The thick solid line
in panel (b) represents the dependence of the parameter StSGS/StK on �/ηK that can be derived in HIT

solve Eq. (1). Particles follow the motion of the large eddies but slip predominantly on the small ones: This
dynamics is characterized by particle-to-fluid relative velocities much smaller than ul and hence by small
particle Reynolds numbers. In the following, we will focus on the models that have been developed in this
regime (see [31,55,62,117] among others). In the opposite limit (StSGS >> 1), particles become SGS-inertial
with respect to subgrid eddies [125], and (in principle) no particle SGS model is necessary: The dominant
eddies controlling the relative velocity are resolved in LES, and the corresponding velocity u is enough to
solve Eq. (1) [10]. This limit is typical of droplet dispersion in most spray-combustion applications: Droplets
are characterized by Stl ∼ O(1), particle-to-fluid relative velocities comparable to ul and particle Reynolds
numbers determined by the integral scales of the turbulent flow [125].

These considerations apply to sub-Kolmogorov particles (dp << ηK ) that are characterized by a density
much higher than that of the fluid. In this limit, a conceptual classification of the different modelling approaches
to the numerical simulation of particle- laden flows is proposed in Fig. 4a, together with a collection of
sample results available in archival literature, displayed in Fig. 4b. The subgrid particle timescale, as defined
in Eq. (3), and the grid resolution (which can be assumed equal to the filter width in the case of LES)
normalized by the Kolmogorov length scale, �/ηK , are the parameters taken into account. It can be easily
demonstrated that, in homogeneous isotropic turbulence, these quantitates obey the following scaling law:
StSGS/StK = τK /τ� � (�/ηK )−2/3, which can be used to estimate StSGS based on the filter width used in
LES. When � > ηK and StSGS is large (order 10 or higher in the figure), particles are SGS-inertial, and no
SGSmodel is required to track their trajectory in LES fields. For smaller values, particles are SGS-non-inertial,
and a particle SGSmodel becomes necessary: A “one-point” model (capable of reproducing one-point particle
statistics) is sufficient when the order of magnitude of StSGS is between 1 and 10, whereas a “two-point” model
(capable of reproducing two-point particle statistics and correlation timescales) is deemed necessary. Clearly,
the quantitative determination of the threshold values at which specific models should be used depends on the
observables of interest and the degree of accuracy required, so Fig. 4a is intended for conceptual use only.
Figure 4b serves the purpose of visualizing how previous studies fill the (StSGS/StK ; �/ηK ) parameter space
for both HIT and channel flows.

Size effects on heavy particles become important only for extremely high values of the Kolmogorov-based
Stokes number StK . However, this is a situation of limited interest for turbulent dispersed flows since particle
dispersion would be conditioned almost entirely by the initial velocity of the particles [125]. As far as finite-
size effects (dp ∼ ηK ) in the one-way coupling regime are concerned, situations of practical interest are those
characterized by Stl ∼ O(1) (or smaller) when the Reynolds number is of order Rel ∼ (l/�)4/3(ρp/ρ)2
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or higher. In this case, the subgrid Stokes number is small (StSGS ≤ 1), and small are the particles with
respect to the filter width, due to the large-scale separation of the flow [125]. In such StSGS range, particles are
SGS-non-inertial, andmodelling of subgrid fluid velocity fluctuations is necessary. In addition, wake dynamics
becomes more chaotic, and the particle Reynolds number increases: Fluid inertia becomes important, possibly
in combination with additional effects due to significant velocity gradients at the particle level. Corrections to
the expression of the drag acting on the particles are therefore needed [125].

In the two-way coupling regime, the importance of SGS effects can be estimated considering an alternative
expression of the subgrid Stokes number defined in Eq. (3) [10,125]:

StSGS = (l∗/�)2/3 (4)

where l∗ ∼ (τ 3pε)
1/2 yields an estimate of the size of the eddies for which the particle-to-fluid relative velocity

is maximum. Equation (4) provides a direct indication of whether the characteristic flow scale at which the
two-way coupling takes place is resolved or, rather, falls in the subgrid range. In particular, particles are SGS-
inertial with respect to the subgrid eddies when StSGS >> 1 and the mass loading ratio (defined here as the
total mass of the particles divided by there total mass of the fluid) is α ∼ O(1): In this case, subgrid modelling
is not required since inter-phase coupling is stronger with respect to the resolved eddies. At the other extreme,
namely StSGS << 1 and α ∼ O(1), particles are SGS-non-inertial with respect to the subgrid eddies (while
behaving as tracers with respect to the resolved scales), and inter-phase coupling takes place preferentially in
the subgrid range. Additional modelling of the subgrid fluid velocity fluctuations is thus required to compute
the transfer of momentum (and energy) from the particles to the fluid [125]. In the following, we will focus
our review on the one-way coupling regime since this is the regime considered in the vast majority of archival
literature.

1.2 A visual description of modelling issues in LES with particles

To understand the modelling challenges posed by the LES framework in the one-way coupling regime, we can
refer to Fig. 5: This figure compares the time-averaged one-dimensional wavelength (Fig. 5a) and wavenumber
(Fig. 5b) spectra of the fluid kinetic energy obtained fromDNSandLESof the sameflowfield (turbulent channel
flow). In particular, spectra are taken at a distance of 5 viscous units from the wall at Reτ = 150 and are shown
here in a log–log plot. As is well known, LES produces a deficit in the energy spectra, which is the signature
of missing scales (structures) in the flow field and can be decomposed into two contributions. One is clearly
the energy associated with the unresolved (subgrid) scales removed by cut-off. The other, with the obvious
exception of the cut-off filter, is the energy that filtering may subtract from the resolved scales, corresponding
to the gap between the LES spectrum and the DNS spectrum above the cut-off, where wavelengths are smaller
than kc ∝ 1/� in Fig. 5a, and frequencies are smaller than ωc ∝ 1/τ� in Fig. 5b. A first issue at stake is
that recovering the energy deficit to match the level of fluid and particle velocity fluctuations in DNS does

Fig. 5 Comparison between DNS and LES one-dimensional streamwise energy spectra: a wavelength spectra, b wavenumber
(frequency) spectra
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not ensure a quantitative replica of the SGS turbulence effects on near-wall accumulation and local particle
segregation [72,73]. A second modelling issue is that, even if there is separation of length scales between
particles and fluid, filtering may remove precisely the structures with characteristic timescale comparable
to the particle timescale: These structures are of particular importance because of their predominant role in
determining preferential concentration [9,33,71,93,112]. As shown in Fig. 5a for channel flow, the particle
length scale is well separated from the smallest flow length scale (namely dp smaller than the Kolmogorov
length ηK ) in the point-particle limit. For instance, 100µm particles can be safely considered microscale being
smaller than ηK , but also significantly smaller than �. However, there is no separation of timescales between
particles and fluid (meaning that τp > τK ) unless particles are really small, e.g. the 10 µm particles in Fig.
5b. In this figure, the estimated particle response frequencies are proportional to 1/τp, and the particle-to-fluid
density ratio is fixed (the typical reference case being gas–solid flow, where ρp/ρ >> 1). The 10 µm particles
can still be considered microscale and SGS-non-inertial with respect to subgrid eddies. However, they do not
exhibit strong preferential concentration because of their weak inertia and are not much influenced by SGS
effects. On the other hand, the 100 µm particles preferentially interact with eddies in the resolved range, but
their subgrid Stokes number is StSGS ∼ O(1), indicating possible influence also from the unresolved scales.
An interesting situation is observed for particles with an intermediate size (50µm in diameter): These particles
interact preferentially with eddies in the subgrid range, and a strong effect of filtering on their tendency to
cluster within the flow should be expected. This observation is in qualitative agreement with the results of
Fede and Simonin [31] and Ray and Collins [107], who showed that filtering reduces clustering for particles
with small inertia (small Stokes number) but increases clustering for particles with high inertia (high Stokes
number). This finding is explained considering that, for fixed density ratio, particle inertia depends directly
on particle size, and filtering removes primarily the eddies with which small particles tend to interact. This
has a direct effect on preferential concentration of such particles. On the other hand, subgrid eddies have a
randomizing (mixing) effect of the spatial distribution of large particles: When these eddies are removed by
filtering, mixing is partially prevented, and clustering is favoured.

1.3 Criteria for assessment of modelling approaches

One important aspect in the formulation of modelling approaches to LES of turbulent dispersed flows is the
choice of the criterion used to judge the quality of the model and to appraise its merits relative to other models.
Currently, there are two different types of criteria. One is aimed at assessing the capability of the model to
reproduce with accuracy one-point statistical moments (such as dispersion coefficients and particle kinetic
energy), which is what one typically requires from Langevin-type models. The other is aimed at assessing the
capability of the model to reproduce instantaneous spatial distributions and geometrical features of particle
dispersion (such as those related to the preferential concentration phenomena described in Sect. 2). This type
of information is what one would typically require from structural models, described in Sect. 3. An ideal model
(not yet available on the market, unfortunately) should be able to satisfy both criteria, but in most situations
models are assessed only with respect to one of them. Therefore, the choice of the model depends on the
specific quantities that must be predicted and/or reconstructed.

