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Influence of density and viscosity on deformation, breakage, and coalescence
of bubbles in turbulence
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We investigate the effect of density and viscosity differences on a swarm of large and
deformable bubbles dispersed in a turbulent channel flow. For a given shear Reynolds
number, Reτ = 300, and a constant bubble volume fraction, � � 5.4%, we perform a
campaign of direct numerical simulations of turbulence coupled with a phase-field method
accounting for interfacial phenomena. For each simulation, we vary the Weber number
(We, ratio of inertial to surface tension forces), the density ratio (ρr , ratio of bubble density
to carrier flow density) and the viscosity ratio (ηr , ratio of bubble viscosity to carrier flow
viscosity). Specifically, we consider two Weber numbers, We = 1.50 and We = 3.00, four
density ratios, from ρr = 1 down to ρr = 0.001, and five viscosity ratios, from ηr = 0.01
up to ηr = 100. Our results show that density differences have a negligible effect on
breakage and coalescence phenomena, while a much stronger effect is observed when
changing the viscosity of the two phases. Increasing the bubble viscosity with respect to
the carrier fluid viscosity damps turbulence fluctuations, makes the bubble more rigid,
and strongly prevents large deformations, thus reducing the number of breakage events.
Local deformations of the interface, on the contrary, depend on both density and viscosity
ratios: as the bubble density is increased, a larger number of small-scale deformations,
small dimples and bumps, appear on the interface of the bubble. The opposite effect is
observed for increasing bubble viscosities: the interface of the bubbles become smoother.
We report that these effects are mostly visible for larger Weber numbers, where surface
forces are weaker. Finally, we characterize the flow inside the bubbles; as the bubble
density is increased, we observe, as expected, an increase in the turbulent kinetic energy
(TKE) inside the bubble, while as the bubble viscosity is increased, we observe a mild
reduction of the TKE inside the bubble and a strong suppression of turbulence.

DOI: 10.1103/PhysRevFluids.7.053601

I. INTRODUCTION

Interactions among turbulence and deformable interfaces are common in many physical in-
stances, from ocean waves formation [1,2] to atomization processes [3], as well as drops and bubbles
entrained in a turbulent flow [4–6]. The outcome of these interactions is of fundamental importance
as it controls the exchanges of heat, mass, and momentum across the interface and thus between
the two phases. The study of turbulence-interface interactions, however, is a nontrivial task as these
interactions are governed by a physics acting at very different spatiotemporal scales: from the largest
problem scale, down to the Kolmogorov scale of turbulence and further down to the molecular
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scale of the interface. This multiscale nature makes the investigation of multiphase turbulence very
challenging. In particular, experimental investigations using optical techniques are usually limited
to small volume fractions due to the difficulty of accessing phases with heterogeneous optical
properties [7–9] and limited range of length scales that can be possibly measured. In this scenario,
despite some limitations, numerical simulations represent an essential tool to investigate multiphase
flows as they allow to access detailed space- and time-resolved information on the flow field and
dispersed phase. Specifically, direct numerical simulation (DNS), in which all relevant scales of
turbulence are resolved, proved to be a tool of paramount importance for a deeper understanding of
single-phase [10,11] and multiphase turbulence [4–6].

In this work we focus on the interactions of a swarm of large and deformable bubbles or drops
(bubbles hereinafter without any loss of generality) with wall-bounded turbulence (turbulent channel
flow). This setup has been widely used in the past to investigate different aspects of bubbly flows,
from bubbles shape, deformation and clustering to the flow modifications produced by the bubbles
themselves. In the pioneering works of Lu and Tryggvason [12,13], the effects of the bubble size
and deformability were investigated: they observed that as bubbles become more deformable, they
move toward the middle of the channel and have a relatively small effect on the flow-rate. Scarbolo
et al. [14,15], considering a matched density and viscosity system, investigated the effect of the
surface tension, observing that surface tension forces play a key role in determining the dispersed
phase topology. Roccon et al. [16] studied the effect of the bubble viscosity, finding that for small
surface tension values, larger internal viscosities reduce the drop deformability. Recently, Soligo
et al. [17,18], considering also the presence of a soluble surfactant, investigated the surfactant
effects on drop morphology [17] and flow behavior [18]. Finally, Hasslberger et al. [19] analyzed
the coherent structures obtained in a bubble-laden turbulent channel flow while Cannon et al. [20]
investigated the role played by droplets coalescence on drag in turbulent channel flows.

The foremost goal of this paper is to improve the fundamental understanding of bubble-bubble
and bubble-turbulence interactions. Indeed, bubbles transported by a turbulent flow are characterized
by complex dynamics, as they collide, coalesce, and break apart. This behavior is governed by the
forces generated by the surrounding continuous phase, acting on the surface of the bubbles with
shear and normal stresses, and by the response of bubbles, which depends on their surface tension
and their density and viscosity. The ultimate competition among these forces determines the number,
shape, and deformation of the bubbles. In this work, we want to extend our previous works [14,16]
and provide a comprehensive analysis on the effects of density ratio (ratio between the density
of the bubble phase over the dispersed phase), viscosity ratio (ratio between the viscosity of the
bubble phase over the dispersed phase), and surface tension (controlled by the Weber number,
ratio of inertial over surface tension contributions) on the multiphase system. Specifically, the
first objective is to investigate the effects of these parameters on the dispersed phase topology
and its topological modifications (coalescence and breakage events) and to characterize the shape
and deformation of the bubbles. The second objective of this work is to characterize the global
and local flow modifications produced by bubbles on the turbulent channel flow behavior. To this
aim, we build and analyze a database of direct numerical simulations of turbulent channel flows
laden with deformable bubbles, considering different values of density ratios, viscosity ratios, and
surface tension. The numerical framework of the simulations relies on a direct solution of the
Navier-Stokes equations coupled with a phase-field method. Direct solutions of the Navier-Stokes
equations are used to accurately resolve all the relevant turbulence scales, while the phase-field
method [21,22]—an interface capturing approach that relies on an order parameter to define the local
concentration of each phase—is used to describe in a thermodynamically consistent manner the
motion of the deformable interface and its topological modifications (i.e., coalescence and breakage
events).

The paper is organized as follows: in Sec. II, we introduce the numerical method, the simulation
setup, and the parameters of the simulations. Then, in Sec. III, we present the results obtained from
the analysis of the simulations database. First, we focus on the effects of density and viscosity
ratios and surface tension values on the topology of the dispersed phase and its topological changes
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(breakage and coalescence). Second, we evaluate the effects of these parameters on the overall
interfacial area and curvature of the bubble interface. Third, we study the effects of density and
viscosity ratios and Weber number on the mean velocity profiles and on the turbulent kinetic energy
(TKE) of the bubbles. Finally, we summarize the results and draw our conclusions in Sec. IV.

II. METHODOLOGY

We consider the case of a swarm of bubbles injected in a turbulent channel flow with a rectangular
cross-section. The dispersed and carrier phases are characterized by density ρd and ρc, and viscosity
ηd and ηc, where the subscripts d and c identify the dispersed and carrier phase, respectively. We
define the density ratio and viscosity ratio as ρr = ρd/ρc and ηr = ηd/ηc respectively. The interface
that separates the two phases is characterized by a constant and uniform value of the surface tension,
σ . To describe the dynamics of the system, direct numerical simulation (DNS) of the Navier-Stokes
equations, used to describe the flow field, are coupled with a phase-field method (PFM), used to
describe interfacial phenomena [21,22].

A. Modeling of interfacial phenomena

The phase-field method uses an order parameter, the phase field φ, to identify the two phases: the
order parameter is uniform in the bulk of each phase (φ = ±1) and undergoes a smooth transition
across the interface. Indeed, the sharp interface is replaced by a thin transition layer. The transport
of the phase field φ is described by the Cahn-Hilliard equation, which in dimensionless form reads
as

∂φ

∂t
+ u · ∇φ = 1

Pe
∇2μ + fp, (1)

where u = (u, v,w) is the velocity vector, Pe is the Péclet number, μ is the chemical potential, and
fp is the penalty flux introduced with the profile-corrected formulation of the phase-field method
[23–25]. The Péclet number is defined as follows:

Pe = uτ h

Mβ
, (2)

where uτ = √
τw/ρc is the friction velocity (being τw the shear stress at the wall and ρc the carrier

phase density), h is the channel half-height, M is the mobility parameter, and β is a positive constant
introduced to make the chemical potential dimensionless. The Péclet number identifies the ratio
between the diffusive timescale, h2/Mβ, and the convective timescale, h/uτ , of the interface.

The chemical potential μ is defined as the variational derivative of a Ginzburg-Landau free-
energy functional, the expression of which is selected to represent an immiscible binary mixture of
isothermal fluids [17,25,26]. The functional is composed by the sum of two different contributions:
the first contribution, f0, accounts for the tendency of the system to separate into the two pure stable
phases, while the second contribution, fmix, is a mixing term accounting for the energy stored at the
interface. The mathematical expression of the functional is

F[φ,∇φ] =
∫




(
(φ2 − 1)2

4︸ ︷︷ ︸
f0

+ Ch2

2
|∇φ|2︸ ︷︷ ︸
fmix

)
d
, (3)

where 
 is the domain considered and Ch is the Cahn number, which represents the dimensionless
thickness of the thin interfacial layer between the two fluids (ξ is the physical thickness of the
interface),

Ch = ξ

h
. (4)
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From Eq. (3), the expression of the chemical potential can be derived as the functional derivative
with respect to the order parameter:

μ = δF[φ,∇φ]

δφ
= φ3 − φ − Ch2∇2φ. (5)

At the equilibrium, the chemical potential will be constant throughout all the domain. The equilib-
rium profile for a flat interface can thus be obtained solving ∇μ = 0, hence obtaining

φeq = tanh

(
s√
2Ch

)
, (6)

where s is a coordinate normal to the interface.
Finally, fp is the penalty-flux employed in the profile-corrected formulation of the phase-field

method. This formulation is an improvement to the standard phase-field formulation: it allows to
better maintain the equilibrium interfacial profile and it overcomes the drawbacks of the method
(e.g., mass leakages among the phases and misrepresentation of the interfacial profile [23,27]). This
penalty flux is defined as

fp = λ

Pe

{
∇2φ − 1√

2Ch
∇ ·

[
(1 − φ2)

