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Experimental assessment of mixing layer scaling
laws in Rayleigh-Taylor instability
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We assess experimentally the scaling laws that characterize the mixing region produced
by the Rayleigh-Taylor instability in a confined porous medium. In particular, we wish to
assess experimentally the existence of a superlinear scaling for the growth of the mixing
region, which was observed in recent two-dimensional simulations. To this purpose, we use
a Hele-Shaw cell. The flow configuration consists of a heavy fluid layer overlying a lighter
fluid layer, initially separated by a horizontal, flat interface. When small perturbations of
concentration and velocity fields occur at the interface, convective mixing is eventually
produced: Perturbations grow and evolve into large finger-like convective structures that
control the transition from the initial diffusion-dominated phase of the flow to the sub-
sequent convection-dominated phase. As the flow evolves, diffusion acts to reduce local
concentration gradients across the interface of the fingers. When the gradients become
sufficiently small, the system attains a stablystratified state and diffusion is again the
dominant mixing mechanisms. We employ an optical method to obtain high-resolution
measurements of the density fields, and we perform experiments for values of the Rayleigh-
Darcy number (i.e., the ratio between convection and diffusion) sufficiently large to exhibit
all the flow phases just described, which we characterize via the mixing length, a measure
of the extension of the mixing region. We are able to confirm that the growth of the mixing
length during the convection-dominated phase follows the superlinear scaling predicted by
previous simulations.

DOI: 10.1103/PhysRevFluids.7.093503

I. INTRODUCTION

When two miscible fluids with different densities move under the action of gravity the relative
acceleration between the fluids generates an instability at the separation interface. This instability,
called Rayleigh-Taylor instability [1,2], grows in time and leads to the formation of convective flow
structures of heavy fluid moving downward and of lighter fluid penetrating upward. The dynamics
of the flow is first controlled by diffusion, which is responsible for the thickening of the interface,
initially flat and horizontal. Diffusion favors mixing by increasing the length of the separation
interface and gives rise to a buoyancy-driven flow by inducing local gradients of concentration.
Afterwards, when the flow evolution is controlled by convection, instabilities grow and merge into
large and more stable structures. The flow persists until a stable configuration is achieved in which
the density distribution is ultimately uniform over the entire domain. Because of its relevance in
applications characterized by buoyancy-driven flows, the Rayleigh-Taylor mixing process has been
widely investigated when the instability leads to a turbulent flow dominated by convection [3].
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In contrast, the evolution of the process within porous domains is far less explored (see [4–6]
and references therein) in spite of its paramount importance in many geophysical and industrial
situations, including water contamination [7,8], ice formation [9,10], salinity inversion [11,12],
petroleum migration [13], and carbon sequestration [14–18].

In porous media flows, viscosity dominates over inertia at the pore scale and the momentum
transport can be described by the Darcy law [19]. In this limit, a wavy and evolving interface leads
to the formation of characteristic vertical, elongated structures that are usually called fingers. The
lateral spreading (hence, the width or wavelength) and the vertical growth (hence, the amplitude)
of these fingers is controlled by the interplay between diffusion and convection. The resulting time
evolution of the fingers can be characterized by the mixing length, which is defined as the tip-to-rear
finger length, and provides a macroscopic measure of the vertical extension of the mixing region.
The evolution of porous Rayleigh-Taylor systems has been investigated with solutes (or chemicals)
having different properties. With respect to the properties of the species involved, possible flow
configurations can be grouped in three main categories: presence of one chemical, presence of two
chemicals with different diffusion coefficients, and presence two species that can chemically react
[20]. With the aid of numerical simulations and experiments, Lemaigre et al. [21] observed that
in absence of chemical reactions the mixing region grows symmetrically with respect to the initial
position of the interface: The growth occurs at a velocity that depends on the nature of the fluids
involved, i.e., it is controlled by the diffusivity of the species and by the initial density difference
[22]. The evolution of the system is different in presence of chemical reactions and moderate density
contrast. The flow pattern develops in an asymmetric fashion [21], and chemical reactions act to
stabilize the flow when the product is lighter than the reactants [23]: A local decrease of density
induced by the fact that the product is less dense creates a nonmonotonic density profile [24] with a
minimum that hinders the penetration of the fingers into the bulk of the unmixed region. In contrast,
a destabilizing effect can be obtained when the product provides a sufficiently larger density increase
with respect to both reactants [25]. Chemical reactions can also induce secondary instabilities in
time [20], for instance, when a sufficient amount of chemical reaction product triggers the fingered
sinking of denser in the less dense reactant [26]. In summary, reactions can stabilize or destabilize
convection, but in all cases, they increase the mixing rate within the host phase.

In this work, we will refer to the simplest cases, consisting of one chemical specie, i.e., absence of
double diffusion and chemical reactions, which produces a symmetric growth of the mixing region.
According to theoretical scaling arguments, the mixing length (that quantifies the extension of the
mixing region) is expected to evolve linearly in time, i.e., with scaling exponent equal to 1, as a
result of the balance between buoyancy-induced convection and dissipation due to diffusion and
viscosity. However, recent two-dimensional simulations of Darcy flows in porous media [4,5] have
shown that the growth of the mixing length is superlinear, with scaling exponent equal to 1.2.

While a simplified phenomenological model to estimate the amount of mixing induced by a
Rayleigh-Taylor instability has been proposed recently [4], the reasons for the superlinear mixing
length growth, not observed in the three-dimensional case [5], are yet unclear. In an effort to shed
light on these reasons, in this work we provide a first experimental assessment of the superlinear
growth, based on accurate measurements of the scaling exponent. We use a Hele-Shaw apparatus,
which consists of two parallel transparent plates separated by a narrow gap. The density difference
between the fluid layers is induced by the presence of a solute. For sufficiently small fluid velocity
within the gap, a quasi-two-dimensional Poiseuille flow establishes between the plates. This flow
is known to approximate closely the Darcy-type flow observed in ideal porous media when the
velocity at which the solute diffuses in the direction normal to the plates is much higher than the
vertical advective velocity [27,28].

Since the pioneering work of Saffman and Taylor [29], the Hele-Shaw apparatus has been widely
used to mimic the behavior of two-dimensional Darcy flows. However, time-dependent and highly
resolved measurements are still challenging in the Rayleigh-Taylor configuration. This is mainly
due to the experimental limitations associated with the initialization of the system, which requires
to start the flow from a flat horizontal interface between the fluids. The experimental measurements
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presented in this work have been performed taking care to achieve proper initial condition and
minimizing the local perturbations of concentration and velocity fields, which eventually lead to
mixing. At the same time, measurements have been performed with a high resolution in space
and time, to ensure an accurate reconstruction of the concentration field, and in domains that
are relatively large compared to previous literature results and extend the measurements range.
The fluids and the cell have been designed to allow a direct comparison with previous numerical
simulations [4,30]. We analyzed the evolution of the mixing length and the wave number power
spectra (i.e., the finger size). Concerning the mixing length, we observe the same superlinear
behavior predicted by the simulations [4,5], and we provide an explanation for this finding in terms
of finite size effects of the flow domain. With respect to the fingers evolution, we find again that
the measured number of fingers is in very good agreement with that predicted numerically [30].
Overall, we are able to assess successfully the scaling relations provided by numerical simulations.
We believe that this result can open new perspectives for future modeling and parametrization of
convective flow in confined porous media.