2 Particle transport mechanisms in turbulent dispersed flows and impact of LES filtering

In this section,we provide a brief overviewof the transportmechanisms that govern turbulent particle dispersion
and lead to preferential concentration of inertial particles. The reader is referred to [120,122] for amore detailed
presentation of these mechanisms. We focus on wall-bounded flows, where preferential concentration leads
to well-known particle deposition, accumulation and clustering phenomena. We also discuss the effect that
spatial filtering has on the capability of LES to reproduce quantitatively transport phenomena. Understanding
the impact of filtering is crucial to devise efficient SGSmodels for Lagrangian particle tracking (LPT), but also
very important for improving successive model parameterization in terms of characteristic timescale, Stokes
number, and Reynolds number dependence, etc. This explains the great deal of effort devoted to quantification
and analysis of the errors introduced by the lack of SGS scales on particle dynamics in recent years (see
[8,13,16,18,31,39,44,56,72,73,100,101,107,110,113] among others). Even in the ideal case in which LES
of the fluid phase could provide the exact dynamics of the resolved scales, two sources of errors would still
persist. One is the pure filtering error, associated with the use of the filtered fluid velocity in Eq. (1): This
error has been shown to provide inaccurate estimation of the forces acting on particles [13,39]. The second
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Fig. 6 Illustration of transport mechanisms driving concentration build-up in the near-wall region of turbulent bounded flow.
Reprinted from [121]

source of error is associated with the time accumulation of the pure filtering error and leads to the divergence
of trajectories shown in Fig. 2: In LES, therefore, the forces considered in Eq. (1) are evaluated at locations that
are increasingly far from those that would be occupied at the same time step (and starting from the same initial
position) in a companion DNS. We remark here that the effects of these two errors on particle concentration
and velocity statistics cannot be singled out easily. Attempts have been made only for somehow idealized
situations, e.g. pair separation of tracer particles in a priori LES of HIT [18].

Turbulent transport mechanisms are crucial to many industrial and environmental applications, involving,
for instance, mixing, combustion, depulveration, spray dynamics, pollutant dispersion and cloud dynamics
[120]. This is because they dictate the space distribution attained by the particles, which is the key information
sought in most of the processes. In turbulent dispersed flows, however, particle distribution becomes strongly
non-homogeneous as soon as particle inertia becomes significant. Particles sample preferentially the periphery
of strong vortical regions and segregate into straining regions as a result of their interaction with the vortical
coherent structures that control all transfer processes (for both the carrier phase and the dispersed phase)
[9,20,48,71,74,120,122,128]. A snapshot of such interaction is provided in Fig. 6 (adapted from [120]),
obtained from a DNS of particle-laden turbulent channel flow. Figure 6 shows a cross-flow view of particles
(drawn as circles) and coherent flow structures. To highlight the correlation between particles and structures,
we discriminate between particles moving away from the wall in the wall-normal direction (in red), particles
moving towards the wall (in grey) and particles with nearly zero wall-normal velocity (in blue). Ejections of
low-momentum fluid and wall-ward sweeps of high-momentum fluid can be observed at the sides of a quasi-
streamwise vortex (QSV), flanked by to lifted low-speed streaks (LLSS) of fluid. In the samefigure,we illustrate
the underlying transport mechanisms. To reach the accumulation and deposition regions, particles must first
form coherent clusters in regions of the buffer layer where sweeps can entrain them. Particles entrained in
a sweep are brought to the near-wall accumulation region, where particle concentration typically reaches its
maximum. In the case of inertial particles evolving in non-homogeneous turbulent flow, such drift is driven
by turbophoresis (a mechanism first identified by [19,108] and later investigated in many experimental and
numerical studies: see [120] for a review). Once in the accumulation region, embedded well into the viscous
layer, particlesmay either deposit at thewall or be re-entrained into the outer flowby ejections [128].Deposition
may occur by impaction when particles acquire enough momentum to coast through the accumulation region
and deposit directly, or by diffusion-like mechanisms when deposition is driven by the residual near-wall
turbulent fluctuations that, due to flow non-homogeneity, are always stronger in transporting particles to the
wall. Re-entrainment may occur when particles are resuspended by the same vortex that brought them to
the wall; otherwise, particles remain trapped for long times inside the viscous layer [93,121]: Eventually,
the higher intensity of particle transfer fluxes to the wall leads to the well-known concentration build-up in
bounded flows.

Based on current understanding of particle transport in turbulent flows, it appears clear that reliable
predictive models for engineering and/or physical applications should be able to reproduce turbophoresis
[62,63,73,77,83,131]. This implies accurate characterization of the flow field (which the coarse-grained filter-
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Fig. 7 Effect of filtering on near-wall low-speed streaks in turbulent channel flow. Particle segregation into low-speed streaks as
obtained from DNS is shown in a. Rendering of the streaky structure deteriorates when spatial filtering is applied and the flow
field becomes coarse-grained, as shown in b, c for grid coarsening factor CF = 4 and 8, respectively. Reprinted from [13] with
the permission of AIP Publishing

ing of the smallest flow scales by LES does not always grant) and of the particle–turbulence interaction at the
particle scale. This is particularly important in the near-wall region where the physical mechanisms depicted in
Fig. 6 give rise to complex segregation dynamics that collect particles in the low-speed regions of the viscous
layer. Visual evidence of this process is given in Fig. 7a. As shown in Fig. 7b, c, however, filtering acts to smooth
streaks out, thus attenuating the fluid velocity fluctuations and increasing the streamwise fluid velocity seen.
This combines with a decrease in wall-normal velocity seen near the wall, leading to reduced turbophoretic
drift [13] and to coarsened patterns in preferential concentration [98]. An additional complicative aspect is that
the selectivity of particle–turbulence interaction, and hence, the relative importance of segregation, deposition
and re-entrainment mechanisms depend on particle inertia [48,74].

Among themany other investigations on the influence of subgrid fluid turbulence, there is general agreement
about the lack of significant effects on one-point particle statistics (e.g. particle dispersion, particle Lagrangian
timescale, particle velocity fluctuations). In addition, Fede and Simonin [31] have shown that, in homogenous
isotropic turbulence (at Reλ � 34), the inclusion of subgrid effects on particle dispersion changes the dispersion
coefficient by less than 2% if κcL f > 10, where κc is the cut-off wavenumber and L f is the integral length
scale of the fluid. A similar conclusion was drawn by [8] for channel flow. However, important phenomena
such as particle preferential concentration, particle wall accumulation, and inter-particle collisions turn out to
be much more sensitive to filtering. Figure 8 shows the effect of subgrid turbulence on particle segregation
resulting from preferential concentration in HIT (panel a) and on collision timescale (panel b) at varying
particle inertia.

In Fig. 8a, segregation is quantified by the deviation from randomness, a box-counting parameter defined
as:

Σp = σ − σPoisson

λ
(5)

where σ is the standard deviation of the probability density function of particle spatial distribution within
the flow, σPoisson is the standard deviation of the Poisson distribution (corresponding to a random spatial
distribution of particles), and λ is the mean number of particles per cell. The largerΣp, the larger the deviation
of the actual particle distribution from a random one. In Fig. 8a, the ratio Σp, f ilt/Σp between the deviation
from randomness in filtered LES fields, Σp, f ilt , and the deviation from randomness in DNS fields, Σp, is
considered. Clearly, Σp, f ilt/Σp < 1 (resp. > 1) means that particle segregation in filtered fields is lower
(resp. higher) than in unfiltered fields. The effect of filtering on segregation is examined at varying particle
inertia, quantified by Fede and Simonin [31] using a subgrid Stokes number based on the Lagrangian integral
timescale of the subgrid fluid velocity seen by an inertial particle along its trajectory, T@p

L ,SGS ,
1 rather than on

τ� as done in Eq. (3): Hence, St∗SGS = τp/T
@p
L ,SGS . Figure 8a shows that:

• for subgrid Stokes number St∗SGS > 5 segregation is unaffected by subgrid turbulence (this is because
particle inertia is high enough to have segregation controlled by the large energy-containing eddies in the
flow, which are only slightly affected by filtering);

1 The Lagrangian integral timescale of the subgrid fluid velocity seen by an inertial particle along its trajectory is defined as

follows: T@p
L ,SGS = ∫∞

0 R@p
L ,SGS(τ )dτ , where R@p

L ,SGS(τ ) = 〈u′
s,i (t0)u

′
s,i (t0+τ)〉

〈u′
s,i (t0)u

′
s,i (t0)〉 is the subgrid fluid velocity correlation seen by an

inertial particle.
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Fig. 8 Effect of filtering on particle segregation (a) and on inter-particle collision timescale (b) in homogeneous isotropic
turbulence, as a function of the subgrid Stokes number, St∗SGS = τp/T

@p
L ,SGS . Symbols represent increasing values of the particle

relaxation time, namely of particle inertia. Plots redrawn from [31] with the permission of AIP Publishing

• for 0.5 < St∗SGS < 5 subgrid turbulence has a non-negligible effect on segregation that results in a
randomization of particle distribution given by particle interaction with the energy-dissipating eddies;

• for St∗SGS < 0.5 segregation is dominated by the unresolved flow scales, and one-point Lagrangian stochas-
tic models are deemed inadequate to properly account for the influence of subgrid turbulence on particle
motion.

A very useful rule of thumb proposed by [31], which agrees in spirit with the classification provided
in Fig. 4a, is that no particle SGS model is needed in the particle motion equations when both conditions
κcL f > 10 and St∗SGS > 5 are met. We remark here that the same trend shown in Fig. 8a has been observed
in particle-laden turbulent channel flow (see e.g. [73]), where filtering decreases the fluid velocity fluctuations
and, in turn, the particle velocity fluctuations, leading to a significant underestimation (resp. overestimation)
of the segregation parameter below (resp. above) a certain threshold value of the particle Stokes number.
Surprisingly, inaccuracies were observed also for small amounts of the filtered fluid velocity fluctuations,
namely in well-resolved LES [73].