∇φ

|∇φ|
]}

, (7)

where the numerical parameter λ can be set via the scaling λ = 0.0625/Ch [25].
Before proceeding, it is worth briefly discussing the main capabilities and limitations of

interface-resolved simulations in describing topological modifications of the interface [6,17,28].
The numerical description of breakages and coalescences is indeed one of the most challenging as-
pects of interface-resolved simulation methods. A fully resolved simulation of topological changes
would require resolving all the scales, from the molecular scale of the interface [29] up to the
largest scales of the flow. This type of simulation, however, is way beyond the capabilities of any
existing supercomputing facility. The common choice is to avoid resolving the small interfacial
scales and to find a way to approximate their dynamics on a much larger scale. Here, following
a similar approach, we limit the resolved range to the scales of turbulence: from the Kolmogorov
length scale up to the problem size. Thus, phenomena occurring at scales smaller than Kolmogorov
are smeared out on the smallest resolved scale. This choice however influences the description of
coalescence and breakage events. For coalescences, a part of the physics involved in the coalescence
process [30] (i.e., film drainage and rupture) cannot be directly resolved. As a result, regardless
of the approach employed to describe coalescence (models for interface tracking methods [31,32]
or implicit description for interface capturing methods [6,33]), numerical simulations struggle in
predicting physical coalescence, with this inaccuracy referred to as numerical coalescence. For
breakages, the picture is different and their numerical description is less troublesome. Indeed, being
breakage a very quick phenomenon, it can be well approximated without resolving the dynamics at
the molecular scale and there is evidence that the Navier-Stokes equations alone provide an adequate
description of a breakage event [34]. Besides, the small timescale of a breakage limits the impact of
the approximation on the overall flow dynamics [32,35]. Therefore, the description of breakages on
turbulence-resolved grids is considered to be rather accurate, although in the pinch-off region the
smallest interfacial features, characterized by high curvature, may not be perfectly resolved.

B. Hydrodynamics

To describe the hydrodynamics of the multiphase system, the Cahn-Hilliard equation is coupled
with the Navier-Stokes equations. The presence of a deformable interface (and of the corresponding
surface tension forces) is accounted for by introducing an interfacial term in the Navier-Stokes
equations. Recalling that in the present study we consider two fluids having different densities and
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viscosities, we use here the formulation of continuity and Navier-Stokes equations proposed by
Dong and Shen [36]. The resulting governing equations for the hydrodynamics read as follows:

∇ · u = 0, (8)

ρ(φ)

(
∂u
∂t

+ u · ∇u
)

= −∇p + 1

Reτ

∇ · [η(φ)(∇u + ∇uT )] + 3√
8

Ch

We
∇ · Tc, (9)

where u = (u, v,w) is the velocity vector, p is the pressure field, Tc is the Korteweg tensor, and
ρ(φ) and η(φ) are the density and viscosity fields, respectively. The density and viscosity fields are
dimensionless scalar functions that account for the local value of density and viscosity respectively
[37–39]; the carrier phase properties are used to make these fields dimensionless. The local density
and viscosity are assumed to be linear functions of the phase field:

ρ(φ) = 1 + (ρr − 1)
φ + 1

2
, (10)

η(φ) = 1 + (ηr − 1)
φ + 1

2
, (11)

where ρr and ηr are the density and viscosity ratios, respectively.
The Korteweg tensor [40], used to account for the surface tension forces, is defined as follows:

Tc = |∇φ|2I − ∇φ ⊗ ∇φ. (12)

The dimensionless groups appearing in the Navier-Stokes equations are the shear Reynolds
number, Reτ , and the Weber number, We, which are defined as

Reτ = ρcuτ h

ηc
, We = ρcu2

τ h

σ
. (13)

The Reynolds number represents the ratio between inertial and viscous forces, while the Weber
number is the ratio between inertial and surface tension forces. Both Reynolds and Weber numbers
are defined using the carrier phase properties (ρc and ηc).

C. Numerical method

The governing Eqs. (1), (8), and (9) are solved using a pseudo-spectral method, which uses
Fourier series along the periodic directions (streamwise and spanwise) and Chebyshev polynomials
along the wall-normal direction. The Navier-Stokes and continuity equations are solved using the
velocity-vorticity formulation: Eq. (9) is rewritten as a fourth-order equation for the wall-normal
component of the velocity uz and a second-order equation for the wall-normal component of the
vorticity ωz [11,41]. Equation (1) is also split into two second-order equations [22]; this way
the governing equations are recasted as a coupled system of Helmholtz equations, which can be
readily solved. The governing equations are time advanced using an implicit-explicit scheme. For
the Navier-Stokes equations, the nonlinear term is first rewritten as the sum of a linear and a
nonlinear contribution [42]. Then, the linear part is integrated using a Crank-Nicolson implicit
scheme, while the nonlinear part is integrated using an Adams-Bashforth explicit scheme. Likewise,
for the Cahn-Hilliard equation, the linear term is integrated using an implicit Euler scheme, while
the nonlinear term is integrated in time using an Adams-Bashforth scheme. The adoption of the
implicit Euler scheme helps damping unphysical high-frequency oscillations that could arise from
the steep gradients of φ.

D. Boundary conditions

The resulting set of governing equations is complemented by suitable boundary conditions. For
the Navier-Stokes equations, no-slip boundary conditions are enforced at the top and bottom wall

053601-5



MANGANI, SOLIGO, ROCCON, AND SOLDATI

(z/h = ±1):

u(z/h = ±1) = 0. (14)

For the Cahn-Hilliard equation, no-flux boundary conditions are applied at the two walls, yelding
the following boundary conditions:

∂φ

∂z
(z/h = ±1) = 0,

∂3φ

∂z3
(z/h = ±1) = 0. (15)

Along the streamwise and spanwise directions (x and y), periodic boundary conditions are imposed
for all variables (Fourier discretization). The adoption of these boundary conditions leads to the
conservation of the phase field over time:

∂

∂t

∫



φd
 = 0. (16)

This enforces mass conservation of the entire system but does not guarantee the conservation of
the mass of each phase [25,27], as some leakages between the phases may occur. This drawback
is rooted in the phase-field method and is here mitigated with the adoption of the profile-corrected
formulation. In the present cases, mass leakages are limited to at most 8% of the dispersed phase
mass and occur only in the initial transient phase; once the statistically stationary condition is
reached, the mass of each phase keeps constant.

E. Simulation setup

We consider a turbulent channel flow at a shear Reynolds number Reτ = 300 for all the cases.
The computational domain has dimensions Lx × Ly × Lz = 4πh × 2πh × 2h, which corresponds to
L+

x × L+
y × L+

z = 3770 × 1885 × 600 wall units. The domain is discretized with Nx × Ny × Nz =
512 × 256 × 513 grid points; the computational grid has uniform spacing in the homogenous
directions, while Chebyshev-Gauss-Lobatto points are used in the wall-normal direction. The flow
is driven by an imposed constant pressure gradient in the streamwise direction. We consider two
surface tension values, which are set via the Weber number: We = 1.50 (higher surface tension)
and We = 3.00 (lower surface tension). The selected values are characteristics of air/water mixtures
[43]. For each surface tension value (i.e., for each Weber number), we first keep a unitary density
ratio and we analyze the effect of different viscosity ratios: from ηr = 0.01 (less viscous bubbles)
up to ηr = 100 (more viscous bubbles). Then, we keep a unitary viscosity ratio and we consider
different density ratios: from ρr = 1 (matched density bubbles) down to ρr = 0.001 (lighter bub-
bles). Finally, to evaluate the combined effect of density and viscosity differences, we consider a
case in which both bubble density and viscosity are smaller than those of the carrier fluid: ρr = 0.1
and ηr = 0.1. In addition, we perform a single-phase flow simulation as a reference case and to
provide initial velocity fields for the multiphase simulations. Please refer to Table I for an overview
of the simulations parameters. It is worthwhile noting that when different properties (i.e., density
and viscosity) are considered, the local value of the Reynolds number changes as well as the range of
spatiotemporal scales that needs to be resolved to fulfill the DNS requirements. These modifications
can be appreciated from Table II in which we show an estimate of the turbulence length scale inside
the dispersed phase (computed from the definition of the Kolmogorov length scale), η+

k,d , the grid
resolution, the final average bubble-size, 〈d+

eq〉, and its root-mean-square value, RMS(d+
eq), for all

the different combination of density and viscosity ratios considered as well as for the reference
single-phase case. The bubble size has been characterized using the equivalent diameter, d+

eq, i.e.,
the diameter of an equivalent spherical bubble with the same volume as the bubble considered [17]:

d+
eq =

(
6V +

π

)1/3

(17)
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TABLE I. Overview of simulations parameters. Wa analyze two Weber numbers: We = 1.50 and We =
3.00. For each Weber number, we consider four density ratios: from ρr = 0.001 up to ρr = 1.000; five viscosity
ratios: from ηr = 0.01 up to ηr = 100 and a combined case ρr = 0.1 and ηr = 0.1. In addition, a single-phase
flow simulation has also been conducted.

System Reτ We ηr ρr Ch Pe

Single-phase 300 — — — — —
Bubble-laden 300 1.50 0.01 1.000 0.02 50
Bubble-laden 300 1.50 0.10 1.000 0.02 50
Bubble-laden 300 1.50 1.00 1.000 0.02 50
Bubble-laden 300 1.50 10.0 1.000 0.02 50
Bubble-laden 300 1.50 100. 1.000 0.02 50
Bubble-laden 300 1.50 1.00 0.001 0.02 50
Bubble-laden 300 1.50 1.00 0.010 0.02 50
Bubble-laden 300 1.50 1.00 0.100 0.02 50
Bubble-laden 300 1.50 0.10 0.100 0.02 50
Bubble-laden 300 3.00 0.01 1.000 0.02 50
Bubble-laden 300 3.00 0.10 1.000 0.02 50
Bubble-laden 300 3.00 1.00 1.000 0.02 50
Bubble-laden 300 3.00 10.0 1.000 0.02 50
Bubble-laden 300 3.00 100. 1.000 0.02 50
Bubble-laden 300 3.00 1.00 0.001 0.02 50
Bubble-laden 300 3.00 1.00 0.010 0.02 50
Bubble-laden 300 3.00 1.00 0.100 0.02 50
Bubble-laden 300 3.00 0.10 0.100 0.02 50

TABLE II. Grid resolution, �x+, �y+, and �z+
c , Kolmogorov scale at the channel center in the dispersed

phase, η+
k,d , average equivalent diameter of the bubbles, 〈d+

eq〉, and root-mean-square of the bubble equivalent
diameter, RMS(d+

eq), for all the different simulations performed. All dimensions are reported in wall units;
Kolmogorov scale is measured at the channel center. Single-phase flow values at the channel center have also
been reported as a reference.

