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Abstract In this paper, we examine from a statistical

point of view the deformation of flexible fibers in

turbulent channel flow. Fibers are longer than the

Kolmogorov length scale of the carrier flow and have

finite inertia. Our aim is to examine the effect of local

shear and turbulence anisotropy on fiber twisting and

bending, when shape effects add to the inertial bias. To

these aims, we use an Eulerian–Lagrangian approach

based on direct numerical simulation of turbulence in

dilute flow conditions. Fibers are modelled as chains

of sub-Kolmogorov rods (referred to as elements

hereinafter) interconnected by holonomic constraints

that enable relative rotation of neighbouring elements.

Statistics are computed from simulations at shear

Reynolds number Res ¼ 150, based on the channel

half height, for fibers with different aspect ratio, kr
(defined as the ratio between the length lr of each

element r composing the fiber and its cross-sectional

radius, a), and different inertia, parameterized by the

Stokes number of the element, Str. We show that

bending of flexible fibers is in general stronger in the

bulk of the flow, where they are subject to turbulent

velocity fluctuations only. Near the wall, fibers are

more easily stretched by the mean shear, especially for

large-enough inertia (Str [ 5 in our simulations). In

spite of this different dynamics, which is connected to

the anisotropy of the flow, we find that the fiber end-to-

end distance reaches a steady state regardless of fiber

location with respect to the wall.

Keywords Direct numerical simulation �
Lagrangian tracking � Wall turbulence � Flexible
fibers � Deformation statistics

1 Introduction

Non-spherical particles in turbulent flow are com-

monly found in a number of industrial applications,

from papermaking [27] and fluidised beds [4] to post-

combustion soot emission [33], and environmental

problems, like plankton dynamics in ocean turbulence

[5, 25, 26, 32, 48], ice crystal formation in clouds [16]

or atmospheric pollutant dispersion [42]. Because of

this practical importance, turbulent suspensions of

non-spherical particles have received a growing

attention in the multiphase flow community [45].

From a modelling point of view, the description of
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such suspensions is particularly complex because of

two aspects: the multiscale nature of turbulence and

the strong mathematical coupling between fiber

translation and fiber rotation, which depends on

particle shape and orientation

[10, 28–30, 36, 39, 50–52].

Most of the numerical studies dealing with non-

spherical particles in turbulence focus on the case of

rigid, non-deformable spheroids [10, 37, 51, 52], high-

lighting the tendency of fibers to align with the

direction of the strongest Lagrangian fluid stretching

[34, 36, 51]. In the case of inertialess spheroids, the

well-known Jeffery equation [19] and its extensions to

arbitrary flow fields [7, 8] and to non-axisymmetric

ellipsoids [17] have been used to compute particle

orbits. However, such equations cannot describe

bending and twisting of long flexible fibers, whose

orbits are not stable and tend to drift through orbital

constants [20]. In the case of inertial spheroids, the

most common numerical framework is represented by

a micro-hydrodynamics approach that combines a

large number of particles, with length much smaller

than the flow domain, into a multi-rigid-body system

[2]. The adoption of this approach for the investigation

of dilute suspensions, combined with new experimen-

tal measurements [35, 41], has shed new light on the

effect that particle shape and size have on inertia-

driven phenomena such as preferential concentration

and near-wall accumulation [29, 30, 45, 52].

Besides particle shape, however, one additional

feature that is important to applications (like fiber-

reinforced composite material processing [49], or

hydro-entanglement processes [46], which typically

occur at high Reynolds numbers) is particle flexibility:

Very elongated particles with high aspect ratio, fibers

in particular, may undergo significant deformation

under the action of the velocity gradients that charac-

terize the flow field around the particle. Due to the

additional complexity introduced by flexibility, only a

limited number of studies dealing with flexible

elongated particles in turbulent dispersed flows at

high Reynolds number are available. Verhille

et al. [6, 15, 44] have performed experimental mea-

surements of deformable fibers in homogeneous

isotropic turbulence, focusing on different features

of fiber dynamics. In particular, they examined the role

of fiber inertia on the rotation rate and the role that the

spatial and temporal correlations of the turbulent

forcing have on the local curvature when fiber length is

of the order of the integral time scale of the flow. A

result that is relevant to the present study is that these

correlations lead to a straightening of the fibres, which

becomes more evident as fiber length increases.

Numerical simulations dealing with turbulent sus-

pensions of flexible fibers are also scarce. Andrı́c et al.

[2] studied the translation and re-orientation of fibers

in fully-developed turbulent channel flow. Fibers

longer than the Kolmogorov scale but much smaller

than the flow domain were considered. It was found

that fibers exhibit complex geometrical configurations

during their motion, similar to conformations of

polymer strands subject to thermal fluctuations. Fol-

lowing up on the work by Andrı́c et al. [2], Dotto and

Marchioli [13] performed direct numerical simula-

tions of the same flow configuration, yet considering

longer simulation times (required to reach a steady

state for fiber concentration), higher number of fibers

(105 instead of 50 in the same computational domain),

higher fiber-to-fluid density ratios and higher fiber

length to channel height ratios. The aim of that work

was to examine the effect of flexibility on fiber

preferential concentration and wall accumulation,

characterising from a statistical point of view the

additional bias introduced by particle deformability.