In Fig. 8b, inter-particle collisions are parameterized by the collision timescale, a measure of the collision
rate:

τ colp =
[
1

2

Np

V f
d2pg0〈|wr |〉

]−1

(6)

where Np is the total number of particles in the domain, V f is the volume of the domain, g0 is the radial
distribution function, and 〈|wr |〉 is the mean relative radial velocity. Figure 8b shows that the subgrid collision
timescale τ colp, f ilt increases with respect to the unfiltered timescale τ colp for St∗SGS < 0.5: Collisions become
more rare as a result of a decrease in particle segregation combined with a reduction in mean radial relative
velocity measured in filtered flow fields. For intermediate subgrid Stokes numbers, the collision timescale also
increases, indicating that the decrease in 〈|wr |〉 observed in the range 0.5 < St∗SGS < 5 prevails on the increase
in segregation already discussed in Fig. 8a. Similar results were obtained by Jin et al. [53], who indicate a
threshold value of St∗SGS � 3 below which the effects of the SGS motions on the turbulent collision of heavy
particles must be included in the particle SGS model. Above this value, the overall collision rate was found to
be reasonably predicted in both filtered DNS and LES [53].

In a series of recent works [13,23,39], these effects on particle dynamics have been revisited for the case
of bounded flows in terms of the pure filtering error incurred when LPT is performed in LES fields. In [13,23],
this error has been computed as δu = us − us , assuming that all other sources of error affecting particle
tracking in LES (modelling and numerical errors) can be neglected, including time accumulation of δu: This
is obtained by forcing particles to evolve in filtered DNS fields along the same trajectory that they would have
followed if tracked in DNS fields [13]. As a result, δu represents the minimum error that affects particles
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Fig. 9 Mean values of the pure filtering error δu in the streamwise (a) and wall-normal (b) directions at varying particle inertia
(parameterized by the Stokes number). Profiles refer to a priori tests with CF = 4 (a cut-off filter is used). Reprinted from [13]
with the permission of AIP Publishing

even in the ideal situation in which LES provides the exact dynamics of the resolved scales. Figure 9 shows
the mean value of the streamwise (Fig. 9a) and wall-normal (Fig. 9b) components of δu, measured along the
trajectory of three particle sets with different inertia. It is apparent that the error is significantly different from
zero almost everywhere throughout the channel and exhibits a near-wall peak (negative for 〈δux 〉, positive
for 〈δuz〉), followed by a peak of opposite sign farther from the wall. This complex behaviour can be linked
to the filtering effects on the near-wall structures discussed in Fig. 7. It was also shown that the PDFs of δu
components are strongly skewed and non-Gaussian [13,23], with little dependence on the Reynolds number
and particle inertia [39]. This hints at the inadequacy of linear Langevin-type closures for us , based on linear
drift and constant diffusion coefficient.

Other studies [137,140] have examined the effect that filtering has on the Lagrangian integral timescale
of the SGS fluid seen by a fluid particle, TL ,SGS ,2 and the one seen by an inertial particle, T@p

L ,SGS . These
observables are crucial parameters of stochastic particle SGS models, as is discussed in Sect. 3. Investigations
have focused on HIT in the absence of gravity, where filtering is found to increase TL ,SGS . This timescale may
become larger than the Eulerian one, TE,SGS , even if the Lagrangian integral timescale of the full velocity
field, TL , is smaller than the Eulerian one, TE . This suggests the importance of relating the limiting values
of the timescale seen by an inertial particle T@p

L ,SGS to TL ,SGS and TE,SGS rather than considering TL and TE

to recover the SGS contributions to particle motion [54]. The closure of T@p
L ,SGS , however, is one of the open

modelling issues and may become particularly challenging in the presence of gravitational settling [54].

3 Overview of particle SGS models

As mentioned in the Introduction, the first attempt to model the effects of the subgrid fluid velocity on particle
motion was made by Wang and Squires [131], who proposed to compute this velocity using the local subgrid
kinetic energy, kSGS . In scalar form:

u′
s,i = χ

√
2

3
kSGS (7)

where χ is a Gaussian random number with zero mean and unit variance. Since this pioneering work, several
classes of particle SGS models have been developed. These models, which are suitable either for LES or
RANS or both, can be grouped into two main categories [98,115]: structural models (sometimes referred to
as deterministic [21]), which aim at reconstructing the entire subfilter velocity field, and stochastic models
(sometimes referred to as functional [98]), which aim at retrieving only some statistical features of the subfilter

2 The Lagrangian integral timescale of the subgrid fluid velocity seen by a fluid particle is defined as follows: TL ,SGS =
∫∞
0 RL ,SGS(τ )dτ , where RL ,SGS(τ ) = 〈u′

f,i (x f p(t0),t0)u′
f,i (x f p(t0+τ),t0+τ)〉

〈u′
f,i (x f p(t0),t0)u′

f,i (x f p(t0),t0)〉 is the subgrid fluid velocity correlation seen by a fluid

particle along its trajectory x f p .
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velocity field. In the following, the most common models belonging to either of these two categories are
presented. We remark here that almost all available models refer to the so-called dilute regime, in which the
volume fraction and themass fraction of the dispersed phase are low enough to neglect particle-induced changes
in the momentum of the fluid and particle–particle interactions. In the dilute regime, only the fluid turbulence is
affecting particlemotion, and a one-way coupling between the phases holds. Up to now, no particle SGSmodels
have been developed for semi-dilute or dense suspensions,whichwould require specific source terms to account
for two-way coupling (inter-phase momentum exchange) or four-way coupling (collisions) in the governing
equations. In two-way coupled simulations, the typical approach is to use an approximation for the extra terms
that appear in the transport equation of kSGS due to the reaction force by which the momentum transfer from
the particles to the fluid is modelled (e.g. in the force coupling model [126]). In addition, models apply to
point-particle simulations only: Fully resolved simulations, which are the alternative numerical approach to
particle-laden flows (in particular, for the simulation of finite-size particles [9]), do not require any kind of
closure as they resolve the fine-scale details of the flow around each particle and hence provide a complete
description of the hydrodynamic interactions between the particle and the surrounding fluid.

3.1 Structural models

Structural models are developed to provide an approximate reconstruction of the subgrid scales of the flow
field. Compared to stochastic models, the main advantage is therefore the capability to reintroduce the effect
of such scales on two-point spatial correlations, which in turn control important phenomena such as relative
particle dispersion, collisions, break-up and coalescence [120,124].

3.1.1 Approximate deconvolution (ADM)

The basic idea behind this approach is to obtain an approximate deconvolved velocity field, indicated as
u∗(xp, t) hereinafter, by applying a suitably defined filter kernel G to the filtered flow field provided by LES,
u(xp, t) [1,2]. If the filter kernel is invertible, then the regularized inverse operator can be approximated by a
van Cittert series truncation [123]:

G−1 �
N∑

n=0

(I − G)n (8)

where I is the identity operator and N is the truncation parameter (themost commonvalue found in the literature
is N = 5 [123]). Using Eq. (8), the deconvolved velocities can be obtained by consecutively applying the filter
[117]:

u∗
i =

N∑

n=0

(1 − G)n ∗ ui = ui + (ui − ui ) + (ui − 2ui + ui ) + · · · (9)

ADM allows partial recovery of the subgrid kinetic energy by enhancing scales near the cut-off by mimick-
ing the behaviour of a sharp spectral filter: Because of this, however, ADM cannot recover energy contributions
associated with scales smaller than the filter size. Kuerten [62] was the first to use ADM as subgrid closure for
the equations of particle motion, followed by Shotorban and Mashayek [117,118] and Marchioli et al. [72].
For the same flow configuration (turbulent channel flow at shear Reynolds number Reτ = 150, based on the
half channel height), these authors reported a significant improvement in some statistics of us (in particular
the root mean square of fluid velocity components) but less satisfactory predictions in terms of preferential
concentration and wall accumulation. This can be explained considering that ADM can reconstruct only the
fraction of the subgrid velocity field associated with wavenumbers close to the cut-off value �−1. Because of
this intrinsic limitation of the approach, ADM is expected to perform less well with flows at high Reynolds
number: In these flows, where the range of unresolved scales is wider because of coarser grids, larger filter
widths and higher cut-off length scales must be used to cope with the increased computational costs of the
simulation [62].

A very recent model, also based on the idea of reconstructing the velocity field only at scales larger than
the filter size, has been proposed by [89,90]. This model uses differential filters of elliptic type [41,42] to
compute the components of the deconvolved velocity field as:
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u∗
i = ūi − b2

∂2ūi
∂x j∂x j

(10)

where b is the only model parameter, needed to control the nominal filter width. The value of b is determined
using a dynamic procedure that imposes consistency between the SGS energy dissipation calculated from
the subgrid model adopted for the fluid stress tensor (the dynamic Smagorinsky model in [89,90]) and the
SGS dissipation yielded by the differential-filter model for the particles. Among the possible quantities to be
matched, energy dissipation was chosen to ensure correct prediction of the rate at which energy is transferred
from the resolved to the subgrid scales, which is crucial for the successful performance of dynamic subgrid
models [89,90]. In Sect. 4, application of such model to incompressible HIT is discussed.