System We ηr ρr �x+ �y+ �z+ η+
k,d 〈d+

eq〉 RMS(d+
eq)

Single-phase — — — 7.36 7.36 1.84 4.19 — —
Bubble-laden 1.50 0.01 1.000 7.36 7.36 1.84 0.20 195.13 176.97
Bubble-laden 1.50 0.10 1.000 7.36 7.36 1.84 1.04 191.16 134.04
Bubble-laden 1.50 1.00 1.000 7.36 7.36 1.84 5.27 226.72 123.55
Bubble-laden 1.50 10.0 1.000 7.36 7.36 1.84 26.72 229.84 127.99
Bubble-laden 1.50 100. 1.000 7.36 7.36 1.84 145.50 245.04 104.51
Bubble-laden 1.50 1.00 0.001 7.36 7.36 1.84 887.50 208.15 150.61
Bubble-laden 1.50 1.00 0.010 7.36 7.36 1.84 185.80 230.31 142.16
Bubble-laden 1.50 1.00 0.100 7.36 7.36 1.84 30.66 180.60 142.73
Bubble-laden 1.50 0.10 0.100 7.36 7.36 1.84 5.86 186.00 138.08
Bubble-laden 3.00 0.01 1.000 7.36 7.36 1.84 0.19 81.37 74.77
Bubble-laden 3.00 0.10 1.000 7.36 7.36 1.84 0.94 84.06 76.15
Bubble-laden 3.00 1.00 1.000 7.36 7.36 1.84 4.87 87.56 79.55
Bubble-laden 3.00 10.0 1.000 7.36 7.36 1.84 24.96 89.70 77.94
Bubble-laden 3.00 100. 1.000 7.36 7.36 1.84 140.3 203.62 111.09
Bubble-laden 3.00 1.00 0.001 7.36 7.36 1.84 818.2 87.58 77.74
Bubble-laden 3.00 1.00 0.010 7.36 7.36 1.84 142.0 86.54 76.25
Bubble-laden 3.00 1.00 0.100 7.36 7.36 1.84 27.45 91.16 81.28
Bubble-laden 3.00 0.10 0.100 7.36 7.36 1.84 4.63 83.62 75.41
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where V + is the volume of the bubble. All dimensions are reported in wall units (based on the carrier
flow shear Reynolds number) and refer to the channel center, where most bubbles are located. The
Kolmogorov scale, which is used here to provide an estimate of the smallest length scale inside the
bubbles, has been computed as follows:

η+
k,d =

(
η2

r Re2
τ

ε+

)1/4

(18)

where ε+ is the dissipation at the channel center evaluated in the region characterized by φ � 0 (i.e.,
inside the bubbles), ηr is the viscosity ratio and Reτ is the shear Reynolds number. We can observe
that for almost all the cases presented here, the estimated Kolmogorov scale is of the order of the
grid spacing thus ensuring a correct resolution of all the relevant flow scales. Only for the cases with
ηr � 0.1 (most critical cases due to the largest local Reynolds number increase), the smallest flow
scales (which are found inside the bubbles) cannot be completely resolved. From Table II, we can
also observe that the average bubble size is always at least one order of magnitude larger than the
grid spacing.

For the phase field, the Cahn number is set to Ch = 0.02. This value is selected based on the grid
resolution: at least three grid points are required across the interface to accurately describe the steep
gradients present [26]. The phase field Péclet number has been set according to the scaling Pe =
1/Ch = 50, to achieve convergence to the sharp interface limit [27,44]. More refined grids allow
to reduce the thickness of the interface and to adopt smaller Cahn numbers. However, the resulting
computational cost is much larger: grid resolution needs to be refined along all three directions, as
the orientation of the interfacial layer is arbitrary, and the time step has to be reduced as well to
satisfy the Courant-Friedrichs-Lewy condition. Overall, the computational cost of a simulation with
an halved Cahn number is roughly 16 times larger: grid refinement makes the simulation eight times
more expensive and the time step limitation makes the simulation twice as expensive.

At the beginning of each simulation, a regular array of 256 spherical droplets with diameter
d = 0.4h (corresponding to d+ = 120 wall units) is initialized in a fully developed single-phase tur-
bulent channel flow. The total volume fraction of the dispersed phase is � = Vd/(Vc + Vd ) � 5.4%,
being Vd and Vc the volume of the dispersed and carrier phase, respectively. As the array of spherical
bubbles is suddenly released in a single-phase turbulent flow, turbulent velocity fluctuations strongly
perturb the interfacial profile; during this initial coupling phase, mass leakages among the phases
may occur [25,27] After this initial transient, the mass of each phase keeps constant over time.
While the initial condition chosen for the dispersed phase may seem unphysical, after a short
transient, memory of the initial condition is completely lost and the results are not affected by
the initial condition selected [17]. Different initial conditions have been tested (e.g., the injection
of a thin liquid sheet at the channel center) and the same statistically statistically stationary results
were obtained. We selected the current initial configuration as it reduces the time required to reach
statistically stationary conditions.

III. RESULTS

We present here the results obtained from the analysis of the simulation database, starting from
the effects of the density ratio, viscosity ratio, and Weber number on the topology of the dispersed
phase (number of bubbles) and on its topological changes (coalescence and breakage rates). Then
we evaluate the effects of these parameters on the shape and deformation of the bubbles studying
the local curvature of the interface and the time evolution of the interfacial area. Finally, we
investigate the flow modifications produced by the bubbles by analyzing the mean velocity profiles
and the turbulent kinetic energy inside the bubbles. All the results will be presented according to the
following color code: a red-colors scale is used to show the density ratio variations and a blue-colors
scale to show the viscosity ratio variations. The case with both nonmatched density and viscosity is
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represented in green, while the reference case (matched density and matched viscosity) is shown in
black.

A. Bubbles: Number and topological modifications

1. Number of bubbles

The topology of the dispersed phase is the direct consequence of the ultimate competition
between breakage and coalescence events. To obtain a first qualitative insight of the effects of
density ratio, viscosity ratio and Weber number on the statistically stationary number of bubbles
(i.e., once the effect of the initial condition is completely dissipated), we can consider Fig. 1.
Figure 1(a) refers to We = 1.5, while Fig. 1(b) refers to We = 3.0. In each panel of Fig. 1, four
snapshots of the multiphase system at statistically stationary are arranged in a plot according
to the values of density (horizontal axis) and viscosity (vertical axis) ratio of each case. The
surface of the bubbles, identified as the isocontour φ = 0, is reported at the time instant t+ = 4000
(statistically stationary conditions); in the background the contour map of the turbulent kinetic
energy, TKE = (ρ/ρc)(u′2 + v′2 + w′2)/2 (where ρ identifies the local density value, ρd in the
bubbles and ρc in the carrier phase), on a x+-y+ plane located at the channel center is shown.
Among all cases, we select those with the extreme values of the density (ρr = 0.001, ηr = 1)
and viscosity ratio (ρr = 1, ηr = 100 and ρr = 1, ηr = 0.01). As a reference, also the matched
density and viscosity case (ρr = 1, ηr = 1) is shown. We can observe that for We = 1.5 [Fig. 1(a)],
the number of bubbles remains almost unchanged when both density and viscosity contrasts are
introduced in the system. For We = 3.0 [Fig. 1(b)], the number of bubbles is higher in all the cases,
compared to We = 1.5. If we look along the density axis (namely, to the pictures in the central row)
of Fig. 1(b), then we see that the number of bubbles is quite similar in the two cases, suggesting
a negligible effect of density for the range of values considered here. By opposite, looking along
the viscosity axis (thus to the pictures on the right column), we notice that viscosity does play an
important role, as the number of bubbles significantly reduces from ηr = 0.01 to ηr = 100, with a
more marked difference between ηr = 1 and ηr = 100, than between ηr = 0.01 and ηr = 1, thus
hinting that the viscosity difference among the phases may actually be the relevant factor, rather
than the viscosity ratio.

To evaluate these results more quantitatively, we compute at each time the number of bubbles,
N (t+), normalized by the initial bubbles number, N0. Figure 2 shows the results obtained for all
the combination of density and viscosity ratios considered, and for the two Weber numbers as well.
Left column refers to We = 1.5 [Figs. 2(a), 2(c) and 2(e)], while the right column to We = 3.0
[Figs. 2(b), 2(d) and 2(f)]. The top, middle and bottom rows show, in order, the effects of the density
ratio, viscosity ratio and of their combination.

We start by analyzing the effect of Weber number solely and we consider the matched density
and viscosity case [black lines in Figs. 2(a)–2(d)]. For We = 1.5, the number of bubbles decreases
monotonically: coalescence events dominate the initial transient phase (up to t+ = 2000). Then a
balance between breakage and coalescence events is attained and the number of bubbles settles on a
stationary value, N (t+)/N0 � 0.1. Likewise, for We = 3.0, an initial transient mainly characterized
by coalescence events can be also observed. However, this phase ends at an earlier time (about
t+ = 500) and is followed by a statistically stationary condition where breakups and coalescences
alternately prevail on each other.