This paper is organized as follows. In Sec. II, we formulate the problem, describe the experimen-
tal setup and recall the assumptions underlying the referenced numerical simulations. The results
are presented in Sec. III both in qualitative (flow phenomenology) and quantitative (mixing length
and wave numbers) terms. Finally, conclusions are discussed in Sec. IV.

II. METHODOLOGY

Our experiments were specifically designed to mimic the mixing process produced by the
Rayleigh-Taylor instability in a two-dimensional, saturated, and confined porous medium. In ad-
dition, they were carried out imposing a linear dependency of density and solute concentration, and
ensuring the occurrence of a Darcy-type flow to allow direct comparison with previous numerical
simulations [4,30].

A. Problem formulation

The process of convective dissolution is studied via the Rayleigh-Taylor instability, correspond-
ing to two layers of fluid of different density, initially in an unstable configuration and subject
to relative acceleration under the action of gravity [3]. The process is simulated in the frame of
porous media flows, mimicked with the aid of a Hele-Shaw cell, i.e., two parallel and transparent
plates of height H separated by a narrow gap b, as shown in Fig. 1(a). The cell is initially saturated
with two miscible fluids having same viscosity (μ), arranged such that the heavy fluid (density
ρM) lies on top of the lighter one (density ρ0), as sketched in Fig. 1(b). The maximum density
difference within the system is �ρ = ρM − ρ0 and is induced by the presence of a solute, namely
potassium permanganate (KMnO4). The amount of solute is quantified by its concentration C, which
is maximum at the upper layer (C = CM) and minimum at the lower layer (C = 0).

The evolution of the system is controlled by the contributions of buoyancy, which tends to bring
the fluids in a stable configuration, and it is associated with the buoyancy velocity U , and diffusion,
which acts to reduce local concentration gradients and to increase the mixing in the domain, and it is
quantified by the diffusion coefficient D. The relative importance of these two contributions can be
estimated by the Rayleigh-Darcy number, which represents the governing dimensionless parameter
of the system, and is defined as

Ra = UH

φD
= H

�
, (1)

with

U = g�ρk

μ
, � = φD

U
, (2)
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FIG. 1. (a) Experimental setup. The Hele-Shaw cell is shown, with explicit indication of the position of
the connection gates (top, bottom, left, and right, indicated as T, B, L, and R, respectively), sCMOS camera
and backlight illumination. Fluids are supplied to the cell through a system (sketched in Fig. 2) consisting of a
pump, pipes, and valves. The cell is aligned in the vertical direction, namely parallel to the acceleration due to
gravity, g. (b) Sketch of the experimental domain with explicit indication of the boundary conditions (no flux
of mass or solute through the walls). The reference frame (x, z) as well as the initial position of the interface
(red dashed line) are indicated, with the heavy fluid (density ρM , concentration C = CM ) initially lying on top
of the lighter fluid (ρ0, C = 0). The background field consists of one of the images collected and provides a
qualitative picture of the flow for the present physical configuration.

the buoyancy velocity and the length scale over which advection and diffusion balance, respectively
[31]. The buoyancy velocity, is defined here as the combination of buoyancy (controlled by the
acceleration due to gravity g, density contrast �ρ, and medium permeability k) and dissipation
(controlled by fluid viscosity, μ). The length scale � is particularly important when a comparison
among systems having different Rayleigh numbers is required. Permeability k and porosity φ

are the characteristic properties of the porous medium mimicked by the Hele-Shaw cell. In our
experiments, k = b2/12 and φ = 1. In order to prevent potential three-dimensional effects we
followed the indications emerged in the theoretical paper by Letelier et al. [27] and later confirmed
experimentally by De Paoli et al. [28] and Alipour et al. [32]. We introduce the anisotropy ratio,
which is an additional parameter describing the geometry of the cell, defined as

ε = b√
12H

, (3)

and we can use this parameter in combination with the Rayleigh number to ensure that the flow will
be of the Darcy type if the condition ε2Ra → 0 is met. In our study, ε ≈ 10−3 and 4.4 × 10−3 <

ε2Ra < 5.4 × 10−2, indicating that we are very close to the theoretical limit corresponding to the
Darcy-type regime.

Finally, we are interested in examining a system with boundaries that are impermeable to both
fluid and solute. Hence, the following conditions are imposed along the cell walls:

u · n = 0,
∂C

∂n
= 0, (4)

with n the unit vector perpendicular to the boundary.
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FIG. 2. Circuital scheme of the experimental setup employed to obtain the desired initial conditions
[33–35]. A pumping system (peristaltic pump, Watson-Marlow 502 S) is used to inject water (density ρ0) and
solution (ρM ) from two separate containers, through gates B and T, respectively. To set up the initial condition,
the valves are placed in “loading mode” and the exceeding solution is collected from gates L and R into a
residue container. The flow through the gates, which is used to modulate the shape of the interface between the
two fluid layers, is controlled by a regulation valve. Finally, when the initial condition is achieved, the system
is set in “experiment mode” and the cell is bypassed by the fluids, which are channeled to the residue container.

B. Experimental setup

We used a transparent Hele-Shaw cell [polymethyl methacrylate (PMMA) thickness 8 mm]. The
wall-normal depth of the fluid layer is constant for all the experiments performed and corresponds to
the value b = 300 μm. An impermeable rubber (Klinger-sil C-4400, thickness 300 μm), is placed
between the two acrylic plates, and is used to seal the region containing the fluid but also as a spacer
between the cells surfaces. The sealing is laser cut so that the domain investigated is a square of
side H = 87 mm. On each side, the midpoints are connected to pipes that allow the cell filling
and emptying process. The transparent sheets and the gasket are held in place by an outer metal
frame and a set of 10 bolts, which are tightened with the same torque, to prevent the formation of
a nonuniform film thickness. The experimental apparatus is represented in Fig. 1(a). Backlighting
is provided to the cell by a tunable LED system (150 lamps covered by a diffusing glass). Finally,
the evolution of the flow is recorded by a digital sCMOS camera (FlowSense USB 2M-165, Dantec
Dynamics). The imaging system and settings will be described in detail in Sec. II C. Next, we
describe the fluids adopted and the processes of concentration reconstruction.

The initial condition of the experiments is an unstable configuration in which a layer of heavy
fluid sits on top of a layer of lighter fluid, these layers being initially unmixed. To realize this
challenging configuration, we employ a circuit made of a pump, valves, and pipes, represented in
Fig. 2. This approach has already been used in previous studies (see [33–35]). The entire system is
initially filled with degassed water, to minimize the formation of bubbles. Then the cell is filled with
the working fluids, which are driven by a peristaltic pump (Watson-Marlow 502 S) with the valves in
“loading mode.” In this configuration, the pump is able to inject degassed water and a homogeneous
solution of KMnO4 (concentration CM) from two separated containers into the cell. Specifically, the
solution and the water are injected from the top and bottom gates of the cell, indicated with (T) and
(B) in Fig. 2. In this configuration, the valves connected to the left and right gates of the cell (L
and R, in Fig. 2) are both open and allow the mixture of water and solution to leave the cell and be
disposed in a residue container. Therefore, a flow from the top and bottom walls towards the left or
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right wall takes place, as indicated by the red and black arrows in Fig. 2. As a result, a sharp interface
forms between the two liquid layers, while the vertical concentration gradient makes the fluid-fluid
diffusive interface smoother. The competition between horizontal advection and vertical diffusion
determines the interface thickness, which can be controlled by the flow rate (see Appendix C for
further details on the interface thickness). A regulation valve is employed to balance the flow rate
between the top (T) and bottom (B) gates to achieve a straight interface. When the initial condition
is set, the valves are placed in “experiment mode,” and the cell is bypassed by the inflow. The
buoyancy-driven flow takes place and image acquisition starts.