3.1.2 Fractal interpolation (FI)

FI has been applied as structural model of subgrid particle dispersion [73]. The basic idea behind the closure
hypothesis is to reconstruct the velocity field u from the filtered field u at scales smaller than the LES filter
size, namely at wavenumbers higher than kc in Fig. 5a. This is done by iteratively applying an affine mapping
procedure to u, which is available on the coarse-grained LES grid, to reconstruct the velocity signal on a finer
DNS-like grid based on the fractal dimension of the signal (which must be known or assumed a priori: We
refer to [73,114] for more details). For a 1D signal available at discrete nodes in the interval [xi−1, xi+1], the
mapping is defined as follows:

Wi [u](ξ) = d1 · u(2 · ξ) + qi,1(2 · ξ) for ξ ε

[

0,
1

2

]

, (11)

Wi [u](ξ) = d2 · u(2 · ξ − 1) + qi,2(2 · ξ − 1) for ξ ε

[
1

2
, 1

]

(12)

where ξ = (x− xi−1)/2� is a dimensionless coordinate normalized by the grid spacing� = (xi−1− xi+1)/2,
and:

qi,1(ξ) = [ui − ui−1 − d1 · (ui+1 − ui−1)] · ξ + ui−1 · (1 − d1), (13)

qi,2(ξ) = [ui+1 − ui − d2 · (ui+1 − ui−1)] · ξ + ui − d2 · ui−1 . (14)

The characteristics of the reconstructed signal depend on the two stretching parameters, d1 and d2, which in
turn depend on the fractal dimension of the signal. In HIT (see [114]), these parameters are typically assumed
constant in time and uniform in space, and set to d1 = 2−1/3 and d2 = −2−1/3: This corresponds to a fractal
dimension of the velocity signal of 1.7. Algorithms have been developed [109] to compute the stretching
parameters locally, using the discrete values on a fine grid (DNS data). These algorithms do not require the a
priori knowledge of the fractal dimension of the signal: In wall-bounded flows, locally computed stretching
parameters exhibit a noticeable variation in the wall-normal (anisotropy) direction and attain values that are
significantly lower than those experimentally obtained in HIT:We refer again to [73] for further details. Indeed,
one of the main issues with FI is the estimate of the stretching parameters in non-homogeneous flows, and in
particular their behaviour in the near-wall region. Another problem of the method is that it does not guarantee
a correct reconstruction of the correlation of different velocity components, needed to correctly retrieve the
subgrid stresses (especially in shear flows) [98]. Application of FI to particle-laden turbulent channel flow [73]
indicates that FI performswell close to the channel centreline, where turbulence is closer to being homogeneous
and isotropic, and particle velocity and concentration statistics can be retrieved with reasonable accuracy.

3.1.3 Kinematic simulation (KS)

KS represents a computationally simple structural approach to model subgrid effects on particles upon rep-
resenting the small-scale velocity field by means of Fourier modes. Based on a prescribed turbulent kinetic
energy spectrum, a subgrid fluid velocity field is generated using a large number of separate random orthogonal
Fourier modes with prescribed wavenumbers and frequencies [37]:

u =
Nk∑

n=1

[an × kn cos(kn · x + ωnt) + bn × kn sin(kn · x + ωnt)] (15)
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where Nk is the number of modes, kn represents the wavenumbers, ωn the frequencies that determine the
unsteadiness associated with each wavenumber, and an and bn are random coefficients chosen to satisfy the
incompressibility constraint ∇ · u = 0. The magnitude of the cross-products |an × kn|2 = |bn × kn|2 =
E(kn)�kn , where E(kn) is a prescribed Eulerian energy spectrum (typically E(kn) ∼ k−p with 1 < p < 2),
should yield the prescribed energy spectrum beyond the cut-off wavenumber used in LES. Compared to the
simplest stochastic models, which treat the subgrid fluid velocity field as white noise, the advantage of closures
based on KS is that the subgrid field can have an underlying structure and turbulent structures that are smaller
than the filter size can, in principle, be accounted for. The method is also computationally cheap and contains
no arbitrarily adjustable parameters. In spite of these advantages, however, application of KS as SGS model
for particles is so far limited to HIT (see e.g. [34,106]). This is because application of the method to non-
homogeneous flows and/or flows with boundary conditions (e.g. wall-bounded flows) involves a number of
non-trivial implementation issues regarding the nature of the KS field near the walls and also when the grid
resolution becomes comparable to the Kolmogorov scale [98]. This is because the typical approach is to use a
zonal LES model in which the strength of the velocity field that KS adds as subgrid contribution to the filtered
LES field is controlled by the cut-off energy dissipation from LES, which becomes small near the wall. In this
region, the zonal model switches to an RANS model near the wall; thus, the KS is also switched off.

To the best of this author’s knowledge, there are only two investigations [59,106] where KS is applied in
combination with LES. In [59], particle deposition in turbulent channel flow (with a ribbed wall) is examined.
In this work, the parameters for KS are the energy dissipation rate obtained from LES, the energy spectra,
ratio of the largest and smallest subgrid scales, and the total number of modes for the subgrid velocity field.
The only free parameter is the power law of the energy spectrum: All the other parameters of the model are
fixed by the resolved LES flow field. One crucial open question, however, is when to switch the KS off near
the wall. In [106], KS is used to predict clustering and relative velocity statistics in the absence of gravitational
settling. Very good agreement against DNS data is found only for relatively large values of the Stokes number
based on the Kolmogorov timescale, while the mean inward radial relative velocity (important because it is
used in the collision kernel) is well predicted for all Stokes numbers investigated.

3.1.4 Spectrally optimized interpolation (SOI)

SOI is a rather unique particle SGS model, proposed by Gobert and Manhart [44]. SOI tries to model the
subgrid fluid velocity by exploiting a specific interpolation method that extends approximate deconvolution
towards higher wavenumbers. The idea is similar to using implicit LES as a fluid SGS model: In SOI, fluid
velocity interpolation is optimized such that the particles see a prescribed energy spectrum, which has to be
correctly represented all the way down to the Kolmogorov scales. By doing so, SOI goes beyond ADM, as
Gobert and Manhart verified for the case of particle-laden forced HIT [44]. The computational costs for SOI
are comparable to fourth order interpolation. The model has been developed (and tested) only in the framework
of homogeneous isotropic turbulence, even if extensions to arbitrary flow are possible (e.g. using wavelets as
a substitute for the Fourier transforms to provide a localized decomposition of the flow field into its scales
[11,44] and compute the SOI stencil on a local basis [44]). It must be noted that SOI requires availability of a
model spectrum, which is usually unknown a priori in inhomogeneous anisotropic turbulent flows.

3.2 Stochastic models

Stochastic models are typically based on a Lagrangian diffusion-type equation for the subgrid fluid velocity.
The formulation of such an equation is made in analogy with single-phase turbulence closures that model the
impact of subgrid scales on the resolved ones by means of an additional viscosity [98]. These models have
been widely employed to predict particle deposition and resuspension, especially in the context of Reynolds-
averaged formulations for industrial applications [83,85,102]. Over the last decade, however, growing efforts
have been devoted to the extension of stochastic closures to LES with subgrid modelling [60,61,82–85]. From
an historical perspective, stochastic models were initially developed for free-shear flows in the context of
environmental fluid mechanics [98], and closures were typically formulated for the fluid velocity seen by the
particles along their trajectory (referred to as velocity seen hereinafter). There is a wide literature on the subject
for RANS, and we refer to [24,85,86,91] for a comprehensive review and critical analysis. In the following,
we focus on SGS models specifically developed for LES.

The first formulations were developed for the particle velocity itself, one early example being the stochastic
closure by Fukagata et al. [36]. These authors proposed to account for subgrid turbulence effects on particle
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motion by adding a subgrid Brownian force on the right-hand side of Eq. (1). This term is defined as:

FSGS

m p
= σs

�t
ξ (16)

where σs = √
2kSGSλ/3 is the increase in standard deviation of particle velocity due to SGS velocity, fluctua-

tions during the simulation time step �t (the parameter λ is a complicated function of τp and τSGS), and ξ is a
Gaussian random number with zero mean and unit variance. All subgrid contributions to Eq. (1) are included in
this force term: Other forces (e.g. drag) are computed using the filtered fluid velocity. The model of Fukagata et
al. [36] was later improved by Amiri et al. [5] to account for flow anisotropy by the use of damping functions.
Another Brownian-like model was later proposed by Bini and Jones [14,15], who introduced nonlinearity in
the subgrid force term to account for the far-from-Gaussian behaviour of particle acceleration demonstrated
by experiments [64,65]. The model was used to study turbulent sprays, focusing in particular on droplet SGS
dispersion statistics.

The most widely used Lagrangian stochastic approaches, however, deal with the modelling of the fluid
velocity seen, which determines the pure filtering error affecting the estimation of the forces acting on particles
in LES. The starting point of these approaches is represented by the following Langevin type of closure:

dus = Adt︸︷︷︸
deterministic

term

+ BdW︸ ︷︷ ︸
stochastic

term

(17)

whereA andB represent suitably parameterized drift (deterministic) and diffusion (stochastic)matrices, respec-
tively, whereas dW is the vector of independent increments of a Wiener process. In the simplest formulation,
these increments are Gaussian random variables with zero mean and variance dt .

Several closures for us , or alternatively for its subgrid part u′
s , have been proposed and tested in both

homogeneous isotropic turbulence (more often) and wall-bounded turbulence [12,31,32,98,100,116]. One of
the first closures was proposed by Pozorski and co-workers (see [100]), based on the following stochastic
differential equation of the Ito type:

du′
s = − u′

s

τSGS
dt +

√
2σ 2

SGS

τSGS
dW (18)

where σSGS = √
2kSGS/3 is the subgrid velocity scale obtained from the kinetic energy of the non-resolved

flow scales kSGS , and τSGS = CSGS�/σSGS is the subgrid timescale based on the model constant CSGS and
on the filter width �. In filtered DNS (referred to as a priori LES hereinafter), kSGS is known. In true LES
(referred to as a posteriori LES hereinafter), kSGS must be estimated. Pozorski and Apte [100] proposed the
following expression:

kSGS = CI �̄|S̄|2 (19)

where the parameter CI can be found from the dynamic Germano procedure with double filtering [40] and

|S̄| = (2S̄i j S̄i j
)1/2

is themagnitude of the resolved strain rate based on the second invariant of S̄i j = (∂ ūi/∂x j+
∂ ū j/∂xi )/2.