Comparing simultaneously the plots at We = 1.5 [Figs. 2(a), 2(c) and 2(e)], we can observe
that the effects of both density and viscosity ratios (and of their combination) are very small. This
behavior can be traced back to the dominant role played by surface tension forces. The Weber
number quantifies the relative importance of surface tension forces with respect to inertial forces:
the lower is the Weber number, the stronger is the action of surface tension in controlling bubbles
dynamics. Thus, for We = 1.5, the surface tension forces are dominant and are those determining
the topology of the dispersed phase (i.e., number of bubbles). For the higher Weber, surface tension
forces are weaker in comparison, and density and viscosity ratios effects become more significant.
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FIG. 1. Top view of four statistically stationary configurations (t+ = 4000) for different combinations of
density ratios (ρr = 0.001 and 1) and viscosity ratios (ηr = 0.01, 1, and 100). Panel (a) refers to We = 1.5,
while panel (b) refers to We = 3.0. The subpanels are arranged in a plot using ρr as x coordinate and ηr as
y coordinate. The effect of density can be appreciated in the sequence of panels on the middle row, while
that of viscosity in the right column. The background of the plot shows the turbulent kinetic energy, TKE =
(ρ/ρc )(u′2 + v′2 + w′2)/2 (white—low; black—high), computed on the central x+-y+ plane of the channel.
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FIG. 2. Time evolution of the number of bubbles, N (t+), normalized by its initial value N0. Left col-
umn refers to We = 1.5, while the right column to We = 3.0. Top row: effect of density ratio, for ρr =
0.001, 0.01, 0.1, and 1 (with ηr = 1); middle row: effect of viscosity ratio, for ηr = 0.01, 0.1, 1, 10, and 100
(with ρr = 1); bottom row: combined effect of density and viscosity, for the case with ρr = 0.1, the cases
ρr = 0.1, ηr = 1 and ρr = 1, ηr = 0.1 are reported for reference. On each line the left plot also includes the
color code and a sketch with the definition of the property ratio considered (ρr , ηr , or both ratios).

In particular, for We = 3.0 [Figs. 2(b), 2(d) and 2(f)], the statistically stationary value obtained for
the number of bubbles shows a marked dependence on the viscosity ratio.
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As the dispersed phase dynamics for the cases at We = 1.5 are dominated by surface tension
forces, we focus on the cases at We = 3.0 to investigate the effects of density and/or viscosity
ratios. First, we consider the effects of the density ratio solely. Figure 2(b) shows the time evolution
of the number of bubbles for different density ratios (from ρr = 1.0 down to ρr = 0.001) and a
fixed unitary viscosity ratio. We notice that the influence of the density ratio on the number of
bubbles is small: the red-colors lines do not depart in average from the black reference line, nor
from each other. Hence, no significant modifications are introduced in the topology of the dispersed
phase when density contrasts are present between the phases (with respect to a two-phase system
with uniform density). This behavior suggests that, for the range of density ratios considered, the
external inertial forcing is the main factor that determines the bubble size and thus the dispersed
phase topology. In contrast, the density (and thus the inertia) of the bubble plays a negligible role in
determining the dispersed phase topology.

However, a marked effect of the viscosity ratio alone can be observed, Fig. 2(d). We observe in
this case a much clearer trend: after the initial transient the curves depart from each other and set
on different equilibrium values once statistically stationary conditions are reached. In particular, as
the viscosity ratio is increased, the statistically stationary number of bubbles is reduced. For high
viscosity ratio (ηr > 1) fragmentation is prevented, coalescence dominates and only a few bubbles
are present in the channel. By opposite, for low viscosity ratio (ηr < 1) breakups are favored, the
average bubble size decreases, and the resulting number of bubbles is slightly larger when smaller
viscosity ratios are considered. Hence, it is evident that viscosity acts as a stabilizing factor, in a
similar way as surface tension does. Indeed, it is interesting to observe that the behavior of the
number of bubbles for ηr = 100 at We = 3.0 (high viscosity) resembles those of the cases at We =
1.5 [high surface tension, Fig. 2(c)]. This suggests that a very high viscosity ratio can compensate
a low surface tension and produce similar results in terms of topology. A physical argument that
can explain the action of viscosity is related to the deformations that the external turbulent flow is
able to induce on the bubble. When the internal viscosity is larger than the external one, the larger
internal viscous dissipation damps all the turbulent fluctuations produced by the external flow. This
hinders large deformations of the bubble surface and, as a consequence, it reduces the possibility of
bubble breakage.

Finally, we analyze the combined effects of density and viscosity ratios. In Fig. 2(f), we report
the results obtained from the case ρr = 0.1 and ηr = 0.1 and from two cases with one matched
property and one nonmatched property, ρr = 0.1 and ηr = 1 (red line) and ρr = 1 and ηr = 0.1
(blue line). We can first note that these two latter cases, where only one property is nonmatched,
exhibit a very similar behavior for the entire duration of the simulation. This is consistent with
our previous observation: the influence of the density ratio is almost negligible [Fig. 2(b)] and the
effects of the viscosity ratio are relatively small for ηr = 0.1 [Fig. 2(d)]. Then, we observe that the
combined case (green line) does not deviate largely from the other two cases. This indicates that a
simultaneous reduction of the density and viscosity ratios does not remarkably modify the general
picture for the range of density and viscosity ratios here tested. Nevertheless, it is interesting to
observe that the green line lies above the red and blue lines for a longer timespan, indicating that
the number of bubbles for the combined case is slightly higher than in the other two cases.

2. Breakage and coalescence rates

The evolution of the number of bubbles provides useful insights on the time behavior of the
dispersed phase topology, although it only shows the net outcome of the competition between
breakage and coalescence events. To evaluate whether density and viscosity differences among
the phases affect breakage and coalescence dynamics, we compute the instantaneous number of
breakage and coalescence events. Evaluating these effects is not only crucial to better understand
the involved physics, but is also extremely important for the development of accurate coalescence
and breakage kernels [45]. The time behavior of the breakage and coalescence is directly linked to
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the number of bubbles present in the channel, as hinted by the balance population equation [46]:

dN (t+)

dt+ = Ṅb(t+) − Ṅc(t+), (19)

where N (t+) is the number of bubbles and Ṅb(t+) and Ṅc(t+) are, respectively, the breakage and
coalescence rates. We compute the breakage and coalescence rates counting the number of breakage
or coalescence events that occur within a set temporal window �t+ (see Appendix A for details):

Ṅb(t+) = Nb

�t+ , Ṅc(t+) = Nc

�t+ , (20)

where the temporal window has been chosen equal to �t+ = 300. As the number of breakage and
coalescence events that occur in a certain temporal window is also influenced by the number of
bubbles present in the channel [17], we normalize the breakage and coalescence rates, Ṅb(t+) and
Ṅc(t+), by the instantaneous number of bubbles N (t+). Because the description of coalescence and
breakage events in numerical simulations is influenced by grid resolution [3,6,17,28], a convergence
study has also been performed to ensure that the grid employed is sufficient to obtain convergent
results; please refer to Appendix B for details.

Figure 3 shows the results obtained for all cases examined: breakage rate is plotted over time as a
positive quantity, while coalescence rate as a negative quantity, being them related to an increase and
decrease of the number of bubbles, respectively. We will first discuss the effect of the Weber number
comparing the left column [Figs. 3(a), 3(c) and 3(e)] with the right column [Figs. 3(b), 3(d) and 3(f)].
For We = 1.5 (left column), the breakage and coalescence rates behave nearly in the same way for
all the combinations of density and viscosity ratios. After the initial transient where the behavior of
the rates is influenced by the selected initial condition for the phase-field, an equilibrium is reached
at about t+ = 1000 where both rates set on a constant value. At this stage, bubbles keep on breaking
and coalescing, but with the same rate, thus maintaining their number in statistical equilibrium. This
value of the Weber number does not allow density and viscosity contrasts to substantially modify
the evolution of bubbles topology, as a good correspondence among the curves can be noticed in
all the plots. Indeed, when a low Weber number is considered the deformability, which is a crucial
factor for coalescence and breakage events, is mainly determined by surface tension forces that
dominate over density and viscosity contributions. For We = 3.0 (right column), the results are
qualitatively and quantitatively different: breakage and coalescence rates reach in general larger
values, and some significant deviations among the curves are visible. This is a direct consequence of
the larger Weber number: surface tension forces, which are smaller in magnitude, weakly counteract
turbulent velocity gradients, that can more easily deform and break the bubbles. Thus, we observe
a larger number of breakage and coalescence events due to the larger deformability of the bubbles,
as can be appreciated from Figs. 2(b), 2(d) and 2(f). In addition, for this larger Weber number, we
can clearly observe how the density and viscosity ratios play a much more important role in the
dynamics of breakage and coalescence events (with respect to We = 1.5).

For this reason, we move now to discuss the effect of nonmatched density or viscosity on the
cases at We = 3.0 in more detail. Figure 3(b) shows the breakage and coalescence rate for different
values of the density ratios. In the first transient phase, all cases manifest a very high frequency
of both breakage and coalescence events, slightly larger for coalescences at the very beginning
[coherently with the evolution of the number of bubbles shown in Fig. 2(b)]. Later on, both rates
stabilize and set on two equal (in magnitude) stationary values. Although a clear trend among the
different density ratios cannot be observed, it is worth noticing that all the rates seem slightly
larger when subunitary density ratios are considered (especially in the early stage of simulations).
Overall, these observations suggest that density differences between the phases do not introduce
remarkable changes in the dispersed phase topology and on its modifications: the number of bubbles
and breakage and coalescence rates are weakly influenced by changing the density ratio.