The two fluids are fully miscible but have different density. Specifically, we used water for the
lower (i.e., lighter) fluid layer and an aqueous solution of potassium permanganate (KMnO4) for
the upper (i.e., denser) fluid layer. While water density is nearly constant among the experiments (it
is dependent only on temperature), the density of the KMnO4 solution can be varied by changing
the solute concentration. We consider the coordinate system sketched in Fig. 1(b), where x and
z are the spatial coordinates in horizontal and vertical direction, respectively. In this reference
frame, the initial condition can be expressed in terms of the solute concentration as follows:
C(x, z � H/2, t = 0) = 0 (lower half of the cell) and C(x, z � H/2, t = 0) = CM (upper half of the
cell), with CM the initial concentration of the KMnO4 solution (upper fluid layer). We consider that
the dynamic viscosity, μ = 9.2 × 10−4 Pa s, is constant and independent of the solute concentration
[36]. Similarly, we assume that the diffusion coefficient is not sensibly affected by either the solute
concentration or the local values of velocity D = 1.65 × 10−9 m2/s. This value has been measured
and reported in literature, and it is in excellent agreement with theoretical predictions based on
electrical neutrality of a simple salt at infinite dilution (see [36] and references therein). The
working fluids have been chosen because of the linear dependency of the density that characterizes
the resulting solution with respect to the solute concentration. This feature is essential to make
reliable comparisons between experiments and simulations, which is one of the main objectives of
the present work.

The density of an aqueous KMnO4 solution can be written as a function of the fluid temperature,
ϑ , the water density at temperature ϑ , ρ0, and the KMnO4 concentration, C [37]. Please note
that also the water density can be computed from the temperature of the fluid, and therefore the
parameters that need to be measured to determine the solution density are ϑ (which we assume
to be uniform over the cell and constant during the experiment) and the local value of C (inferred
from optical measurements). The density difference between the two fluid layers is �ρ = ρM − ρ0,
where ρM = ρ(C = CM ) and CM are determined prior to each experiment. At a given temperature,
the density of the mixture obtained from empirical correlations [37] is well described by a function
of C and C3/2. However, within the range of mass fraction considered here, this correlation is well
approximated by a linear function of the solute concentration (see Appendix A) as

ρ = ρM

[
1 + �ρ

ρMCM
(C − CM )

]
. (5)

This equation complies with the assumption of linear density-concentration dependency that is typ-
ically made in simulations, thus ensuring a reliable comparison. Measurements of the concentration
field are inferred from the transmitted light intensities, this process being described in detail in the
next section.

C. Experimental procedure and quantification of uncertainties

The results discussed in this paper are based on measurements of the time-dependent concentra-
tion field of the solute, C(x, z, t ), inside the Hele-Shaw cell. To perform these measurements, we
follow the method introduced by Slim et al. [36] and later used in a number of studies [28,32,38,39].
Optical measurements of light intensity distribution, I (x, z), are obtained with the aid of a sCMOS
camera (FlowSense USB 2M-165, Dantec Dynamics, exposure time used 1 ms, resolution 2 Mpx,
frame rate 0.35 to 5 Hz, depending on Ra). The measurements require a calibration process, briefly
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FIG. 3. Reconstruction of the concentration field. (a) Raw image consists of a light intensity distribution, I .
(b) Upon processing to remove light intensity noises, scratches and nonuniformities of backlight illumination
(see the Supplemental Material [40] for further details), the dimensionless concentration field is obtained. To
visualize the interface between the two fluids, corresponding to the fingers, three isocontours of normalized
concentration are shown, corresponding to C∗ = C/CM = 0.3 (blue), 0.5 (red), and 0.7 (green).

described in Appendix B, in which the value of light intensity is associated with the value of solute
concentration. The grayscale images so obtained, an example of which is reported in Fig. 3(a),
are preprocessed to reduce the effect of nonuniformities in the distribution of the light intensity
over the cell [40]). Finally, since the relationship between mass fraction and solute concentration is
known [see Fig. 9(b) in Appendix B], the reconstruction of the concentration and density fields is
performed. An example of this reconstruction is provided in Fig. 3(b).

An important issue that must be assessed is the uncertainty on the measured value of the Rayleigh
number, Ra, defined as in Eq. (1). The uncertainty value, δRa, is obtained from propagation-of-error
analysis [41] and reads as

δRa

Ra
=

[(
δg

g

)2

+
(

δ�ρ

�ρ

)2

+
(

2
δb

b

)2

+
(

δH

H

)2

+
(

δμ

μ

)2

+
(

δD

D

)2]1/2

, (6)

where δ• indicates the uncertainty associated to the quantity • that represents each of the variables
appearing in Eq. (1). We assume that the properties μ, D and g are estimated with constant relative
uncertainty equal to 1%. The uncertainty on the domain height, δH , is assumed to be 0.5 mm,
primarily due to a possible misplacement of the sealing on the cell rather than to the cutting
precision. The accuracy on the gap thickness is assumed to be δb = 10 μm. The uncertainties just
introduced are common to all the experiments. In contrast, the uncertainty of the density difference
δ�ρ is a function of the Rayleigh number, being derived from Eq. (A1) as

δ�ρ =
√√√√(

∂ f
∂ϑ

δϑ
)2 + (

∂ f
∂C ρδω

)2

1 − (
ω

∂ f
∂C

)2 , (7)

where δϑ is given by the instrument (0.5 ◦C). To derive Eq. (7), the uncertainty on the concentration
must be known. This is computed from Eq. (A5) as

δC =
√

ω2(δρ)2 + ρ2(δω)2. (8)

The mass fraction, ω, defined as the ratio between the mass of solute and the mass of solution, is
determined measuring first the mass of water (mw) and then the overall mass of solution (msol), i.e.,
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TABLE I. List of flow parameters, solution properties, and corresponding uncertainties. Different re-
alizations have been performed for all the Rayleigh numbers, Ra. Fluid temperature (ϑ) is reported, as
well as solution mass fraction (ωM ), concentration (CM ), and corresponding density difference (�ρ). The
dimensions of the cell are kept constant for all the experiments [H × H , with H = (87 ± 0.5) mm, thickness
b = (300 ± 10) μm]. Fluid properties are discussed in Sec. II B.