This model was later improved based on an exact formulation for the deterministic terms, by analogy to
turbulent dispersion in RANS. In particular, Shotorban and Mashayek [116] and Fede et al. [32] proposed a
model for the subgrid fluid velocity seen along the trajectory of a fluid parcel, which appears towork reasonably
well also for particles with very low inertia. Both models account for the spatial inhomogeneity of the fluid
velocity statistics in LES and are based on the following general equation:

du′
s = [−(u′ · ∇)ū + ∇ · τ ′] dt + G f pu′

sdt + BdW (20)

where τ ′ is the subgrid scale stress tensor, G f p is a second-order tensor that has physical dimensions of a

frequency and whose elements are closed as G f p,i j = −δi j/T
@p
L ,SGS = −δi j/TL ,SGS with δi j the Kronecker

delta. Note that the subgrid Lagrangian integral timescale T@p
L ,SGS is assumed to be equal to TL ,SGS , this being

true only in the limit St << 1. The diffusion matrix is defined as B = √
C0εSGS , where C0 is the Kolmogorov

constant, and:

εSGS = ν
∂us,i
∂x j

∂us, j
∂xi

(21)
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is the subgrid fluid velocity dissipation. The closure adopted for TL ,SGS and for εSGS read:

TL ,SGS =
[
1

2
+ 3C0

4

]−1 kSGS

εSGS
, (22)

εSGS = CS�
2|S̄|3, (23)

with kSGS = 2CY�2|S̄|2, where CS and CY are the Smagorinsky and Yoshizawa constants, respectively
[119,141]. The model just presented was developed for particles with relaxation time close to the subgrid
timescale of fluid turbulence and ensures that the equation for the variance of the subgrid fluid velocity along
particle trajectory is consistent with the mean subgrid kinetic energy equation that is obtained from the filtered
Navier–Stokes equations.

This model was later extended to wall-bounded flows by Knorps and Pozorski [60], who proposed the
following expression for the diffusion matrix to account for the correlation among the subgrid fluid velocities:

B =
√

2

T@p
L ,SGS

⎡

⎢
⎢
⎢
⎢
⎣

√(
u′
x
2 − u′

xu
′
y
2
/u′

y
2
)

0 0

u′
xu

′
y/

√
u′
z
2

√
u′
y
2 0

0 0
√
u′
y
2

⎤

⎥
⎥
⎥
⎥
⎦

(24)

where u′
i
2 and u′

i u
′
j are the variances and covariances of the subgrid velocities, respectively. Such velocity

correlations are computed using a generalized Yoshizawa-like formula in which a wider filter is applied on top
of the LES filter [99]. To avoid unphysical nonzero values of the subgrid timescale at the wall, a van Driest
damping is adopted:

T@p
L ,SGS = [1 − exp(−y+/25)

]
CSGS�/

√
2kSGS/3 (25)

whereCSGS is a user-chosen constant that can be adjusted depending on the particle relaxation time [98]. Such
dependence, however, is non-trivial and still constitutes one of the main issues in stochastic modelling.

There are several other formulations available in the open literature (see e.g. [3,12,92,126,127]), which
are also based on Eq. (20) but adopt different correlations for the timescale τSGS and for the diffusion term
constant C0. In particular, the model by Berrouk et al. [12] solves for Eq. (20) replacing u′

s with us :

dus =
(

−∇ p

ρ
+ 1

Re
∇2ū f

)

dt −
(
us − ū f

T@p
L ,SGS

)

dt +
√
C∗
0 〈εSGS〉dW, (26)

assuming the following dependence of T@p
L ,SGS on particle inertia [133]:

T@p
L ,SGS = TL ,SGS

β

[
1 − (1 − β)(1 + StE,SGS)

−0.4(1+0,01StE,SGS)
] 1

bi
(27)

where TL ,SGS is the Lagrangian SGS timescale of the fluid, β = TL ,SGS/TE,SGS is the ratio of the Lagrangian
and Eulerian (TE,SGS) SGS timescales of the fluid, StE,SGS = τp/TE,SGS is the Stokes number based on
TE,SGS , and bi are the so-called Csanady factors, which are used to account for the crossing trajectory and
continuity effects [3,25,135,142].

When the reference system is aligned with the mean, or filtered, slip velocity, the Csanady factors can be
defined as (see [83,86] for details):

bi =

⎧
⎪⎪⎨

⎪⎪⎩

b‖ =
√
1 + β2 |〈ur 〉|2

2
3 〈kSGS〉 ,

b⊥ =
√
1 + 4β2 |〈ur 〉|2

2
3 〈kSGS〉 ,

(28)

with subscripts ‖ and ⊥ representing the mean drift and transverse directions, respectively, whereas 〈ur 〉 is the
mean relative velocity between the particle and the fluid seen. Equation (27) exhibits the correct asymptotic
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behaviour for particles with very small inertia, for which T@p
L ,SGS � TL ,SGS , and for particles with very high

inertia, for which T@p
L ,SGS � TE,SGS [54]. The closure adopted for the diffusion term constant reads as:

C∗
0 = C0bi

k̂SGS

kSGS
+ 2

3

(

bi
k̂SGS

kSGS
− 1

)

(29)

where k̂SGS is a modified subgrid kinetic energy that is weighted by the Csanady factors to account for
anisotropy: Hence k̂SGS/kSGS = 1 in homogeneous isotropic flows. The model by Berrouk et al. [12] is
similar to the model by Pozorski and Apte [100], since both account for the crossing trajectory and continuity
effects [25,135]. In a recent work, Cernick et al. [21] have assessed the performance of different stochastic
models (those proposed by Fukagata et al. [36], Shotorban and Mashayek [116], Berrouk et al. [12]) for the
case of inertial particles in decaying HIT, upon comparison against DNS results with and without gravity.
Stochastic models generally performed well at small Stokes numbers and were able to recover the correct
amount of subgrid energy removed by LES filtering. However, models were unable to predict preferential
concentrations and showed strong sensitivity to the Stokes number and filter size (see Sect. 4 for a more
detailed discussion). Vinkovic et al. [126,127] also employed a stochastic particle SGS model based on a
modified Langevin equation written in terms of the local SGS characteristics and on a Lagrangian correlation
timescale chosen ad hoc to include the influence of gravity and particle inertia. This model was used to study
atmospheric dispersion of sediments [126] and pollutants [127,134].

The models described so far aim at reconstructing the subgrid fluid velocity seen or the full fluid velocity
seen.However, formulations for thefluid acceleration can alsobederived.To thebest of this author’s knowledge,
the only formulation available for the fluid acceleration has been first proposed by Sabel’nikov et al. [111] and
later applied by Zamansky et al. [143] to study acceleration statistics in turbulent channel flow.

4 Example of applications

The modelling issue that is most relevant to the present review is whether particle SGS models can capture
preferential concentration and, in turn, all the physical processes that it produces (in particular, clustering aswell
as near-wall accumulation and segregation). To address this issue, a number of different testing configurations
and governing parameters have been considered, which make it difficult to compare the relative performance
of different particle SGSmodels. In the following, an overview of recent findings is provided considering three
main instances: spherical particles in homogeneous isotropic turbulence, spherical particles in wall-bounded
flow and non-spherical particles in homogeneous isotropic turbulence.

4.1 Spherical particles in homogeneous isotropic turbulence

Most of the studies dealing with particle-laden flows in LES consider the situation in which sub-Kolmogorov
spherical particles are dispersed in homogeneous isotropic turbulent flow. Among these studies, Gobert and
Manhart [45] have compared ADM [62] against two stochastic models [32,117] performing both a priori
and a posteriori tests in HIT (at Reλ = 52, and for Kolmogorov-based Stokes numbers ranging from 0.1
to 100). Based on the statistics of fluid kinetic energy seen, particle kinetic energy and dispersion rate, it
was found that the stochastic model performs poorly compared to ADM, especially at high Stokes numbers.
However, the good predictions of ADM are expected to get worse at much higher Reynolds numbers, when
the LES grid inevitably becomes more coarse-grained to cope with computational costs and the range of unre-
solved scales (where ADM cannot reconstruct the filtered fluctuations) widens. Building on this comparison,
criteria for model selection and reliability prediction were later provided, based on an analytical estimate
for the model error in dependence of the particle Stokes number and of the energy spectrum of the flow
[46].

The same flow configuration has been considered by Cernik et al. [21] to assess the ability of the particle
SGS model to predict preferential concentration. Assessment is based on the quantification of the fractal
dimension dpc of particle clusters. This observable provides a measure of the spatial distribution of particle
distribution and is defined as the slope of the Np(ri ) curve, Np being the number of particles within a sphere
of radius ri centred around a base particle. A fractal dimension dpc = 3 corresponds to a perfectly random
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Fig. 10 Fractal dimension of particle clusters in homogeneous isotropic turbulence. a a priori tests with coarsening factor CF =
8 (� = 8�DNS) and b a posteriori tests with CF = 16. Reprinted from [21]