Moving now to the effect of the viscosity ratio, Fig. 3(d) depicts the time evolution of the break-
age and coalescence rates obtained for different viscosity ratios (and a fixed unitary density ratio).
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FIG. 3. Time evolution of the normalized breakage rate, Ṅb(t+)/N (t+), and coalescence rate,
Ṅc(t+)/N (t+). Left column refers to We = 1.5, while right column to We = 3.0. Top row: effect of den-
sity ratio, for ρr = 0.001, 0.01, 0.1, and 1 (with ηr = 1); Middle row: effect of viscosity ratio, for ηr =
0.01, 0.1, 1, 10, and 100 (with ρr = 1); Bottom row: combined effect of density and viscosity ratios, for the
case with ρr = 0.1, ηr = 0.1. Cases ρr = 0.1, ηr = 1 and ρr = 1, ηr = 0.1 are reported for reference. For each
row of plots, the left plot also shows the color code and a sketch with the definition of the ratio considered (ρr ,
ηr , or both).
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Again, once the initial transient is finished, a statistically stationary phase can be distinguished for
all cases. From a qualitative viewpoint, coalescence is predominant at the beginning of the transient
[consistently with the behavior reported in Fig. 2(d)]; then relatively high values for both rates are
maintained during the rest of the transient, until they stabilize on steady values. The cases, however,
deeply differ from a quantitative point of view. We see in this case that the rates significantly change
when the viscosity ratio is changed: both breakage and coalescence rates decrease in magnitude
as the viscosity ratio is increased (i.e., when bubble viscosity is increased). This modification of
the breakage and coalescence rates is clear when the case ηr = 100 is considered: the statistically
steady value of both rates is smaller than the one attained by the other cases. A similar trend was
experimentally measured by Eastwood et al. [47] for the breakup of immiscible fluid particles in a
turbulent jet: it was observed that the breakage rate of the droplets scales inversely with the inner
bubble capillary number (ratio between bubble viscous forces and surface tension forces). Present
results seem to confirm this finding: bubble viscosity and the corresponding viscous forces, acting
as a damper of external velocity fluctuations [16], make bubbles less deformable and the probability
of breakage and coalescence decreases.

Finally, we discuss the combination of density and viscosity contrasts [Fig. 3(f)]. The three curves
do not deviate considerably from each other and a clearcut trend cannot be appreciated. As the
density effect is generally unimportant and the viscosity one shall be small for ηr = 0.1, the case
ρr = 0.1, ηr = 0.1 does not give us clear information on how density and viscosity effects combine
together.

B. Shape and deformation of bubbles

1. Interfacial area

A bubble released in a turbulent flow is constantly subjected to deformations due to the action of
turbulent fluctuations [48,49]. Turbulence fluctuations deform and stretch the bubble and, if strong
enough, can lead to breakage of the bubble. The result of turbulence actions in terms of deformation
can be evaluated by computing the total interfacial area. This quantity gives a general indication of
the average bubble deformation and also provides a quantification of the amount of energy stored
at the interface [33,50,51]. Indeed, in the hypothesis of constant surface tension (as in the present
case), surface tension energy is proportional to the amount of interfacial area available [33,50,51].

With the aim of evaluating the effects of the simulations parameters (density ratio, viscosity ratio,
and Weber number) on the interfacial energy, we compute the time behavior of total interfacial
area, A(t+), for all cases considered. The results are presented normalized by the initial value
A0. In Fig. 4, the results are shown using the same arrangement adopted in the previous figures.
To correctly interpret these results, it is necessary to make a preliminary remark. The area of
the interface between the dispersed phase and the carrier fluid evolves in time depending on two
factors: the evolution of the number of bubbles and the modifications of the shape of the bubbles.
This concept can be explained by considering the following example: to have a minimal interface
area, the dispersed phase should consist of a unique spherical bubble, since, for a given volume, the
spherical shape is the one that minimizes the surface area. If we split this bubble into several smaller
spherical bubbles, then the total interface area will increase, being the total volume constant. If these
smaller spherical bubbles are then deformed and elongated, then the area will further increase, as
for each bubble the same amount of mass in a way that makes it more exposed to the external flow.
Thus, when we look at the evolution of the total interface area we are simultaneously observing the
effect of the number of bubbles and of their deformation. We start by analyzing the effects of the
density ratio for the cases at We = 1.5, Fig. 4(a). We notice an initial transient that is characterized
by a nearly monotonic decrease of A(t+)/A0, for all the considered cases. In particular, during this
transient, the curves corresponding to subunitary density ratios are superposed, while a remarkable
discrepancy is visible between them and ρr = 1. As soon as the flow reaches a steady behavior, all
the curves differentiate and a trend becomes visible, where the higher is the density ratio the larger
is the total interface area. Considering that for We = 1.5 the number of bubbles is almost unaffected
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FIG. 4. Time evolution of the total interface area A(t+), normalized by its initial value A0. Top row:
effect of density, for ρr = 0.001, 0.01, 0.1, and 1 (with ηr = 1); middle row: effect of viscosity, for ηr =
0.01, 0.1, 1, 10, and 100 (with ρr = 1); bottom row: combined effect of density and viscosity, for the case with
ρr = 0.1, ηr = 0.1. Cases with ρr = 0.1, ηr = 1 and ρr = 1, ηr = 0.1 are reported for reference. These effects
are shown for two different Weber numbers: (a, c, e) We = 1.5 and (b, d, f) We = 3.0. On each row the left
plot also includes the color code and a sketch with the definition of the ratio considered (ρr , ηr , or both ratios).
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by the density ratio [Fig. 2(a)], this indicates that the trends observed in Fig. 4(a) are mainly caused
by the bubble deformation: when smaller density ratios are considered, bubbles tend to be less
deformed with respect to the case ρr = 1. The origin of this behavior can be traced back to the local
Reynolds number (i.e., evaluated using the bubble proprieties): as the density ratio is decreased, the
inertial forces become smaller, the local Reynolds number decreases and less deformed bubbles are
obtained.

For We = 3.0 [Fig. 4(b)], we notice a similar but more irregular behavior. For all density ratios,
the normalized interfacial area decreases and sets on stationary values that are higher than the final
stationary values obtained for We = 1.5 [Fig. 4(a)]. This is coherent with the fact that increasing
the Weber number, the number of bubbles increases, and so does the interfacial area. For this larger
Weber number, the trend among the different density ratios is now less clear and the differences
between the curves are slightly smaller. Nevertheless, consistently with the results obtained for
We = 1.5 [Fig. 4(a)], the matched density case (ρr = 1) is clearly above all the other curves (ρr < 1)
for almost the entire time range of the simulations. Because the number of bubbles is similar for
all the cases shown in Fig. 4(b), this seems to confirm that for smaller density ratios the overall
interfacial area is reduced.

The viscosity effect can be appreciated in Figs. 4(c) and 4(d). For We = 1.5, Fig. 4(c), the
total interface area is practically independent on the viscosity ratio and no significant changes can
be observed. As the number of bubbles is similar for all cases [Fig. 2(c)], this indicates that no
significant effects on the average bubble deformation are observed. Even though bubble viscosity
does not play an important role in the average bubble deformation, we can anticipate that it still
plays a role when more local quantities are analyzed (e.g., local curvature), see Sec. III B 2. For
We = 3.0, a remarkable difference is present between ηr = 100 (larger bubble viscosity) and all the
other cases. This is consistent with the time evolution of the number of bubbles [Fig. 2(d)]. Indeed,
when the statistically stationary configuration is reached, the number of bubbles for ηr = 100 is
much lower than that obtained for the other ratios. As a result, the interfacial area is much lower
than the other cases. For the other cases (from ηr = 10 down to ηr = 0.01), a clear trend cannot be
observed thus suggesting that no large modifications of the average bubble deformation are obtained
for ηr < 10. However, as already anticipated for We = 1.5, larger modifications are observed when
local quantities are analyzed, see next section for details.

Finally, we discuss the combined effect of density and viscosity ratios [Figs. 4(e) and 4(f)]. For
We = 1.5, the case with both nonmatched density and viscosity (green line) overlaps the case with
nonmatched density (red line) during the transient and in the final steady configuration, while in the
first steady part it is intermediate between the two other cases, ρr = 0.1, ηr = 1 and ρr = 1, ηr =
0.1. On average the combined case is therefore closer to the nonmatched density case, suggesting
that the density ratio has a larger influence on the total interfacial area (and thus on the stretching of
the bubbles) with respect to the viscosity ratio. This is confirmed by the plot for We = 3.0, where
the green line shows again values that on average are much closer to the nonmatched density case
(i.e., ρr = 0.1).

2. Probability density function of mean curvature

The evolution of the total interface area gives us an idea of the overall behavior of the average
deformation of the bubbles in presence of density and viscosity contrasts. However, being an average
indication, it does not provide a clear indication of the local deformations of the bubbles surface.
To obtain a deeper understanding of the deformation, we examine the probability density function
(PDF) of the local interface mean curvature in the final statistically stationary configuration. The
mean curvature, K+, can be computed as the divergence of the local normal vector n, which in turn
can be defined from the phase variable φ [52,53]:

n = − ∇φ

|∇φ| , K+ = ∇ ·
(

− ∇φ

|∇φ|
)

. (21)
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We compute the mean curvature, K+, for each point on the surface of the bubbles, corresponding to
the points of the isolevel φ = 0. The resulting curvature values tell us how much the bubbles deviate
from their spherical equilibrium shape, giving rise to small bumps and ripples in the surface when
K+ is highly positive, or small dimples when K+ is highly negative.

From Fig. 5, we can appreciate the effect of density and viscosity on the mean curvature from a
qualitative point of view. The figure shows for We = 1.5 [Fig. 5(a)] and We = 3.0 [Fig. 5(b)] four
top views of the statistically stationary configurations of the system. Bubbles are colored according
to the local value of the mean curvature (blue—low; red—high). Red areas correspond to bumps
and ripples of the interface (positive curvatures), while blue areas to dimples (negative curvatures).

For We = 1.5 [Fig. 5(a)], the effect of the density ratio can be observed by looking at the hori-
zontal sequence of pictures (central row): we notice that moving from ρr = 1 down to ρr = 0.001
there is a slight decrease in the extension of both red and blue saturated regions, which correspond
to very high and very low curvatures respectively. Therefore a reduction of the density ratio (i.e.,
a decrease of bubble density), leads to a smoother bubble surface, characterized by fewer ripples
and dimples. In the vertical sequence of pictures on the right column, we can appreciate the
effect of viscosity. We notice that the shape of the bubbles is qualitatively unchanged increasing
the viscosity from ηr = 0.01 to ηr = 1. However, from ηr = 1 to ηr = 100 the shape changes
remarkably: the irregularities that characterize the bubbles surface at ηr = 1 disappear completely
at ηr = 100, where the surface becomes very smooth and the bubbles shape very closely resembles
the spherical shape. Thus, the action of viscosity seems opposite to the one of density in terms of
local deformation of the bubble surface: an increase of viscosity prevents the formation of high
curvatures values (in magnitude), while an increase of density promotes the formation of large
interface deformations. The two opposite trends obtained increasing the density or viscosity ratios
can be interpreted in terms of local Reynolds or capillary numbers (i.e., evaluated using the bubble
proprieties). An increase of the density ratio leads to an increase of the local Reynolds number and
as a consequence, a more irregular surface of the bubbles is obtained. In contrast, an increase of the
viscosity ratio, produces a decrease of the local Reynolds number (which also corresponds to an
increase of the capillary number) and a smoother surface of the bubbles is attained. Interestingly,
the entity of these effects depends on the value of the ratio considered: a slight effect of the density
ratio can be observed when it is decreased of three orders of magnitude (from ρr = 1 down to
ρr = 0.001), as well as for the viscosity ratio when reduced by two orders of magnitude (from
ηr = 1 down to ηr = 0.01), while a more noticeable difference is visible when it is increased of two
orders of magnitude (from ηr = 1 up to ηr = 100). Similar considerations can be obtained from
the qualitative results obtained at We = 3.0 [Fig. 5(b)]. In this case, we can qualitatively appreciate
similar effects for the density and viscosity ratios. These modifications, however, are now reflected
on a much larger number of bubbles (larger Weber number).