ϑ CM �ρ

E no. [◦C] ωM [kg/m3] [kg/m3] Ra

E1 24.0 ± 0.5 (1.41 ± 0.006) × 10−3 1.427 ± 0.006 1.132 ± 0.002 (4.39 ± 0.08) × 103

E2 19.0 ± 0.5 (2.30 ± 0.006) × 10−3 2.316 ± 0.006 1.805 ± 0.002 (7.00 ± 0.12) × 103

E3 21.0 ± 0.5 (3.94 ± 0.006) × 10−3 3.949 ± 0.007 3.099 ± 0.004 (1.20 ± 0.02) × 104

E4 23.5 ± 0.5 (6.42 ± 0.006) × 10−3 6.441 ± 0.008 5.101 ± 0.008 (1.98 ± 0.03) × 104

E5 21.0 ± 0.5 (1.08 ± 0.001) × 10−2 10.824 ± 0.010 8.495 ± 0.013 (3.30 ± 0.06) × 104

E6 21.0 ± 0.5 (1.76 ± 0.001) × 10−2 17.828 ± 0.015 13.996 ± 0.025 (5.43 ± 0.09) × 104

ω = (msol − mw)/msol. As a result, the uncertainty δω reads as

δω

ω
= 1 − ω

ω

√(
δmsol

msol

)2

+
(

δmw

mw

)2

, (9)

with δmw = δmsol = 0.001 g (high-precision scale, Sartorius Acculab Atilon model ATL-423-I,
±0.001 g). The list of the solution properties, flow parameters, and corresponding uncertainties
is reported in Table I.

D. Numerical simulations and dimensionless variables

To assess the mixing layer scaling laws, we wish to make a direct comparison of the present
experimental results with direct numerical simulations of convection in two-dimensional porous
media [4,30]. We perform this comparison in the range 347 � Ra � 19 953, for which a very good
overlap of the governing parameters exists between experiments and simulations. To make the paper
self-contained, we recall next the governing equations and the numerical details.

An isotropic and homogeneous vertical porous slab with permeability k and porosity φ is
considered. The porous domain is initially saturated with two miscible fluids having same viscosity
(μ) but different density, arranged such that the heavy fluid (density ρM) tops the lighter one (density
ρ0). This unstable configuration replicates exactly the one sketched in Fig. 1(b). As done in the
experiments, the density difference is induced by the presence of a solute, with maximum solute
concentration C = CM in the upper layer and minimum solute concentration C = 0 in the lower
layer. The flow is assumed to be incompressible and controlled by the Darcy’s law:

∂u

∂x
+ ∂w

∂z
= 0, (10)

μ

k
u = −∂ p

∂x
,

μ

k
w = −∂ p

∂z
− ρg, (11)

where u and w are the horizontal (x) and vertical (z) velocity components, while p and ρ are the
local pressure and density, respectively. We consider that the Oberbeck-Boussinesq approximation
applies: This is a reasonable assumption for geophysical problems such as geological carbon dioxide
sequestration [42]. In addition, we consider that the density of the mixture is a linear function of the
solute concentration C [see Eq. (5)], and that the following transport equation for C holds:

φ
∂C

∂t
+ u

∂C

∂x
+ w

∂C

∂z
= φD

(
∂2C

∂x2
+ ∂2C

∂z2

)
, (12)

with t the time and D the solute diffusivity, which we assume to be constant.

093503-8



EXPERIMENTAL ASSESSMENT OF MIXING LAYER …

To make Eqs. (10)–(12) dimensionless, we use the buoyancy velocity U and the length scale �,
defined as in Eq. (2). In addition, the following dimensionless variables are introduced [31,43,44]:

p∗ = p

�ρMg�
, C∗ = C

CM
, t∗ = U

φ�
t . (13)

The resulting governing equations in dimensionless form read as

∂u∗

∂x∗ + ∂w∗

∂z∗ = 0, (14)

u∗ = −∂P∗

∂x∗ , w∗ = −∂P∗

∂z∗ − C∗, (15)

∂C∗

∂t∗ + u∗ ∂C∗

∂x∗ + w∗ ∂C∗

∂z∗ = ∂2C∗

∂x∗2
+ ∂2C∗

∂z∗2
, (16)

where the asterisk superscript indicates dimensionless variables, P∗ = p∗ + z∗(ρM/�ρ − 1) is the
reduced pressure and �ρ is the density difference between the upper and the lower fluid layers.

The controlling parameter of the present system is the Rayleigh-Darcy number Ra, defined as
in Eq. (1). Unlike the Hele-Shaw experiments, in which the geometry of the cell is characterized
by the anisotropy ratio, two-dimensional Darcy simulations do not need additional dimensionless
parameters: The Rayleigh-Darcy number describes completely the fluid properties (�ρ,μ, D), the
porous medium properties (k, φ) and the domain size (H). Although not explicitly appearing in
the governing Eqs. (14)–(16), Ra enters the picture as the dimensionless height of the domain.
Impermeable boundary conditions (i.e., no-flux) are imposed for both the fluid and the solute at the
top and bottom horizontal boundaries, whereas periodicity is applied at the side boundaries (along
x). In dimensionless form, these boundary conditions read as

w∗ = 0,
∂C∗

∂z∗ = 0 for z∗ = 0 and z∗ = Ra. (17)

The set of equations (14)–(16) has been discretized numerically using a Chebyshev-Tau method.
We refer to [4,30,43,45] for further details on the flow solver.

III. RESULTS

The comparison of the experimental results against numerical simulations is focused on the
evolution of the mixing length and on the analysis of the wave number power spectra. These
spectra are obtained by making a Fourier transform of the instantaneous concentration field and
provide a robust characterization of the finger size, as this size can be associated to the wave
number at which the spectra exhibit a peak. We consider a wide range of Rayleigh numbers:
4.39 × 103 � Ra � 5.43 × 104. We refer to Table I for the experimental mass fraction and density
difference values used to obtain these Ra. Above the upper value Ramax = 5.43 × 104, the density
difference between the KMnO4-rich solution (heavy fluid) and water (light fluid) induces large
vertical velocities, and the flow is affected by non-Darcy effects [27,28]. For lower values of �ρ,
in contrast, the initial condition is hard to achieve and the duration of the experiments increases,
leading to higher chances of inducing density perturbations in the cell from the side and horizontal
channels (L, R, T, B in Fig. 1). In the following, we describe the experimental results in terms
of flow phenomenology (Sec. III A), time evolution of the mixing length (Sec. III B) and wave
numbers (Sec. III C), comparing vis-à-vis experimental observations against numerical simulations
[4,30]. The data sets analyzed in the present study have been deposited in [46].

A. Flow phenomenology

To analyze in detail the flow phenomenology, we report in Fig. 4 the time-dependent dimen-
sionless concentration field (C∗) obtained experimentally [Figs. 4(a)–4(d)] and numerically [4]
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FIG. 4. Snapshots of the dimensionless concentration field obtained experimentally (a)–(d) and numeri-
cally (e)–(h). The experiment (E4 in Table I, Ra = 19 789) is compared vis-à-vis against numerical simulations
performed at Ra = 19 953 by De Paoli et al. [4]. The dimensionless time instants (t∗) at which the fields refer
are indicated on top of each panel. We remark that the experiments are realized in a square geometry, whereas
the simulations are performed in wider domains (aspect ratio π/2). Therefore, for better comparison, only
a portion of the numerical domain having unitary aspect ratio is reported. The desired initial position of the
interface (located at z = H/2, i.e., z∗ = Ra/2) is also shown as a dashed black line. See also Movie S1 in the
Supplemental Material [40] for a comparison of the time-dependent evolution of the concentration fields in the
experiment and in the simulation.

[Figs. 4(e)–4(h)]. The experiment (E4 in Table I, Ra = 19 789) is compared against numerical
simulations performed at similar Rayleigh number, Ra = 19 953: We consider this value because
it is large enough to observe all the main phases of the mixing process for a significant amount of
time. On top of each panel, the dimensionless time instants (t∗) at which the fields are taken are
provided.