distribution of particles, whereas lower values indicate clustering (over a surface if dpc = 2 or along a line-like
structure if dpc = 1): The smaller the value of dpc, the larger the degree of preferential concentration. In
Fig. 10, the behaviour of dpc as a function of the Kolmogorov-based Stokes number StK is shown for inertial
particles of different sizes in decaying incompressible HIT (and in the absence of gravity). The solid line refers
to DNS results, the dashed line refers to filtered DNS (FDNS, a priori testing) results in panel (a) and to LES
(a posteriori testing) in panel (b); symbols refer to results yielded by four different particles SGS models:
Approximate deconvolution (ADM) and the stochastic models of Fukagata et al. [36], Shotorban [116] and
Berrouk et al. [12] presented in Sect. 3.2. For the Reynolds number considered by [21] (Reλ = 74 based on the
Taylor microscale), the minimum value of dpc in DNS is slightly below 2.4 at StK � 0.5. As already discussed
in Sect. 2, filtering reduces (increases) clustering at small (large) Stokes numbers [72,107]. Let us focus first
on Fig. 10a. Compared to FDNS, results for approximate deconvolution (ADM-2 being relative to a truncation
level N = 2, ADM-11 being relative to a truncation level N = 11) show better agreement with DNS, because
this technique can recover the energy associated with the flow scales near the cut-off. However, the degree
of clustering is still under-predicted (over-predicted) at low (high) StK because particle motion is anyhow
affected by the subgrid scales, whose energy cannot be recovered by ADM: Clustering of small particles is
reduced because filtering removes precisely the subgrid eddies that control preferential concentration of such
particles; clustering of large particles is increased because they do not experience the long-term randomizing
effect of the subgrid eddies [31,107]. The three stochastic models are found to predict no clustering regardless
of the Stokes number: This is ascribed to the random component of the models, which appears to act as strong
mixing agent that overwhelms the effect of the resolved flow structures on particle distribution in the a priori
tests. Focusing now on Fig. 10b, it can be observed that LES results are similar to the FDNS ones at the large
scales, whereas the higher amount of energy that is typically associated with the smallest resolved scales in
LES with respect to FDNS determines a significant increase in preferential concentration of the small- and
intermediate-inertia particles. This trend is further emphasized with ADM, which adds energy precisely to the
scales near the cut-off and leads to reduced particle dispersion. Similar results have been obtained in [44].
As far as the stochastic models are concerned, only the model of Fukagata et al. [36] predicts some degree
of clustering but this is due to the specific formulation used to calculate the SGS turbulent kinetic energy
of the fluid rather than to a direct effect of the particle SGS model. Overall, the analysis of Cernik et al.
[21] indicates that standard stochastic particle SGS models cannot capture particle–turbulence interactions
properly.

Park et al. [89,90] have applied their differential-filter (DF) model (described in Sect. 3.1.1) to simulate
the dispersion of sub-Kolmogorov particles in dilute HIT at Reλ = 85. Results from a posteriori LES on a 323

grid have been compared with DNS ones on a 2563 grid. In this review, we show the particle concentration
spectra for particles with increasing inertia, parameterized here by the Stokes number based on theKolmogorov
timescale StK , as a function of the dimensionless wavenumber klk where lk is the Kolmogorov length scale.
Compared to the reference DNS statistics, the improvement of preferential concentration granted by the
dynamic DF model is evident for Stk < 1 and Stk > 1, especially in the energetic part of the concentration
spectra. This results from the capability of the model to predict the non-monotonicity of particle preferential
concentration at increasing particle inertia (not shown). However, the DF model underperforms when Stk is
around unity: The reasons for such inferior performance are not yet clear and are currently under investigation
(Fig. 11).



Large-eddy simulation of turbulent dispersed flows

Fig. 11 Particle concentration spectra as functions of the dimensionless wavenumber, klk , in homogeneous isotropic turbulence
at varying particle Stokes number based on the Kolmogorov timescale, StK . a StK = 0.1, b StK = 0.5, c StK = 1, d StK = 4.
Lines and symbols DNS (circles), LES without particle model (dashed lines), LES with DF model (solid lines). Reprinted from
[89,90] with permission from the authors

4.2 Spherical particles in wall-bounded turbulence

Applications of particle SGS models to wall-bounded turbulence are more recent and focus mainly on channel
flow configurations. Breuer and Happe [17] tested the influence of the Langevin SGS model of Pozorski and
Apte [100], extended for an arbitrary direction of particle motion [85], to bubble-laden and particle-laden
turbulent channel flow. In the bubble-laden case, a well-resolved LES was performed, and therefore, the SGS
model was found to yield subgrid velocities of small magnitude: Only marginal changes in both the velocity
statistics and the volume fraction could be observed. The fine grid resolution, however, did not prevent the
model from exhibiting a clear influence on particle velocity and concentration statistics in the particle-laden
case, where particles with Stokes number St = 0.1, 1, and 1.67 were considered: Higher particle volume
fractions were obtained at the wall, with a consequent increase in particle–wall and particle-particle collisions
that in turn may influence potential deposition and agglomeration processes.

Hybridmodels combining structural and stochasticmodels have also been applied in the literature.Michałek
et al. [81] used jointly ADM (for the resolved scales) and a stochastic process of the diffusive type (for the
subgrid scales) to study dilute channel flow at different Reynolds numbers (up to Reτ = 950). The idea
is to exploit deconvolution of the filtered fluid velocity field to recover energy up to the smallest resolved
scale. Fine tuning of the predicted particle wall-ward fluxes was achieved by including an additional term
in the stochastic model to satisfy the well-mixed condition at small Stokes numbers: This term was derived
upon direct comparison with DNS results at varying Stokes number and has the form f (St) = exp(−St/2).
The results thus obtained for particle concentration and velocity statistics (especially the mean wall-normal
velocity, which is crucial for predicting turbophoresis) are in good agreement with those of DNS. In addition,
the model parameters exhibit weak dependence on the Reynolds number. One interesting feature of the model
is that it can be extended quite straightforwardly to include two-way coupling effects at higher particle volume
fractions. There are however open issues concerning the parameterization of the Stokes number dependence
of the weight factor f (St) that is inherent in the model.

An interesting application of the stochastic particle SGS model (named stochastic subgrid acceleration
model—SSAM) has been presented recently by Zamansky et al. [143]. The main feature of this model, which
is the product of two independent stochastic processes (one for the acceleration modulus and one for the
acceleration orientation) [143], is its capability to reconstruct the instantaneous unfiltered velocity field at the
scale of the particle: Therefore, it does not require additional modelling in Eq. (1). Figure 12 shows the model
performance in turbulent channel flow for two statistical observables that are directly linked to turbophoresis
and preferential concentration: The wall-normal component of particle velocity rms (indicated as v′+

p in Fig.
12a) and instantaneous particle concentration (indicated as C in Fig. 12b). Note that y+ represents the wall-
normal coordinate in wall units. The improvement granted by SSAM is apparent especially at small Stokes
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Fig. 12 Comparative assessment of the LES-SSAMmodel [143] in particle-laden turbulent channel flow (Reτ = 590): Prediction
of the particle wall-normal velocity rms (a) and of particle concentration (b) at varying Stokes number: St = 1, 5, 15, 25 and 125
from top to bottom in each panel. Line DNS, squares LES with no particle SGS model, crosses LES with SSAM. All variables
are expressed in wall units. Reprinted from [143]

numbers, even if velocity fluctuations are not completely recovered with respect to DNS. However, this is
sufficient to obtain quite good agreement with DNS in terms of wall-normal concentration. Note that, as the
Stokes number is increased, the concentration profiles for LES without particle SGS model overshoot DNS
profiles even if fluctuations along y+ are damped. Indeed, depending on the specific choice of the particle SGS
model, flow configuration and range of Reynolds and Stokes numbers, quite different results can be obtained.
Sometimes with better performance by stochastic models, some other times by structural models. Among
the latter ones, fractal interpolation is in principle very attractive because of its capability to reconstruct the
subgrid part of the flow field by extrapolating scales of the coarse-grained LES field to smaller and smaller
scales [73]. This feature should be particularly effective at high Reynolds numbers. Up to now, however, fractal
interpolation has been assessed only at low Reynolds numbers, in situations where the velocity signals vary
rather smoothly over the LES grid: This makes the interpolation procedure inefficient (there is no fractal form
to be copied), and no significant improvement in the prediction of particle statistics and concentration has been
observed. An example of such poor behaviour is shown in Fig. 13 [73].
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Fig. 13 Comparative assessment of particle SGS model based on fractal interpolation [73] in particle-laden turbulent channel
flow (Reτ = 150): Prediction of the particle wall-normal velocity rms (a) and of particle concentration (b) for Stokes number
St = 5. Solid line DNS, dashed line LES with no particle SGS model, symbols LES with fractal interpolation. All variables are
expressed in wall units. Reprinted from [73]
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4.3 Elongated particles in homogeneous isotropic turbulence

All results shown so far are relative to spherical particles. However, there is a growing interest in studying
the dynamics of non-spherical particles in turbulent flow because of the central role played in a wide range
of engineering applications and environmental problems. The reader is referred to [129] for a review on the
subject, which is particularly rich in physics and intriguing from a modelling point of view since particle
anisotropy adds to flow anisotropy: The resulting translational and rotational dynamics change significantly
with respect to spherical particles. Most of the numerical simulations performed so far are based on DNS of
turbulence, but LES is becoming more and more attractive in view of the continuous improvements in the
SGS models for both the fluid and the particles. In particular, a recent application of LES to non-spherical
particles in the EL framework has been presented by Chen et al. [22]. These authors have considered the effect
of including a subgrid closure in the equation of motion of small ellipsoidal particles evolving in HIT and
have quantified this effect in terms of particle alignment within the flow and particle orientational distribution.
Ellipsoidal particles move according to an equation similar to Eq. (1), in which only the drag force model
changes to account for the dependence of the drag coefficient on particle orientation, and rotate according
to the well-known Jeffery equation [52]. This equation provides the time evolution of the orientation of an
axisymmetric particle, given by the unit vector p aligned with major symmetry axis, with respect to the velocity
gradient tensor seen by the particle:

ṗ = 1

2
ω ∧ p + α2 − 1

α2 + 1

(
S[us]p − (pT S[us]p)p

)
(30)

where ω is the fluid vorticity along the particle axis, S[us] is the strain-rate tensor (symmetric part of the
velocity gradient tensor), and α is the particle aspect ratio. The last term in Eq. (30) is the contribution parallel
to p needed to keep the strain from changing the magnitude of p. It is natural to expect significant errors in
the calculation of p over time when the exact velocity gradients (available in DNS) are replaced with those
computed from the resolved velocity fielded yielded by LES. In addition, SGS effects are expected also on the
rotational dispersion coefficient of the particles: This coefficient depends on the turbulent energy dissipation
rate, which is reduced when SGS velocity fluctuations are not accounted for [22]. Indeed, results from a priori
tests demonstrate that SGS fluctuations mostly affect particle rotation, resulting in weaker particle alignment
with the vorticity field and reduced particle rotational energy if neglected. To recover these effects, both
a stochastic SGS model and a model based on ADM have been tested. It should be noted that adopting a
stochastic closure for the fluid velocity seen (which typically involves a Wiener process with uncorrelated
independent increments and continuous trajectories that are nowhere differentiable) would yield a velocity
field that is non-differentiable and velocity gradients would be unavailable: Therefore, a Lagrangian stochastic
model for the SGS velocity gradient tensor seen by the particles was adopted (details about this model can be
found in [22] and references therein). An example of the performance of the different models is shown in Fig.
14, where particle orientation within the flow is quantified by means of two observables.