To confirm these first qualitative observations, we compute the probability density function
(PDF) of the mean curvature. Results are reported in Fig. 6 for different combinations of the density
ratio, viscosity ratio, and Weber number. The left column [Figs. 6(a), 6(c) 6(e)] refers to We = 1.5,
while the right column [Figs. 6(b), 6(d) and 6(f)] refers to We = 3.0. Before analyzing each curve in
detail, we can do some general observations. All curves are centered on a positive value of curvature
and present an asymmetry with respect to the null value. Since positive curvatures correspond to
convex surfaces and the null curvature corresponds to a flat surface, this is consistent with the fact
that bubbles are in average convex, considering an outwards normal vector. Then, comparing the
results shown in the left column (cases at We = 1.5) against those reported in the right column
(cases at We = 3.0), we can appreciate the effect of the Weber number: For We = 3.0, the curves
are extended on a wider range of curvature values with respect to We = 1.5. In particular, the curves
are extended slightly toward negative values and considerably toward positive values, meaning that
a higher Weber leads to a higher probability of having irregularities in the surface of the bubbles,
especially bump or ripples-like irregularities. The higher probability of having large curvature values
is also due to the presence of many smaller bubbles, which are intrinsically more convex (smaller
radius) and closer to a spherical shape.
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FIG. 5. Top view of the mean curvature of the bubble surface, K+, for four different combinations of
density ratios (ρr = 0.001 and 1) and viscosity ratios (ηr = 0.01, 1, and 100) once a statistically stationary
configuration is reached (t+ = 4000). Panel (a) refers to We = 1.5 while panel (b) to We = 3.0. The subpanels
are arranged in a plot using ρr as x coordinate and ηr as y coordinate. The effect of density can be appreciated in
the sequence of panels on the middle row, while that of viscosity in the right column. Bubble surface (isolevel
φ = 0) is colored according to the local value of the mean curvature (low—blue; high—red).
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FIG. 6. Probability density function of the mean curvature, K+. Left column refers to We = 1.5, while
right column to We = 3.0. Effect of density ratio can be appreciated on the top row for ρr = 0.001, 0.01, 0.1,

and 1 (with ηr = 1). The effect of bubble viscosity can be observed in the middle row for ηr = 0.01, 0.1, 1, 10,

and 100 (with ρr = 1). Finally, the combined effect of the density and viscosity ratio is shown on the bottom
row for the case with ρr = 0.1, ηr = 0.1, with respect to the cases where a single effect is considered (with
ρr = 0.1, ηr = 1 and ρr = 1, ηr = 0.1).

We study now the effects of the density ratio [Figs. 6(a) and 6(b)]. We notice a trend for
We = 1.5 that becomes clearer for We = 3.0: the cases with ρr = 0.1, 0.01, 0.001 present a lower
probability of having large curvatures (in magnitude) with respect to ρr = 1. This effect is small for

053601-20



INFLUENCE OF DENSITY AND VISCOSITY ON …

positive curvatures and more pronounced for negative curvatures. We can also observe that while
the discrepancy between the reference case (ρr = 1) and all other cases is clear, there is almost no
difference among the cases ρr = 0.1, 0.01, and 0.001. Interestingly, a similar trend was also re-
ported in a previous work [54] that investigated the rise of bubbles in quiescent liquid. In particular,
Cano-Lozano et al. [54] reported that for density ratios smaller than 0.128, a further decrease of the
density ratio does not produce significant changes in the shape of the bubbles. This seems to suggest
that the modifications produced by the density with respect to the case with ρr = 1 (matched density
case), are likely to be proportional to the density difference between the two phases (i.e., ρc − ρd )
rather than their ratio (i.e., ρd/ρc). Further simulations, which consider super-unitary density ratios,
are however required to confirm this indication. Overall, present results (Fig. 4) indicate that when
subunitary density ratios are considered, the probability of having large curvatures values, especially
negative, and very stretched bubbles decreases. In other words, when the density of the bubbles is
decreased with respect to the carrier density, it becomes more difficult for turbulence fluctuations
to locally deform and stretch the bubbles, and in particular, it is difficult to create dimples and
concave areas. A possible physical mechanism that supports present observations is the following:
when an external perturbation reaches the deformable interface of a bubble, the bubble surface is
modified and the perturbation then propagates to the internal bubble fluid. As bubble density is
reduced, however, the propagation of this perturbation to the bubble fluid and thus to the rest of
the bubble interface becomes less effective. Indeed, the inertia of the perturbation is modulated by
the smaller bubble density and thus the magnitude of the inertial forces is reduced. As a result,
viscous and surface tension forces increase their relative importance with respect to inertial forces,
and the resulting bubble deformation is reduced. This behavior can be also justified considering the
dispersed phase Reynolds number, i.e., the Reynolds number evaluated considering the dispersed
phase density. As bubble density is reduced, so does the dispersed phase Reynolds number and the
bubbles become less deformable and distorted, as can be also graphically appreciated from Fig. 1
comparing the case ρr = 0.001 (orange bubbles) against the case ρr = 1.000 (white bubbles).

To evaluate the influence of the viscosity, we consider Figs. 6(c) and 6(d). A trend can be
distinguished for both the Weber numbers: the PDFs become narrower as the viscosity increases.
More specifically, the largest effect can be seen for ηr = 100, where the range of possible curvatures
is significantly reduced. The shrinkage of the pdf is less but still evident for ηr = 10, and it becomes
almost negligible for ηr = 0.1 and ηr = 0.01. Unlike density, the impact of viscosity is important
for ηr = 100 and ηr = 10, while it becomes less important for ηr = 0.1 and ηr = 0.01. Indeed, for
these two latter cases, no significant modifications can be appreciated from both Weber numbers.

Finally, the combined effects of the density and viscosity ratio can be evaluated from Figs. 6(e)
and 6(f). Interestingly, we observe that when both density ratio and viscosity ratios are decreased, the
resulting PDF of the mean curvature lies in between the case ρr = 0.1 (and matched viscosity) and
ηr = 0.1 (and matched density). This intermediate behavior can be traced back to the two opposite
actions of density and viscosity on the mean curvature of the surface of the bubbles: while a decrease
of the bubble density (i.e., of the density ratio) makes the bubbles surface more rigid and thus
smoother, when bubble viscosity is decreased the bubbles become more deformable and ripples or
dimples can be more easily formed on the interface. Thus, when we combine these two effects,
these actions balance out and we obtain an intermediate trend. This result is already visible for
We = 1.5 and becomes clearer for We = 3.0 where, thanks to the higher number of bubbles, a
smoother statistic is obtained.

C. Flow modifications

1. Mean velocity profiles

Once we detailed the evolution of the dispersed phase topology, its modifications, and the
deformation and curvature of the bubbles, we move to analyze the flow modifications produced
by the bubbles. We start by analyzing the macroscopic behavior of the multiphase mixture, in terms
of flow-rate and mean flow statistics. In particular, we investigate the wall-normal behavior of the
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mean velocity profiles of the multiphase flow, and we compare them with the single-phase flow
statistics at the same Reτ = 300. Indeed, we aim at understanding whether the injection of bubbles
in a turbulent flow induces modifications to the mean velocity profile, especially when density or
viscosity contrasts are present between the two phases. This aspect is widely studied and a common
question that persists in the field concerns the capability of bubbles in generating drag reduction
[15,20,55–58].

Figure 7 shows the wall-normal behavior of the mean velocity profiles, computed by averaging
the streamwise velocity along the streamwise and spanwise directions in the entire domain (both
dispersed and carrier phase). The results are illustrated for all combinations of density and viscosity
ratios considered, following the same arrangement of the previously presented statistics. In addition,
the velocity profile relative to the single-phase case is shown with a black dashed line, and the
classical law of the wall, u+ = z+ and u+ = (1/κ ) ln z+ + 5.2 [59], is reported as a reference
(with κ = 0.41 the Von Kármán constant [60]). We observe that in all the plots the velocity
profiles perfectly collapse on each other in the vicinity of the wall, while tiny deviations can be
observed in the central part of the channel, where most bubbles are located. In particular, in the
core region of the channel, no differences can be appreciated varying the density and viscosity
ratios. However, all multiphase cases are characterized by a slightly greater velocity with respect to
the single-phase case. As in our simulations a constant mean pressure gradient is used to drive the
flow, the observed flow-rate enhancement corresponds to a slight drag reduction. The drag reduction
we observe is rather low in all the simulated cases (roughly 1 to 2%), and current results suggest
that the presence of density and viscosity contrasts among the phases does not visibly impact it.
These results are in agreement with previous works [20,61], which found that drag significantly
depends on the bubble size. Specifically, they observe that large and deformable bubbles (obtained
allowing bubbles to coalesce) migrate toward the central part of the channel and do not influence
the drag significantly [12,13,55,62]. By opposite, smaller bubbles (obtained not allowing bubbles
to coalesce) move toward the near-wall region and lead to an increase of the drag [12,13,55,62].
To support this argument, we can consider Fig. 8, which shows the scatter plot of the wall-normal
location of each bubble over its equivalent diameter. Figure 8(a) refers to We = 1.5 while Fig. 8(b)
refers to We = 3.0. The bottom and top walls are located at z+ = 0 w.u. and z+ = 600 w.u. Two
black dashed lines identify the critical condition for which the upper (or lower) part of the bubble
interface intercepts the top (or bottom) wall. From a mathematical point of view, this condition can
be identified imposing:

z+
b = d+

eq/2, (22)

where z+
b is the distance of the center of the mass of the bubble from the closer wall, which can be

computed as follows:

z+
b = min(z+

i , 2h+ − z+
i ), (23)

where z+
i is the wall-normal location of the ith bubble and h+ = 300 w.u. is the channel half-height

in wall units. Hence, the equations that identify these conditions are

z+ = d+
eq/2, z+ = 2h+ − d+

eq/2. (24)