The concentration field is initially in an unstable configuration [Figs. 4(a) and 4(e)] with the
heavy fluid characterized by the dimensionless concentration C∗ = 1 lying on top of the lighter one
(C∗ = 0). The initial position of the interface, indicated here with the dashed line at z∗ = Ra/2, is
initially flat and horizontal. Achieving such a configuration in the experiment is very difficult, and
some discrepancy, though not apparent, always exists between the actual fluid-fluid interface and
the desired interface. This is visible for instance in Fig. 4(a), where the upper fluid layer seems
to be slightly inclined with respect to the horizontal dashed line. In the experiments, the flow
is initially triggered by perturbations of the local density and velocity fields. Indeed, to set the
initial flow configuration and generate the fluid-fluid interface, some fluid is removed from the side
channels and simultaneously injected from the channels at the horizontal boundaries (see Sec. II C
for a thorough description of this process). As a result, the fluid will not be initially still and will
be partially affected by the flow circulations induced by the procedure adopted to set the initial
condition. The situation is completely controllable in the simulations, where the interface starts
as perfectly flat and is made unstable by adding a perturbation directly to the concentration field
[Fig. 4(e)]. The amplitude of the perturbation considered, however, is crucial in determining the
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onset of the instability [30], whereas the late stage dynamics are not sensitive to this parameter. In
the present study, we considered simulations in which the perturbations applied to the dimensionless
concentration field have amplitude 10−3.

The flow phenomenology associated with the mixing process can be summarized as follows.
The mechanism of diffusion is initially responsible for the flow evolution [Figs. 4(a) and 4(e)].
Afterwards, the interfacial layer thickens and, due to the unstable density profile, finger-like
structures form. These fingers are controlled by the interplay of convection, which makes them
grow vertically, and diffusion, which reduces the horizontal concentration gradients and promotes
mixing [35]. During this intermediate stage [Figs. 4(b) and 4(c), 4(f) and 4(g)], the fingers grow
symmetrically with respect to the domain centerline, and eventually merge. Indeed, we observe
that the number of fingers reduces from t∗ = 0.68 × 104 [Figs. 4(b) and 4(f)] to t∗ = 1.57 × 104

[Figs. 4(c) and 4(g)]. We anticipate here that this dynamics is quantitatively confirmed by the wave
number measurements reported in Sec. III C. At a later stage [Figs. 4(d) and 4(h)], the number of
fingers does not increase further. Eventually, the strength of convection diminishes and the flow
evolution is controlled again by diffusion. In this phase (not shown here), the system has achieved
a stable configuration in which the average concentration in the lower layer is higher than in the
upper layer [4]. This regime, usually referred to as shutdown of convection in view of the reduced
strength of the driving forces [43,47], starts after the tips of the fingers reach the horizontal walls
and the effect of the boundaries propagates back to the domain centerline. The time required to
reach the shutdown is large (e.g., of the order of 1 hour for the lower Ra considered here), and
hence hard to achieve experimentally because the flow conditions have to be carefully controlled
for a considerable amount of time.

It is apparent that the flow evolution observed in the experiments is qualitatively similar to that
of numerical simulations, albeit with some differences. The growth of the fingers, expressed in
terms of their tip-to-rear extension, is similar within the same time interval [Figs. 4(b) and 4(f)
and Figs. 4(c) and 4(g)]. We also refer the reader to Movie S1 in the Supplemental Material [40]
for a comparison of the time-dependent evolution of the concentration fields in experiments and
simulations. However, we also observe a different number of fingers in the two cases (see Sec. III C
for further discussion).

B. Mixing length

The evolution of a Rayleigh-Taylor system can be conveniently analyzed by looking at the
instantaneous vertical extension of the fluid-fluid interface [3,48]. This quantity, defined as mixing
length h, can be also interpreted as the distance between the upwarding and downwarding tips of
the fingers. To compute the mixing length in a quantitative way, one can use either global [49] (i.e.,
integral) or local [35,50] flow properties. In this work, we characterize the mixing length by means
of the local concentration field [4,50], i.e., h is the portion of the domain where the horizontally
averaged concentration field satisfies the condition ε < C(z, t ) < 1 − ε, with

C(z, t ) = 1

H

∫ H

0

C(x, z, t )

CM
dx (18)

the concentration field averaged along the horizontal direction x, ε = 3 × 10−2 a threshold coeffi-
cient, and H the domain width (in x direction). It follows from this definition that 0 � h � H or, in
dimensionless terms using the length scale defined in Eq. (2), 0 � h∗ � Ra.

The time evolution of the dimensionless mixing length for all the experiments we performed is
shown in Fig. 5. As previously observed in simulations in confined domains [4,30], the dynamics
consists essentially of three phases in sequence: (1) diffusion-dominated, (2) convection dominated,
and (3) wall-induced shutdown. During the initial phase, the thickness of the mixing layer is initially
controlled by diffusion. Assuming an initial stepwise concentration profile, the dimensionless
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FIG. 5. Time evolution of the dimensionless mixing length, h∗(t∗) (solid lines), for all the values of the
global Rayleigh number considered in this study (and explicitly indicated next to each curve). The evolution
of the system, initially controlled by diffusion, nicely follows the analytical solution, h∗ ≈ (1 − 2ε)

√
4πt∗

[Eq. (20), dashed blue line]. The intermediate phase, dominated by convection, exhibits the anomalous scaling
h∗ ∼ (t∗)1.2 first observed by De Paoli et al. [4].

concentration field evolves as

C∗(z∗, t∗) = 1

2

[
1 + erf

(
z∗ − Ra/2√

4t∗

)]
, (19)

and the corresponding mixing length as

h∗(t∗) = −2
√

4t∗ erf −1(2ε − 1) ≈
√

4π (1 − 2ε)
√

t∗ (20)

(we refer to [4] for a detailed derivation). The same evolution of the mixing length in the initial
diffusive regime has been observed in previous numerical works, both in porous media convection
[4,35] and in pure fluids with different initial conditions [51]. Despite the seemingly universal
behavior exhibited by the mixing length, we observe that the initial diffusive stage is hardly captured
by the experimental measurements. Only the measurements performed at lower Ra, 4407 and
7023, are in good agreement with the theoretical predictions (blue dashed line in Fig. 5). While
the trend nicely follows the predicted behavior, namely, h∗ ∼ √

t∗, the magnitude slightly differs
from the solution derived in Eq. (20). This is due to uncertainty of the experimental measurements,
which is comparable to the values of h∗ at low Ra and early times. When the fluid-fluid interface
is sufficiently thick (103 < t < 104), it becomes unstable and eventually finger-like structures
form. When observed via the mixing length, the transition to this convection-dominated regime
is smooth, similarly to what has been observed in the simulations. However, we find that the
transition in experiments occurs at different instants depending on the value of Ra, as a result of
the uncertainty on the initial perturbation of the concentration field, which cannot be reproduced
faithfully in the laboratory. We also observe that, during the transition, the growth of the mixing
length modelled as a power law, i.e., h∗ ∼ (t∗)α , is characterized by an exponent that is higher
than that observed asymptotically, in agreement with previous numerical [4,35] and experimental
(α = 2) [52] findings.