One observable is particle alignmentwith the vorticity field, computed correlating the orientation vectorp to
the unit direction vector eω of vorticity, and plotted for the case of ellipsoidal particleswith aspect ratioα = 100,
representing rod-like particles (Fig. 14a). The other is particle mean square rotation rate, 〈 ṗi ṗi 〉, evaluated over
a wide range of aspect ratios, including disc-like particles with α < 1 (Fig. 14b). Direct comparison against
DNS results shows that the stochastic model (LES-SDE) provides poor prediction of particle alignment and
over-prediction (under-prediction) of the reconstructed rotational energy at large (small) aspect ratios. This is
probably due to the fact that the stochastic part of the model used by [22] is Gaussian and uncorrelated in time:
Therefore, the model cannot take into account any effect due to the anisotropy of particle rotation dynamics,
which are correlated with preferential alignment phenomena, and any effect on particle rotational diffusivity
due to the different correlation timescales characterizing the particle angular velocities [75]. The ADM-based
model has little influence on particle alignment compared to a priori (FDNS) and a posteriori (LES) results, but
improves prediction of the rotational energy for aspect ratios larger than unity: This is ascribed to the capability
of ADM to recover fluid enstrophy near the cut-off scale [22]. Overall, the difference between the reference
DNS results and the results obtained with or without any of the particle SGS models is either marginal or
increased indicating that further work is required to improve model predictions with non-spherical particles. A
crucial aspect is represented by the choice of the particle state vector. Limiting the discussion to rigid particles
with length below the Kolmogorov scale that evolve according to the Jeffery equation, both particle orientation
(or its angular velocity) and the fluid velocity gradients seen by the particle at the centre-of-mass location must
be included [82]. However, these are small-scale quantities that are extremely complex to model. In some flow
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Fig. 14 Comparative assessment of the particle SGS models for ellipsoidal particles in HIT (Reλ = 65). a time behaviour of the
mean particle alignment with vorticity, 〈|p ·eω|〉, b particle mean square rotation rate, 〈ṗi ṗi 〉, as a function of particle aspect ratio,
α. Labels FDNS and LES indicate a priori and a posteriori tests without particle SGS model, respectively. Labels LES+SDE and
LES-ADM indicate simulations with the stochastic and the ADM-based particle SGS model, respectively. Reprinted from [22]

instances (e.g. stationary isotropic flows in the diffusive regime [82]), simplifications are possible when the
physical phenomenon under investigation (e.g. near-wall clustering [93]) is characterized by timescales much
longer than the correlation timescale of the velocity gradients seen: In this case, as discussed in [82], gradients
can be regarded as a fast process, modelled as white noise (as done in [22]) and removed from the state vector.
This assumption is usually made when particle orientation is modelled as a simple diffusive process or with a
Fokker–Planck equation with constant diffusion coefficients (see [82] for a more detailed discussion).

5 Recent modelling advances

The previous sections provide an overview of the main modelling ideas that have been applied to LES of
turbulent dispersed flows over the last two decades. The state of the art in this particular area, however, is
far from being mature, and modelling advances are currently being developed. In particular, a new formalism
has been recently proposed by Minier [83] to extend the LES approach to turbulent polydisperse two-phase
reactive flows. The formalism extends the filtered mass density function (FMDF) approach developed by Pope
and co-workers [43] for variable-density flows.

Let us consider N individual particles evolving in the flow domain, described by a state vector that includes
particle position xp, particle velocity v p and fluid velocity seen us (plus a set of suitable scalars in the case
of reactive flow). The corresponding Lagrangian filtered mass density function (LFMDF) at a given time t is
defined as [83]:

F̃ p
L (t; yp, V p, V s) =

∫ N∑

n=1

m(n)
p G(yp − y′

p)δ
(
y′
p − x(n)

p (t)
)

⊗ δ
(
V p − v(n)

p (t)
)

⊗ δ
(
V s − u(n)

s (t)
)
dy′

=
N∑

i=1

m(n)
p G

(
yp − x(n)

p (t)
)

⊗ δ
(
V p − v(n)

p (t)
)

⊗ δ(V s − u(n)
s (t)) (31)

where ·̃ represents a filtered quantity (note that this notation is used here in place of subscript SGS for ease of
presentation), yp, V p, and V s are the sample-space values3 corresponding to the stochastic processes xp, v p,

and us , respectively, G is the filter function, superscript (n) is the particle label, andm(n)
p is the mass of the nth

particle. From the LFMDF, it is possible to derive the corresponding Eulerian filtered mass density function
(EFMDF):

F̃ p
E (t, x; V p, V s) ≡ F̃ p

L (t; yp = x, V p, V s) . (32)

3 In stochastic modelling, a sample space is the collection of all possible outcomes of a random trial, and a stochastic variable
is a function defined on a sample space.
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Fig. 15 Comparative assessment of the LFMDF model in particle-laden turbulent channel flow: predictions of the instantaneous
particle number density at varying Stokes numbers (triangle) are compared with DNS results (red square) and with LES results
with no particle SGS model (blue circle). a St = 1, b St = 5, c St = 25. Profiles are computed at t+ = 2130 after particle
injection. Reprinted from [51] with the permission of AIP Publishing (colour figure online)

Starting from the definition of F̃ p
L and F̃ p

E , it can be shown that filtered quantities can be retrieved from
the EFMDF by integration over the sample-space variables. Therefore, it is important to derive the transport
equations for F̃ p

L and F̃ p
E . This can be done by taking the time derivative of the fine-grained density function

given by Eqs. (31) and (32). For F̃ p
L , one can derive [51,83]:

∂ F̃ p
L

∂t
= −∂[Vp F̃

p
L ]

∂y
− ∂

∂Vp

[

−Vp − Vs

τp
F̃ p
L

]

− ∂

∂Vs

[ 〈
Ãus |yp, V p, us

〉
F̃ p
L

]
(33)

where Aus |yp represents the rate of change of the fluid velocity seen that needs to be modelled. The EFMDF
F̃ p
E follows by definition the same transport equation as that of the LFMDF. An important point here is that

F̃ p
E can be regarded as a true probabilistic density (see [82,83,85] for a detailed discussion). As such, it can,

for instance, be modelled as a Fokker–Planck equation where Eq. (33) is closed as follows:

− ∂

∂Vs

[ 〈
Ãus |yp, V p, v p

〉
F̃ p
L

] ≈ − ∂

∂Vs,i
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∂xi
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) ∂ ũi
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L ,SGS)i
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(
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− 1
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F̃ p
L

}

(34)

where:

(T@p
L ,SGS)1 = TL ,SGS√

1 + β2 |̃ur |2
2k̃/3

, (T@p
L ,SGS)2 = (T@p

L ,SGS)3 = TL ,SGS√

1 + 4β2 |̃ur |2
2k̃/3

(35)

are the particle timescales in the longitudinal direction (i = 1) and in the transversal directions (i = 2 and
i = 3, respectively): These timescales depend on the SGS kinetic energy k̃ and on the filtered relative velocity
ũr = ṽp − ũs . In addition, β = TL ,SGS/TE,SGS = TL/TE [133], and:

ε̃ = (CS�)2S, k̃ = Cε(�ε̃)2/3, TL ,SGS = k̃

ε̃

(
1

2
+ 3

4
C0

)−1

(36)

where ε̃ is the SGS dissipation rate and � is the filter width. The auxiliary subgrid turbulent kinetic energy is
defined as follows:

k̂ = 3

2

∑3
i=1 bi

[
ũ2s,i − ˜us,i ũs,i

]

∑3
i=1 bi

, (37)

with bi = TL ,SGS/(T
@p
L ,SGS)i . The LFMDF transport equation is of the Fokker–Planck kind and provides all

the statistical information of the state vector. However, the most convenient way to solve this equation is by a
LagrangianMonte Carlo method, since the LFMDF equation is equivalent to a system of stochastic differential