Analyzing the dispersion of the bubbles along the wall-normal direction, we can confirm previous
intuitions: smaller bubbles tend to disperse along the entire height of the channel and can get rather
close to the two walls while, by opposite, larger bubbles tend to accumulate at the center of the
channel and stay farther away from the two walls. It is worth pointing that despite a few points are
located above (or below) the two black dashed lines (i.e., in the gray region), no collisions with
the walls are detected. Instead, these points represent bubbles elongated along the streamwise or
spanwise directions and thus with a larger d+

eq with respect to the actual wall-normal size. Overall,
the results presented in Fig. 7 corroborated by those reported in Fig. 8 seem to confirm the idea that
bubble deformability is a crucial parameter for obtaining drag reduction [12,20,56,58,63]. Indeed,
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FIG. 7. Wall-normal behavior of the streamwise mean velocity profiles. Left column refers to We =
1.5, while the right column to We = 3.0. Density ratios effects are shown on the top row for ρr =
0.001, 0.01, 0.1, 1. Viscosity ratio effects are shown on the middle row for ηr = 0.01, 0.1, 1, 10, 100. Finally,
the combined effect of the density and viscosity ratios is shown on the bottom row for the case ρr = 0.1 and
ηr = 0.1, with respect to the cases where only one effect is considered. As a reference, the classical law of
the wall, u+ = z+ and u+ = (1/k) log z+ + 5 (with k = 0.41 the von Kármán constant) is also reported with a
dashed line. For all cases, with respect to single-phase, we observe a minor increase of the mean velocity.
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FIG. 8. Scatter plot of the wall-normal location of each bubble over its size for the different cases
considered. The two black dashed lines identify the condition for which the interface of the bubble intercepts
the closer wall in the hypothesis of a perfectly spherical bubble. Smaller bubbles tend to disperse along the
entire channel height can get rather close to one of the two walls while larger bubbles tend to accumulate at the
center of the channel.

bubble deformability plays a central role in determining the preferential distribution of the bubbles
[12,32], which is directly linked to drag reduction [15,58].

2. Turbulent kinetic energy (TKE) of bubbles

After having analyzed the flow field in terms of mean velocity, we focus on the turbulence
behavior inside the bubbles. The characterization of the flow inside the bubbles is of paramount
importance in many applications. Indeed, internal circulation controls the transport of heat, mass,
momentum and chemical species through the interface [64,65], the motion and deformation of the
bubbles [66,67] and particle removal efficiency in scrubbing process [68,69]. To characterize the
mixing and flow behavior in the dispersed phase, we consider the turbulent kinetic energy (TKE)
inside the bubbles. As in the carrier phase no significant modifications of the mean velocity profile
(Fig. 7) and of turbulence statistics are observed, larger modifications are expected in the dispersed
phase: The flow inside the bubbles is confined by a deformable interface and continuously forced
by the external carrier flow. In addition, fluid properties (density and viscosity) are different. As a
result, the magnitude of inertial and viscous forces is changed, as well as the local Reynolds and
Weber numbers (i.e., evaluated using the dispersed phase properties). To give a first qualitative idea
of these modifications, we can consider the specific turbulent kinetic energy, TKE, whose definition
is here recalled:

TKE = ρ

ρc

(u′2 + v′2 + w′2)

2
, (25)

where ρ is the local density (ρd in the bubbles and ρc in the carrier phase). Figure 9 shows the
turbulent kinetic energy for two different simulations: Fig. 9(a) refers to the case with ρr = 0.01
and matched viscosity and Fig. 9(b) refers to the case with ηr = 0.01 and matched density. Both
panels refer to the higher Weber number analyzed (We = 3.0) and to the time instant t+ = 4000,
when for both cases a statistically stationary configuration is attained. The two snapshots illustrate
with a white-black scale the contour map of TKE on an x+-y+ plane located at the channel
center (z+ = 0). The interface of the bubbles is marked with a white thin line. We notice that the
flow structures in the carrier phase are qualitatively similar in the two pictures, while inside the
bubbles the contour maps of TKE look very different and for ρr = 0.01 and ηr = 1 [Fig. 9(a)],
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FIG. 9. Contour map of the turbulent kinetic energy in a x+-y+ plane located at the channel center (z+ = 0).
Panel (a) refers to the case ρr = 0.01 and ηr = 1 while panel (b) refers to the case ρr = 1 and ηr = 0.01.
Both panels refer to the lower surface tension case (We = 3.0) and to the time instant t+ = 4000 (statistically
steady configuration). The interface of the bubbles is highlighted with a white line. For ρr = 0.01, bubbles and
characterized by a low and uniform value of the TKE while, for ηr = 0.01, the TKE map is nonuniform and
characterized by small scales fluctuations.

low values of TKE inside the bubbles. In evaluating the results presented in Fig. 9(a), however,
it is important to make an important observation: although the energy content of the bubbles is
rather low, velocity fluctuations are still present inside the bubbles. Indeed, the low values of
TKE in the bubbles obtained for the case ρr = 0.01 and ηr = 1 are due to the low density that
characterizes the bubbles: the prefactor ρ/ρc present in the definition of TKE reduces the values
obtained inside the bubbles. Shifting our focus to the case ηr = 0.01 and ρr = 1 [Fig. 9(b)], we can
appreciate here the presence of many vortical structures characterized by an energy content similar
to that of the carrier phase. Interestingly, the characteristic length scale of these turbulence structures
is much smaller than that of the carrier phase. This observation can be traced back to the smaller
viscosity of the dispersed phase that results in a larger local Reynolds number, as also observed in
other multiphase flow instances [51,70].

Turbulence inside the bubbles is the mechanism that can increase or decrease transfer rates
across the interface [54,71]. To quantify more closely this aspect, we compute the mean value
of the specific turbulent kinetic energy inside the bubbles for all simulated cases, except for the
combined case, and we collect the results in Fig. 10. To better evaluate the contribution of density
and velocity fluctuations in the resulting TKE values, turbulent kinetic energy is evaluated using
the complete definition [Eq. (25)] in Fig. 10(a), while TKE is evaluated considering only the
velocity fluctuations contribution in Fig. 10(b) (i.e., TKE is reported normalized by the local density
contribution ρ/ρc). The mean values of TKE are reported as a function of the density ratio (scale
on the bottom part of the plot), viscosity ratio (scale on the top part of the plot), and Weber number
(full circles for We = 1.5 and empty circles for We = 3.0). We start by analyzing the effects of
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FIG. 10. Mean value of the turbulent kinetic energy (TKE) inside the bubbles. In panel a, TKE is evaluated
using the complete definition of specific TKE (i.e., including the prefactor ρ/ρc) while, in panel b, TKE is
evaluated considering only the velocity contribution (i.e., not considering the prefactor ρ/ρc). For both panels,
a dashed line (We = 1.5) and a continuous line (We = 3.0) are used to show the behavior of TKE as the density
or viscosity ratios are changed. Each value of TKE is marked with a circle (empty for We = 1.5 and filled for
We = 3.0), with a red-color scale for the nonmatched density cases and a blue-color scale for the nonmatched
viscosity cases, while the black color is used for the reference case.

the density and viscosity ratios shown in Fig. 10(a), we can observe two opposite trends: as the
viscosity ratio increases, the mean value of TKE inside the bubbles decreases of about one order of
magnitude while, by opposite, increasing the density ratio, the mean value of TKE inside the bubbles
rapidly increases (of about four orders of magnitude). This behavior reflects the modifications of
the inertial and viscous forces inside the bubbles produced by the different dispersed phase density
and viscosity. As the viscosity ratio is increased from ηr = 0.01 up to ηr = 100 (from left to right),
viscous forces become dominant over inertial forces and thus local Reynolds number decreases. As a
result, for low viscosity ratios, we observe small turbulent structures inside the bubbles characterized
by significative TKE levels, while, for viscosity ratios larger than unity, turbulence structures cannot
be sustained inside the bubbles (larger viscous dissipation) and bubbles are characterized by a
low level of TKE. A similar trend, albeit in a slightly different simulation setup, was reported by
Cano-Lozano et al. [54] that investigated the rise of bubbles in still liquid and observed a reduction
of the velocity gradients for increasing values of the viscosity ratio. On the other hand, increasing
the density ratio from ρr = 0.001 up to ρr = 1, inertial forces become dominant over viscous
forces, the local Reynolds number increases and the bubbles are characterized by larger TKE values.
Interestingly, we observe a much stronger action of the density ratio on the mean value of the bubbles
TKE. Indeed, if we compute the specific turbulent kinetic energy using Eq. (25), the resulting TKE
values directly depend on the bubble density and, as we can see from Fig. 10(a), present results
roughly follow the ρr scaling law reported with a dotted line. However, it is worthwhile observing
that when the smallest density ratio is considered (ρr = 0.001), results start to deviate from the
ρr scaling law: as the density ratio is reduced, we observe a reduction int the magnitude of the
velocity fluctuations of about one order of magnitude. This deviation can be better appreciated
in Fig. 10(b), where TKE values are reported normalized by the prefactor ρ/ρc, so that the
contribution from velocity fluctuations alone can be better appreciated. The magnitude of velocity
fluctuations is roughly constant when considering different density ratios, exception made for the
lowest density ration, ρr = 0.001, thus indicating that the specific TKE scales with the density
ratio. Finally, we can consider the effect of the Weber number: increasing the Weber number, thus
decreasing the surface tension, the TKE is slightly increased for all the cases. This trend can be
attributed to the larger transfer of momentum that occurs when surface tension forces are weaker:
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as the interface becomes more deformable, the modulation effect of the interface becomes weaker
and energy and momentum can be more easily exchanged between the phases. When the surface
tension is reduced, in fact, the bubbles become more deformable and reasonably they are more likely
to contain a greater amount of TKE.