The fluid mixing is more efficient when convection takes place. The formation of finger-like
structures marks the beginning of the convection-dominated phase, more persistent in time com-
pared to the initial diffusive stage. In this phase, fingers grow, merge, and finally reach the horizontal
boundaries of the cell. The measurements reported in this work reveal that the mixing length grows
more than linearly in time, in close agreement with previous simulations [namely, h∗ ∼ (t∗)1.208,
[4,5]]. This scaling is anomalous: It is not expected in two-dimensional porous media convection,
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where a linear evolution of the mixing length with time is predicted as a result of the balance
between buoyancy (i.e., convection) and friction (i.e., dissipation due to viscosity). The occurrence
of a linear growth would imply an asymptotic velocity of the finger tips, which determines also the
growth rate of the mixing length, equal to the buoyancy velocity U , defined as in Eq. (2). We remind
the reader that U can be interpreted as the velocity at which the contribution of buoyancy (g�ρk)
balances the dissipation (μ).

In three-dimensional porous media, the growth of the mixing length follows the linear prediction
obtained from the physical arguments mentioned above [5]. The behavior is different in two
dimensions, where the fingers are slenderer compared to their three-dimensional counterpart. The
superlinear evolution of the mixing length we observed can be ascribed to multiple reasons: (1)
the simulated time is not sufficiently large to achieve the asymptotic regime or (2) the Ra number
of the system is too low, and the effect of diffusion is still dominant. We speculate that in the
present case a combination of these two effects controls the evolution of the flow. Initially, the
fluid accelerates from zero velocity, and this corresponds to a finite-time effect. At a later stage,
when the initial condition has been absorbed by the system and fluid velocity is nonzero, the
finite-size (i.e., finite-Ra) effect comes into play, via the domain boundaries. This nonlinear behavior
seems indeed to vanish at higher Ra numbers [6], but in absence of boundaries. We remark here
that a linear growth of the mixing length has been observed numerically [35], but only in the
limit of lower Rayleigh numbers, namely, Ra ≈ 4 × 103. For these values of Ra, also previous
numerical simulations [4] and present experiments do not exhibit a clear superlinear behavior. In
addition, the experimental data reported by Wooding [52], which refer to higher Rayleigh numbers
(approximately 103 � Ra � 7 × 104) are also well fitted by a linear scaling. However, it must be
pointed out that the data have been collected at very low acquisition rate, making the amount of
available measurements very scarce for a time-dependent flow analysis. We are not able to explain,
in this case, why the superlinear scaling was not observed. One possible reason could be attributed to
the method adopted to change the Rayleigh number, consisting of varying the orientation of the cell
with respect to gravity. Another possibility is represented by the absence of horizontal boundaries.
A conclusive answer on the asymptotic scaling of the mixing length could be obtained with the aid
of Darcy simulations or experiments at higher Ra (≈106), which are beyond the present capabilities.

To conclude the discussion on the mixing length, we now examine the wall-induced convective
shutdown phase [4], which sets in when the high (resp. low) concentration fingers reach the
lower (resp. upper) horizontal boundary. In this phase, the local concentration gradients decrease,
weakening the density differences that drive the flow within the domain. As a result, convection
vanishes and the overall mixing rate, identified, for instance, by means of the mean scalar dissipation
rate, decreases dramatically [30]. This effect is crucial for applications of practical interest (e.g.,
carbon dioxide sequestration in saline aquifers), in which the fluids are confined by impermeable
boundaries that play a key role in the solute mixing process. A simple way to quantify the
convective shutdown is to measure the time t∗

s required for the fingers to reach the horizontal
boundaries. The values of t∗

s obtained as a function of the Rayleigh number are shown in Fig. 6.
Experimental and numerical [4] results are reported as open (◦) and filled symbols (�), respectively.
The best-fitting power law for present results (red dashed line) is 9.64 × Ra0.80, in excellent
agreement with numerical results (14.98 × Ra0.78, black dashed line). This is not surprising, given
the close correspondence observed for the evolution of the mixing length. In leading order, we can
estimate t∗

s = t∗ : h∗(t∗) = Ra, which gives t∗
s ∼ Ra1/1.2 ∼ Ra0.83, consistent with the Ra0.80 scaling

provided by data fitting.
Despite the excellent agreement of the scaling exponents, we also observe some discrepancies

between simulations and experiments. In particular, for a given Ra, the value of t∗
s is lower in

the experiments, leading to a lower value of the multiplicative coefficient obtained from data
fitting. We attribute this discrepancy to the perturbation of the interfacial concentration field.
In the experiments, the amplitude of this perturbation is hard to control, and it is likely to be
larger compared to the numerical simulations considered, leading to an earlier onset of convective
instabilities. Another limitation of our experimental setup is represented by the range of Rayleigh
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FIG. 6. Time taken by the fingers to reach the horizontal boundaries (t∗
s ) as a function of Ra. Experimental

(present work) and numerical [4] results are reported as open (◦) and filled symbols (�), respectively. The best-
fitting power law for present results (red dashed line) is 9.64 × Ra0.80, in excellent agreement with numerical
findings (14.98 × Ra0.78, black dashed line). Experimental results correspond to the mean values obtained for
several flow realizations at fixed Ra.

numbers that can be investigated. To be able to achieve a Darcy flow and to control effectively the
boundary conditions, the values of domain size (H∗) and the density difference (�ρ) cannot be too
large (see also Sec. II B). The values of Ra considered here are sufficiently large to overlap with and
go beyond (up to 2.5 times, approximately) the largest Rayleigh numbers simulated numerically. On
the other hand, achieving smaller values of Ra is also challenging. Lower values of �ρ correspond
to lower velocities, and therefore longer experiments. Smaller values of H∗, i.e., shorter domains,
would instead required more careful setup of the initial flow configuration.

The findings discussed in this section prove that, in terms of evolution of the mixing length,
two-dimensional Darcy simulations and Hele-Shaw experiments produce similar results when the
same Ra is considered. However, the ability of the experimental measurements to capture the
initial development of the flow is lower due to the setup used, and numerical simulations should
be considered as more reliable to investigate this stage of the flow evolution.

C. Wave numbers

The flow dynamics is complex and characterized by a continuous change of the fluid-fluid
interface position. To provide a quantitative estimate of the flow topology evolution, we analyze
here the number of fingers and the wave numbers at the centerline of the domain (z∗ = H∗/2).
The process of flow analysis is illustrated in Fig. 7, where an experiment at Ra = 5.43 × 104 is
considered for reference. First, we build the space time map at the centerline, where the interface
is initially located, i.e., we report in Fig. 7(a) the contour of the time-dependent dimensionless
concentration field, C∗(x∗, z∗ = Ra/2, t∗). The simplest way to define the number of structures in
the system is to count the upwarding and downwarding fingers. To this aim, the spacetime map
is first binarized [Ĉ(x∗, z∗ = Ra/2, t∗), Fig. 7(b)] with respect to a threshold value corresponding
to the mean concentration (C∗ = 1/2), and then the number of fingers is counted [Fig. 7(c)]. The
process is iterated during the entire flow evolution, and the number of fingers, N (t ), is computed as
the number of regions with different binarized concentration values [Fig. 7(d), black line]. Due to
noise in the experimental measurements, spurious fluctuations of the concentration field may occur.
To avoid counting these as fingers, we discarded contiguous regions of the binarized map that are
smaller than 4 pixels (corresponding to a physical length of 350 μm). We observe in Fig. 7(d)
that this threshold is extremely sensitive to variations of the concentration field, i.e., it appears to