C. Marchioli

equations (SDEs) in a weak sense. This approach applies naturally to the dispersed phase since its original
equations are Lagrangian. The system of SDEs corresponding to Eq. (34) reads:

dxp,i = vp,i dt, (38)

dvp,i = us,i − vp,i

τp
dt, (39)

dus,i = − 1

ρ f

∂ p̃

∂xi
dt + ν f �ũi + (ṽp, j − ũ j

) ∂ ũi
∂x j

dt − us,i − ũi(
T@p
L ,SGS

)

i

dt + Bs,i jdWj (40)

where the term dWi denotes a Wiener process, while Bs,i j = √
C∗
i ε̃ δi j is the diffusion matrix (diagonal but

not isotropic). For a more detailed description of the formalism, the reader is referred to [83,85] and references
therein. Figures 15, 16, and 17 show the predictions of the LFMDF approach in terms of concentration and
near-wall segregation of inertial particles in turbulent channel flow (at Reτ = 300 based on the half channel
height) [51]. A posteriori assessment made against DNS and LESwithout particle SGSmodel shows improved
predictions of particle statistics, especially at intermediate Stokes numbers as demonstrated in Fig. 15 for
particle number density and in Fig. 16 for particle velocity fluctuations. Regarding this last figure, note that an
overshoot of all root mean square (rms) components is obtained in the case of LES without SGS model. This
may be surprising, since LES is expected to give a filtered field, i.e. a field from which part of the fluctuations
(mainly the highest frequency ones) has been removed by filtering. As discussed also in [72], however, this
behaviour is due to the subgrid modelling error in the LES equations for the fluid phase, which leads to an
overshoot of the rms of the fluid velocity components (not shown) when very coarse grids are used, as done in
[51] where the LES grid is 8 times coarser than the DNS one in each spatial direction. The observed overshoot
is a rather well-known behaviour of coarse LES, especially for the RMS of the streamwise component [72].
The LFMDF formalism provides a rigorous and physically sound approach to the large-eddy simulation of
turbulent dispersed flows. However, it is a purely statistical approach that does not aim at recoveringmuch as far
as filtering of turbulent coherent structures is concerned. This is shown in Fig. 17, where the Voronoï diagrams
of near-wall particle clusters are shown [51]. The PDFs shown in Fig. 17a clearly depart from the Poisson
distribution [87], with higher probability of finding depleted regions (large Voronoï areas) and concentrated
regions (small Voronoï areas), a typical signature of preferential concentration. The LMFDF model has little
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effect on the prediction of concentrated regions, and the first cross-over point, Vc, representing the threshold
value below which Voronoï areas are considered to belong to a cluster, occurs at slightly larger values than
in DNS (see inset and Fig. 17b). Figure 17c, d provides a visualization of particle clusters (in dark grey) and
particle voids (in light grey) identified using the threshold values, Vc and Vv , respectively, indicated in Fig.
17b. Compared to DNS, shown in Panel (c), clusters and voids in LES correspond to broader particle streaks
and wider inter-cluster spacing, as shown in Panel (d).

In terms of future perspectives, there is room for improving further the quality and predictive capabilities
of the approach. A first step would be the development of a dynamic procedure to determine at each time step
the optimal values of the model coefficients, C0, appearing in Eq. (34) and Cε appearing in Eq. (36), possibly
as functions of the particle Stokes number. Another improvement could be represented by the implementation
of higher-order closures in the Langevin equation for the fluid velocity seen by the particles. Finally, it would
be very useful to implement low-Re corrections to better capture the near-wall behaviour of the statistics:
This should improve the predictive capabilities of the method at relatively low particle inertia, which currently
represent the weak point of the LFMDF. A different modelling approach that could be very promising is
based on the use of wall functions as SGS closure for the particle phase. The idea is similar to wall-layer
modelling in single-phase LES [94]: When the computational grid is so coarse that even the smallest near-wall
cell contains a large number of eddies, wall-layer models treat the inner layer in a Reynolds-averaged sense
(namely the layer is assumed to be governed by the Reynolds-averaged Navier–Stokes equations, rather than
the filtered Navier–Stokes equations solved in LES in the outer layer), and statistical arguments can be used to
represent only the average effect of near-wall turbulent structures [94]. Because of this philosophy, wall-layer
models usually perform better at high Reynolds numbers, when the grid gets necessarily coarser than what
DNS would require, and LES becomes the natural alternative. To the best of this author’s knowledge, no
wall-layer model has been yet developed and coupled to LES to simulate particle-laden turbulent flows. In
the recent study of Dupuy et al. [28], however, a candidate model has been tested (but not yet in combination
with DNS) to compute the deposition of non-Brownian particles in turbulent open channel flow. The model
is based on the formulation proposed by Fan and Ahmadi [29] to estimate the deposition rate of spherical
particles from turbulent air streams in vertical ducts. Such formulation takes into account the existence of
near-wall coherent structures (in particular quasi-streamwise vortices, sweeps, and ejections) by assuming that
sweeps may be approximated by a steady plane viscous stagnation point flow in which the flow pattern is
perfectly periodic in the spanwise direction and invariant in the streamwise direction [29]. The steady flow
condition is justified by the time persistence of the quasi-streamwise vortices comparedwith their characteristic
turn-around time. In addition, because sweeps and ejections are mainly responsible for particle motion to and
away from the wall, only the flow pattern in the cross-flow plane is modelled. In spite of its simplicity, the
model predictions in terms of deposition velocity (the only observable investigated by the authors) at varying
particle-to-liquid density ratio, particle diameter, friction velocity and wall roughness for the specific case
of hydrosol particles are in good agreement with the experimental results [28]. Other models that could be
employed as wall-layer functions could be the stochastic models of Guingo and Minier [50] and Jin et al.
[57], developed specifically to predict particle transport and deposition in turbulent boundary layers. Both are
one-dimensional boundary-layer models of the fluid velocity seen that explicitly mimic particle interaction
with the near-wall sweep/ejection events. In the stochastic quadrant model of Jin et al. [57], in particular,
these events are captured using the quadrant analysis of Willmarth and Lu [136]. In [50], a Markovian process
is used to include the same geometrical features in a statistical Lagrangian description and compute particle
deposition rate in turbulent flows. In particular, a one-dimensional boundary-layer model of the velocity of the
flow seen by a particle is developed to simulate explicitly particle interaction with the near-wall sweep/ejection
events, which are rendered as a Markovian jump process S(t) attached to each Lagrangian particle: S(t) can
take three possible values representing particle entrainment in a sweep or particle entrainment in an ejection
or particle motion in the absence of either event. Depending on the event that carries the particle, the fluid
velocity seen enters the stochastic model as either deterministic or random. Interestingly, the model is able to
capture the existence of two different deposition regimes (named free-flight regime and diffusional regime),
whose relative importance depends on particle inertia [50].

6 Final remarks and future perspectives

Themodels presented in this reviewcover the entire spectrumof approaches tomodel subgrid particle dispersion
in turbulent flow. Perhaps the only general conclusion that can be safely drawn surveying the performance
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of the different models is that no universal model (perhaps not even a good-enough model) is yet available.
Whatever the choice, a necessary condition for a model is to correctly account for the physics of the problem
considered, e.g. ensure the reconstruction of the SGS kinetic energy and the SGS characteristic timescale
for stochastic diffusive processes, use available information on the two-point fluid velocity correlations for
empirical eigenfunctions (extracted by POD [4,130]), satisfy the incompressibility constraint and the shape of
the energy spectrum at large wavenumbers in KS, ensure the conformity of the fractal dimension of velocity
componentswith experimental data in FI. Being just the necessary condition, however, it is not always sufficient
by definition.

In the context of dilute turbulent dispersed flows, the main objectives of a particle SGSmodel are to capture
as correctly as possible particle kinetic properties but also preferential concentration phenomena determined by
the small-scale interaction between inertial parcels and turbulent structures. In Lagrangian stochastic models,
these objectives are achieved by modelling the unresolved part of the fluid velocity seen by the particles along
their trajectory (somemodels consider the “whole” velocity [12], some others only the fluctuating or unresolved
part [32,81,100]). As written by Minier [83], however, almost all available models for LES have been derived
extending directly those already available for Reynolds-averaged approaches. This has lead to a plethora of
different formulations, each based on different assumptions (e.g local equilibrium of the SGS fluid velocity
seen [81], nonzero dissipation rate of the SGS kinetic energy and negligible SGS crossing trajectory effects
[32]) and different forms of the Langevin equation (namely different expressions for the drift term [12] and
for the diffusion coefficient [83]). In addition, all particle SGS models provide results that depend strongly on
the particle Stokes number and/or on the choice of the model timescale. This indicates that a sound theoretical
framework to develop Lagrangian stochastic models for LES of turbulent dispersed flows is needed, and, only
recently, efforts in this direction have been taken [82,83]. For instance, there is still uncertainty regarding
the modalities by which stochastic models should deal with the non-Gaussianity of the particle Lagrangian
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velocity increments, which in turn leads to heavy-tailed probability density functions for particle acceleration
[14]. Langevin-type equations cannot reproduce such features, and models must account for nonlinear drift
and diffusion terms. Other open issues concern the most adequate parameterization of the SGS relaxation time
in the near-wall region of wall-bounded flows and, for the sake of predicting preferential concentration-related
phenomena, proper account of particle inertia (e.g. crossing trajectory) effects on the SGS time scales adopted
in the model: Currently, these effects are taken into account only in few models (e.g. [31,100]).

Structural models (fractal interpolation in particular) have been less explored compared to stochastic
models. However, they have the obvious advantage of accounting for spatial correlations of the SGS fluid
velocity components, which are crucial for phenomena such as pair dispersion, preferential concentration,
collision, break-up, coalescence and agglomeration [105]. Future research efforts should be aimed at providing
a sound assessment of the performance of structural models, particularly in high Reynolds number flows and
at higher volume concentrations of the dispersed phase.

Finally, it should be noted that no systematic quantification of the computational cost of the particle SGS
model compared to no-model LES and to DNS has been performed. Clearly, the model must be (significantly)
less expensive than the full DNS and require limited computational overhead to become appealing (e.g.
for implementation in general-purpose CFD codes). A first quantification of the numerical effort has been
provided recently by Breuer and Hoppe [17], who tested an extended version of the Langevin model proposed
by Pozorski and Apte [100] for bubble-laden and particle-laden channel flow. The average computational time
due to the application of the model was found to increase by 15%, the increase being of about 8% when
a simplifed form of the diffusion matrix is used and terms preventing spurious drifts are neglected without
strongly affecting the average properties of the dispersed phase. The idea behind using particle SGS models
as wall-layer functions is also motivated by reasons of computational costs of the simulation. These models
should extract the most relevant andmost appropriate information about near-wall structures to ensure accurate
prediction of macroscopic quantities such as deposition and re-entrainment rates, and should then be able to
incorporate such information in a computationally efficient way.
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