IV. CONCLUSIONS

In this work, we studied the behavior of bubbles in a turbulent channel flow for different values of
the density ratio, viscosity ratio, and Weber number. The investigation is based on direct numerical
simulation of turbulence coupled with a phase-field method. First, we investigated the topology
of the dispersed phase and its modifications. We found that the number of bubbles present in
the channel is strongly influenced by the surface tension value (i.e., by the Weber number), in
accordance with the results of previous studies [14,16,17]. Besides, we observe that an increase of
bubble viscosity with respect to the carrier (i.e., an increase of the viscosity ratio) has an important
stabilizing role and leads to a remarkable increase of the maximum bubble stable diameter and
thus to a decrease of the number of bubbles. By opposite, a reduction of the bubble density (i.e.,
a reduction of the density ratio), does not remarkably affect the dispersed phase topology. Similar
findings are obtained from the analysis of the coalescence and breakage rates: an increase of bubble
viscosity or surface tension (i.e., a decrease of the Weber number) leads to a reduction of the
breakage and coalescence rates. In contrast, a modification of the density ratio has a marginal effect
on the behavior of the breakage and coalescence rates. Second, we studied the surface stretching and
curvature of the bubbles. We observed that these indicators are influenced by all three parameters
investigated. In particular, larger viscosity ratios or lower density ratios or Weber numbers hinder the
stretching of the bubbles and as a result the overall amount of interfacial area obtained is lower (with
respect to the reference matched density and viscosity cases). These observations are also reflected
in the probability density function of the mean curvature: an increase of bubble viscosity, a decrease
of bubble density, or a decrease of the Weber number hinder the formation of ripples and dimples
on the surface of the bubbles and thus high curvature values are less likely to be found. Third, we
evaluated the flow modifications produced by the swarm of bubbles in the background turbulent
flow and in the dispersed phase. From a macroscopic point of view, no significant modifications
are observed in the wall-normal behavior of the mean velocity profiles and only a minor increase
of the flow-rate is observed for all bubble-laden cases with respect to a single-phase flow, in
accordance with previous results [14,16,17]. Finally, as bubbles internal circulation play a key
role in controlling the transport of heat, mass, and momentum through the interface [64,65], we
characterized the mixing in the bubbles by studying the turbulent kinetic energy of the bubbles. We
observe a clear action of density and viscosity in modulating the turbulent kinetic energy of the
bubbles. In particular, a decrease of the bubble density or an increase of the bubble viscosity lead to
a remarkable decrease of the turbulent kinetic energy levels in the bubbles.
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APPENDIX A: DETECTION OF COALESCENCE AND BREAKAGE EVENTS

In the simulations presented in the manuscript, topological changes are implicitly described
by the phase-field method and thus no closure models are required to describe coalescence and
breakage events. To compute the coalescence and breakage rates, we use an algorithm that relies on
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FIG. 11. Possible cases considered for the algorithm: panel (a) corresponds to a translation, panel (b) to a
breakage, and panel (c) to a coalescence. Red bubbles are at the current time step (n), while blue bubbles are at
the next time step available (n + 1). Semitransparent bubbles show the estimated position, xn+1

i,est . Arrows show
the trajectory of the bubbles, �T un

i .

the analysis of bubbles trajectories and bubbles volumes to identify topological modifications of the
interface.

The input data needed are the position of the center of mass of each droplet, identified by the
subscript i, at the current time step, xn

i , the velocity of the center of mass of each droplet at the
current time step, un

i , and the position of the center of mass of each droplet at the following time
step, xn+1

i . These quantities are calculated for each droplet i and are defined as

xn
i = 1

V n
i

∫
V n

i

xn
i dV , (A1)

un
i = 1

V n
i

∫
V n

i

un
i dV , (A2)

xn+1
i = 1

V n+1
i

∫
V n+1

i

xn+1
i dV, (A3)

where the integral is computed over the volume Vi of each droplet. The apices n and n + 1 identify
the current and the following time step, respectively; the elapsed time between the two time steps is
�T . In the first step the estimated position of each droplet at the following time step is computed as

xn+1
est,i = xn

i + �T un
i . (A4)

To better explain the technique employed to detect translations, breakages, and coalescences some
examples have been reported in Fig. 11. For each droplet we compute the estimated position at the
following time step xn+1

est,i , and we search for the closest bubble at the following time step; at this
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step some droplets at the following time step may be left out (they are not the closest droplet to any
estimated droplet position). This step corresponds to Fig. 11(a): the estimated position of droplet Tn

is calculated (red semitransparent bubble) and the closest bubble at the following time step is found
out (droplet Tn+1). In the following, stage breakage and coalescence events have to be sorted out
from these data.

A breakage is detected whenever a droplet in xn+1 has no parent droplet: according to Fig. 11(b)
bubble Bn+1,2 has no parent bubble, thus it originated from a breakage event. Once a breakage event
is identified, the algorithm searches for the the closest droplet to the bubble Bn+1,2 at time step n + 1;
in this case droplet Bn+1,1 is found. It is then assumed that droplet Bn (whose estimated position is
the closest to droplet Bn+1,1) breaks apart into droplets Bn+1,1 and Bn+1,2. Once all breakages have
been detected, the algorithm looks for coalescence events. A coalescence event is detected whenever
two separate droplets at time step n are assigned to the same droplet at time step n + 1. In particular,
referring to Fig. 11(c) bubbles Cn

i and Cn
j are both assigned to bubble Cn+1

i , as it is the closest one to
their estimated position. So far, only kinematic criteria have been used to determine the trajectory
and eventual interactions (coalescences and breakages) of each bubble. Once all the trajectories at
the present time step have been determined, the quality index and the balance are computed (see
the flow chart of the algorithm, Fig. 12). In particular, the quality index, Q, is initialized at the
beginning of the time step to the number of droplets at the current time step, Nn; every time volume
is not conserved (within a certain small threshold) in all the translation, breakages and coalescences,
the quality index is reduced by one. At the end of the time step, it is normalized by Nn. Recalling
the examples of Fig. 11, three checks on the volume conservation are performed depending on the
type of event: ⎧⎨

⎩
VTn = VTn+1 ± ε for translations,
VBn = VBn+1,1 + VBn+1,2 ± ε for breakages,
VCn,1 + VCn,2 = VCn+1 ± ε for coalescences.

(A5)

To account for numerical errors that could occur in the calculation of the volume of each bubble
(that would strongly reduce the quality index of the matching), a small tolerance ε (of the order of
few percents of the volume of parent droplet) is used when checking for volume conservation.

The second parameter controlling the quality of the calculated trajectories is the balance, B. The
total number of bubbles at each time step is known: Nn at the current time step and Nn+1 at the
following one available. Once the number of breakage and coalescence events is known the balance
can be calculated as

B = Nn+1 − (Nn + Nb − Nc), (A6)

where B and Nc are, respectively, the number of breakage and coalescence events that occur between
time steps n and n + 1. The number of droplets at the current time step, Nn, is increased whenever
a droplet undergoes breakage into two bubbles and is decreased whenever two bubbles coalesce
into one bubble. Here we make the assumption that all breakages are binary breakages and all
coalescences involve only two parent droplets at a time. Thus, considering these two parameters, a
fair matching of the trajectories is obtained with a quality index Q → 1 and a balance B = 0. This
means that the volume is always matched (quality index never or rarely reduced) and no bubble is
left out (balance equal to zero).

Finally, once known the number of coalescence and breakage rates that occur between each time
step n and n + 1, the coalescence and breakage rates, Ṅc and Ṅb, can be computed by counting the
overall number of coalescence or breakage occurring in the temporal window �t+. Note that the
temporal window used to track the trajectories of the bubbles is smaller than the temporal window
used to compute the rates. The present algorithm considers only binary breakages and coalescences
events. This assumption is not particularly limiting, as binary breakages and coalescences have the
highest probability of occurrence [72–74]. This assumption is also confirmed by the simulations
performed: the quality index never reduces below 0.85 (so the volume is matched for at least 85%
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FIG. 12. Flow chart of the algorithm used to detect breakage and coalescence events in the post-processing
of the simulations.

of all the translation, breakage and coalescence events) and at most few droplets are left unmatched
(the balance is almost zero).

APPENDIX B: INFLUENCE OF GRID RESOLUTION ON COALESCENCE AND
BREAKAGE RATES

To evaluate the influence of grid resolution on coalescence and breakage rates, we perform
two additional simulations: one with a coarser grid resolution (Nx × Ny × Nz = 256 × 128 × 257)
and one with a more refined grid resolution (Nx × Ny × Nz = 1024 × 512 × 1025). The three
simulations consider the same given case: We = 3.00, ρr = 1.000, and ηr = 1.00. As the grid
resolution is changed, the Cahn number has also been adjusted accordingly (from Ch = 0.04 for
the coarser grid down to Ch = 0.01 for the finer grid). We compare the coalescence and breakage
rates obtained from the three different grid resolutions in Fig. 13. We can observe that for all the
grid resolutions considered, the trend reported is similar and for all simulations, after an initial
transient, both rates set to an equal value (in magnitude). Analyzing the value of the rates obtained,
we notice that some differences are present between the coarser grid resolution (triangles) and
the intermediate grid resolution (circles). However, these differences become marginal when the
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FIG. 13. Coalescence and breakage rates obtained using three different grid resolutions: Nx × Ny × Nz =
256 × 128 × 257 (triangles), Nx × Ny × Nz = 512 × 256 × 513 (circles) and Nx × Ny × Nz = 1024 × 512 ×
1025 (squares). The results refer to the case We = 3.0, ρr = 1.000, and ηr = 1.00.

intermediate grid resolution (circles) and the refined grid (squares) results are compared. Overall,
present results suggest that the mesh employed is sufficient to investigate breakage and coalescence
dynamics.
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