093503-14



EXPERIMENTAL ASSESSMENT OF MIXING LAYER …

FIG. 7. Measurements of the number of fingers over time for Ra = 5.43 × 104 (E6 in Table I). Space-
time map, consisting of the evolution of the concentration field along the centerline, C∗(x∗, z∗ = Ra/2, t∗), is
shown in (a). To compute the finger number, the space-time map is binarized, Ĉ(x∗, z∗ = Ra/2, t∗), choosing
C∗ = 1/2 as threshold (b). The concentration profile (red line) and the discretized profile (black line) measured
along the centerline at t∗ ≈ 1.1 × 105 (indicated by the dashed blue line in panels a, b, and d) are also reported
as a function of the horizontal coordinate x∗ (c). Finally (d), the time-dependent finger number is computed as
from the binarized field Ĉ (black line), from power-averaged mean wave number as defined in Eq. (21) (〈N〉 =
L〈k〉/π , red line) and from a kpeak (green line), i.e., the wave number maximizing the spectrum amplitude of
C. See also Movie S2 in the Supplemental Material [40] for the time-dependent evolution of the wave number
and the corresponding concentration field.

fluctuate without an apparent physical reason. A more robust characterization of the flow topology
is provided by the wave numbers associated with the power spectra of the concentration field. We
employ a Fourier decomposition of the concentration profile at the cell centerline to estimate the
number of fingers, and compute the power-averaged mean wave number at each time instant, defined
as [50]

〈k〉 =
∫

kn|Cn(t∗)|2 dkn∫ |Cn(t∗)|2 dkn
, (21)

with kn the wave number and |Cn(t∗)|2 the squared amplitude of the nth basic harmonic function
obtained from the Fourier decomposition of the fluctuation of C∗(x∗, z∗ = 1/2, t∗) about its mean
value. We observe that in this case [red line in Fig. 7(d)] the evolution of the number of fingers,
〈N〉 = L〈k〉/π , is smoother compared to the simple finger count, N , and also compared to the peak
number, defined as Npeak = Lkpeak/π [orange line in Fig. 7(d)], where kpeak is the wave number value
for which |Cn(t∗)| is maximum. Therefore, in the following, we will focus the analysis considering
the power-averaged mean finger number 〈N〉 only, which appears similar to but less fluctuating of
the finger number N .

A comparison of the number of fingers measured in the experiments is reported in the inset of
Fig. 8(a). In general, all the experiments are characterized by a similar dynamics. The number of
fingers, initially low, increases up to a maximum value. Afterwards, the fingers start to merge and
increase in size. This phase, which is also visible from the spacetime maps in Figs. 7(a) and 7(b),
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FIG. 8. (a) Experimental measurements. The evolution of the power-averaged mean wave number, 〈k〉
[defined in Eq. (21), main panel], and the corresponding finger number 〈N〉 (inset). (b) Comparison of
experimental (solid lines) and numerical ([30], dashed lines) measurements. For ease of reading, three values
of Rayleigh number are used to compare the behavior of 〈k〉.

may start earlier at low Ra and later at high Ra, spanning a relatively long interval (103 � t∗ � 104)
in Fig. 8(a). During growth, 〈N〉 appears to decrease in time at the same rate for all Ra considered.
This universal behavior is more apparent when the results are compared in terms of mean wave
number 〈k〉 [main panel of Fig. 8(a)]. After entering the convection-dominated regime, all curves
exhibit the same trend. A first observation is that the merging rate of the fingers is in agreement
with the scaling 〈k〉 ∼ (t∗)−0.6 reported in numerical simulations [30]. In contrast, the behavior is
different during the diffusive phase, when the wave number is clearly dependent on Ra.

In Fig. 8(b) we compare present results (solid lines) against previous numerical findings [30]
(dashed lines). For ease of reading, only three values of Ra number are considered. Two differ-
ences are apparent: (1) unlike experiments, simulations [30] have been performed on domains
of constant dimensionless width (namely, 19 953) and (2) to make reliable comparisons among
different Rayleigh numbers, the same initial perturbation has been employed, thus making the
early stage flow evolution also universal and independent of Ra. This highlights again a possible
limitation of the experimental procedure employed, which makes it hard to precisely control the
initial flow conditions. As a result, the initial phase is characterized by large discrepancies between
numerical and experimental results [Fig. 8(b)]. In the late stage of the flow dynamics, numerical and
experimental measurements are in fair agreement. As a side note, we remark that present results,
shown in terms of wave numbers associated with the concentration field, are compare against
the simulations of De Paoli et al. [30], where the power spectra where obtained from the scalar
dissipation fields. However, even the experimentally measured merging rate is well described by the
same scaling law, t−0.6. Present results are in fair agreement with previous experimental findings
[35,52], in which the wave number is observed to evolve according to (t∗)−1/2. This scaling has been
also derived analytically [31,52] assuming that the fingers are slender, so that vertical derivatives
(e.g., diffusion of solute) are negligible compared to the horizontal ones. In the frame of this model,
the flow is driven by vertical advection, whereas lateral diffusion acts as dissipative mechanism. We
refer to Slim [31] for a detailed derivation of this result. The slight difference in the scaling exponent,
compared to the analytical prediction, maybe attributed to the simplified assumptions considered in
the model derivation. The scaling 〈k〉 ∼ (t∗)−1/2 has been also suggested by Gopalakrishnan et al.
[35], who interpreted this evolution as a diffusion-dominated finger growth, by analyzing the relative
contribution of convective and diffusive terms within a finger (but away from the finger tips).

IV. CONCLUSIONS

In this work, we analyzed with the aid of high-resolution experiments the Rayleigh-Taylor
instability in a Hele-Shaw flow. The system consists of two miscible fluid layers, namely, water
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and an aqueous solution of KMnO4, having different density but same viscosity, placed in an initial
unstable configuration. The density difference is induced by the presence of the solute (KMnO4),
which produces also a color gradient by which we are able to infer the concentration field. The
system is fully described by the Rayleigh number, Ra, which measures the relative strength of
convective and dissipative contributions. Present experimental results have been performed taking
great care to achieve a proper initial condition and minimizing the local perturbations of the
concentration and velocity fields, which trigger the growth of interfacial finger-like instabilities.
In addition, a high resolution in space and time has been achieved by considering relatively large
domains, and an accurate reconstruction of the concentration field is performed. In this respect,
present experimental results go beyond previous measurements published in archival literature.

We compared present findings against previous numerical measurements in two-dimensional
and confined media to which the Darcy equations can be successfully applied, such as porous
media [4,30]. The dynamics of the flow is first controlled by diffusion, which is responsible for the
thickening of the interface, initially flat and horizontal. Afterwards, the flow evolution is controlled
by convection. The unstable fluid-fluid density front promotes the formation of high-wave number
instabilities, which grow and merge into large and more persistent fingers. Finally, due to the
combined action of convective mixing in a confined domain and lateral diffusion across the fingers
interface, the solute distribution becomes uniform within the porous slab, with a corresponding
stable concentration profile. During this stage, referred to as wall-induced convective shutdown,
the flow is again controlled by diffusion. The flow evolution is quantified and compared against
theoretical and numerical predictions with the aid of two main observables: the mixing length,
h∗(t ), and the power-averaged mean wave number, 〈k〉.

Initially, the evolution of the mixing length is in fair agreement with the theoretical predictions
obtained for flows in the absence of convection (h∗(t ) ∼ (t∗)1/2). In the intermediate regime, in
which convection dominates, h∗(t ) is observed to grow with a superlinear scaling, h∗(t ) ∼ (t∗)1.2,
confirming previous numerical findings [4,5]. This scaling is anomalous, as it differs from the
theoretical prediction, h∗(t ) ∼ t∗, possibly as a result of a finite size (i.e., finite Ra) effects. To
further compare present experimental findings against previous numerical simulations, we compute
the time t∗

s taken for the fingers to reach the horizontal boundaries of the domain. Also in this case,
experiments (t∗

s ∼ Ra0.80) are in excellent agreement with the simulations (t∗
s ∼ Ra0.78).

Finally, we analyzed the flow dynamics by looking at the finger distribution at the domain
centerline. The evolution of the characteristic finger size has been quantified by means of the
power-averaged mean wave number, 〈k〉. During the convection-dominated phase, the centerline
finger dynamics exhibits a universal behavior that is independent of Ra. Also in this case, we
found an excellent agreement with scaling laws derived in numerical simulations [30], namely,
〈k〉 ∼ (t∗)−0.6.

The analysis carried out in this paper shows that Hele-Shaw experiments can faithfully reproduce
the dynamics of convective Rayleigh-Taylor instabilities in two-dimensional and confined porous
media. However, it also shows that the proposed experimental approach presents some important
limitations, which call for future improvements. First off, the desired initial fluid-fluid interface
consists of a thin, flat, and horizontal contact line, which is experimentally challenging to achieve. In
addition, the instability is initially triggered by local perturbations of the concentration and velocity
fields, and hence hard to control. Finally, experiments at low Ra are characterized by low values of
vertical velocity, which slow down the mixing process and make the experiments to last longer. As
a result, the experimental conditions have to be monitored for longer times, increasing the difficulty
of the experimental procedure.
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FIG. 9. Given the definition (A5) and the empirical correlations (A1) [37], the relative dependence of
density of the solution, ρ, mass fraction, ω, and solute concentration, C, is obtained. We report here C(ω)
(a), ρ(ω) − ρ0 (b), and ρ(C) − ρ0 (c), being ρ0 the water density. The profiles shown here correspond to
ϑ = 25 ◦C. We observe that the empirical values (symbols) are very well fitted by linear functions (solid lines).
In the instance of density and concentration (c), the linear function corresponds to Eq. (5).
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APPENDIX A: ADDITIONAL DETAILS ON FLUID PROPERTIES

Following the empirical correlations of Novotný and Söhnel [37], the density of an aqueous so-
lution of KMnO4 can be expressed as a function of the solute concentration (C) and the temperature

FIG. 10. Example of calibration curve for a given illumination condition. A number of samples having
different mass fraction (ω) are used to uniformly fill the cell. The average value of light intensity, 〈Ical〉, is
used to build the curve. Experimental measurements (symbols) are well fitted by a combination of exponential
functions, ω(〈Ical〉) = a0 + a1 exp(b1〈Ical〉) + a2 exp(b2〈Ical〉) (solid line). Uncertainties on the light intensity
and mass fraction are also shown (see Sec. II B for further details). Finally, the mass fraction-light intensity
space considered in each experiment, labeled as in Table I, is highlighted in red. The measurements are
performed where the sensitivity of the method employed is higher, i.e., for low values of mass fraction.
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FIG. 11. Initial conditions for two different experiments, E1 and E4, characterized by Ra = 4391 (a)–(c)
and Ra = 19 789 (d)–(f), respectively. The domain centerline (red dashed line) is indicated on the unprocessed
light intensity fields I (a), (d) and on the normalized inferred concentration fields C∗ (b), (e). In panels (c) and (f)
three isocontours of dimensionless concentration (C∗ = 0.3, blue, C∗ = 0.5, red, and C∗ = 0.7, green) are used
to identify the interface shape in a close up view of the interfacial region. We observe that at both macroscopic
(a), (b), (d), (e) and interfacial (c), (f) levels, the fluid-fluid separation region is well defined within a narrow
area.

of the solution (ϑ) as

ρ(C, ϑ ) = f (ϑ,C) = ρ0(ϑ ) + A1(ϑ )C + A2(ϑ )C3/2, (A1)

where the water density ρ0(ϑ ) and the temperature-dependent coefficients A1(ϑ ) and A2(ϑ ) are
given by

ρ0(ϑ ) = +9.997 × 102 + 2.044 × 10−1ϑ − 6.174 × 10−2ϑ3/2, (A2)

A1(ϑ ) = +1.223 × 102 − 1.029 × 10−1ϑ + 8.093 × 10−3ϑ2, (A3)

A2(ϑ ) = −1.485 × 101 + 9.079 × 10−1ϑ − 7.566 × 10−3ϑ2. (A4)

Provided that the mass fraction of the solution is defined as

ω(C) = C

ρ(C)
, (A5)
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it is possible to determine the respective dependency of density, mass fraction and concentration,
which we report in Fig. 9. The density of the mixture, ρ(C) is well approximated by a linear function
of the solute concentration [Eq. (5)], as can be seen in Fig. 9(c).

APPENDIX B: MEASUREMENT CALIBRATION

When the two-dimensional distribution of light intensities is determined, each value of light
intensity is assigned a value of mass fraction, ω(x, z). This step is achieved with the aid of calibration
curves, an example of which is reported in Fig. 10. For a given illumination condition, the cell is
filled with solution with a known value of mass fraction, ω, and the average light intensity over
the cell, 〈Ical〉, is recorded. The higher the concentration of KMnO4, the lower the transmitted
light intensity [Lambert-Beer law, 53]. Experimental measurements (symbols) are well fitted by
a combination of exponential functions, ω(〈Ical〉) = a0 + a1 exp(b1〈Ical〉) + a2 exp(b2〈Ical〉) (solid
line). Further details on the process of calibration are available in [28,32,39].

APPENDIX C: ADDITIONAL DETAILS ON THE INITIAL CONDITION

Large values of solute concentration (CM) produce strong concentration gradients across the
initial fluid-fluid interface, making a sharp separation between the two fluids hard to obtain.
Therefore, to achieve a well-defined initial interface up to the Ra values considered here, the flow
rate provided to the cell is increased with Ra. In Fig. 11 the initial condition is shown in detail for
the experiments E1 and E4 (namely, at Ra = 4391 and Ra = 19 789), and for both the unprocessed
light intensity field I [Figs. 11(a) and 11(d)] and the inferred dimensionless concentration field, C∗
[Figs. 11(b) and 11(e)]. We observe that the experimental procedure employed is suitable to obtain a
macroscopic sharp and straight interface in correspondence of the domain centerline, represented by
the dashed red line in Figs. 11(a), 11(b), 11(d), and 11(e)]. Further information on the local interface
shape can be obtained from the close up view of the interfacial region, shown in Figs. 11(c) and
11(f), where the isocontours at C∗ = 0.3, C∗ = 0.5 and C∗ = 0.7 (same as in Fig. 3) are shown.
We observe that, despite the large concentration contrast between the two values of Ra considered,
the interface thickness [quantified by the vertical spacial separation between the isocontours in
Figs. 11(c) and 11(f)] is similar, and it is comparable with the spatial resolution of the measurements
(1 pixel ≈90 μm).
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