Another numerical study was performed by Kunhap-

pan et al. [22] to examine the motion of flexible fibers

in both homogeneous isotropic turbulence, consider-

ing flow conditions and fiber parameters close to those

of [44], and channel flow turbulence, considering a 1%

concentration fiber suspension. More recently,

Allende et al. [1] studied the dynamics of flexible

fibers passively transported in homogeneous isotropic

turbulence. The authors considered the effects of both

bending elasticity and flow stretching on fiber motion,

and found that fibers tend to behave as stiff rods in

regions of low turbulence intensity, while buckling in

violent, intermittent regions. The interaction between

fiber elasticity and turbulence was also examined by

Rosti et al. [40]. Considering a single fiber free to

move in a box of homogeneous isotropic turbulence,

they were able to identify a flapping regime in which

the fiber, despite its elasticity, is slaved to the turbulent

fluctuations.

In the present paper, we build on the work of Dotto

and Marchioli [13], and examine the deformation of

inertial flexible fibers. To study this problem, we use

the rod-chain model proposed by Lindström and
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Uesaka [24], which extends to inertial fibers the bead-

chain model originally developed by Yamamoto and

Matsuoka [47] to represent the fiber as a chain of

massless spherical beads that cannot detach from each

other but only rotate relative to each other. The rod-

chain model was also used to study paper forming

[23], clustering of long flexible fibers in 2D cellular

flow [31], and fiber-flow interactions and rheological

properties of dilute suspensions in channel flow

turbulence [2, 3].

2 Physical problem and methodology

2.1 Flow field

The physical configuration simulated in this work is a

turbulent Poiseuille flow of incompressible, isother-

mal and Newtonian fluid in a plane channel. The

governing equations, representing conservation of

mass and momentum of the fluid are described by

the following three-dimensional time-dependent sys-

tem, written in dimensionless vector form:

r � u ¼ 0; ð1Þ

ou

ot
þ u � ru ¼ �rP þ 1

Res
r2u; ð2Þ

where u ¼ ðux; uy; uzÞ is the fluid velocity, rP is the

total pressure gradient that drives the flow in the

streamwise direction (comprehensive of the mean and

fluctuating parts), and Res ¼ ush=m is the friction

Reynolds number, with us ¼ sw=qð Þ1=2 the friction

velocity based on the mean wall shear stress sw and on

q, m the fluid viscosity and h the channel half height.

We performed direct numerical simulation of these

equations, imposing periodic boundary conditions in

the streamwise (x) and spanwise (y) directions and no-

slip conditions at the walls, z being the wall-normal

direction.

2.2 Fiber tracking

Lagrangian fiber dynamics is treated in the same way

as in [24, 30]. The reader is referred to these articles

for a detailed description of the fiber model. Here, we

provide only its main features. Each fiber is modelled

as a chain of N rigid and inextensible elements,

indexed r 2 ½1;N �, having circular cross section of

radius a and length lr. Fiber elements have the same

diameter and length, and are connected together

through N � 1 hinges, as shown in Fig. 1. The

location of each element is given with respect to an

inertial frame of reference that uses a Cartesian

coordinate system, with axes defined by the base

vectors fex, ey ,ezg, and originO. Each fiber element is

subject to hydrodynamic interactions, determined by

the action of the drag force and torques, but also to

interactions with its neighbours due to the connectivity

constraint, which ensures that end-points of adjacent

elements coincide.

The motion of the rth fiber element, with density qr
and aspect ratio kr ¼ lr=a, is governed by the follow-

ing equations in vector form [24]:

mr

dvr
dt

¼ FD
r þ Xrþ1 � Xr; ð3Þ

d ��Jrxr

� �

dt
¼ TD

r þHD
r þ lor � Xrþ1 þ Xrð Þ; ð4Þ

pr þ lror � prþ1 � lrþ1orþ1

� �
¼ 0 : ð5Þ

In Eq. (3), mr ¼ qr2pkra
3 is the mass of the element,

vr is the translational velocity of the element’s center

of mass; FD
r is the hydrodynamic drag force exerted by

the surrounding fluid. Terms Xrþ1 and Xr are the

constraint forces produced by element r þ 1 on

element r and by element r on element r � 1,

respectively.

In Eq. (4), ��Jr ¼ mra
2

12
4k2r þ 3
� � ��I� oro

T
r

� �
þ 6oro

T
r

h i

is the inertia tensor of the element, expressed in the

inertial frame of reference O; or and xr are its

orientation and angular velocity, respectively; while ��I

is the identity matrix. The orientation vector evolves in

time according to the equation: _or ¼xr � o. The terms

TD
r and HD

r represent the hydrodynamic torque due to

the relative spin between the fiber and the surrounding

fluid, and the hydrodynamic torque due to the action of

the fluid velocity gradients on the element, respec-

tively, while lor � Xrþ1þXrð Þ is the contribution of

the constraint forces to the total torque. In Eq. (5),

vector pr represents the position of the center of mass

of the rth fiber element (see also Fig. 2).

Indicating with W the left-hand side of Eq. (5), the

connectivity constraint can be also formulated as:
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dW

dt
¼ 0 ; ð6Þ

with initial condition Wðt ¼ 0Þ ¼ 0.
Equations (3)–(5) are solved for each element of

each fiber injected into the flow. The expressions used

to compute the drag force and torques are selected

based on the specific value of the element’s Reynolds

number:

Rep;r ¼
2a

m
��d� oro

T
r

� �
ur � vrð Þ

���
���

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
v?;r

: ð7Þ

If Rep;r ¼ 0 (e.g. at the beginning of the tracking),

then the analytical solution derived by Kim and

Karrila [21] for an isolated axis-symmetric ellipsoid is

extended to the present rod-like fiber elements by

exploiting the similarity existing in shear flow

between the orbiting behaviour of a rod and that of a

prolate spheroid with minor axis ael, major semi-axis

lel and aspect ratio kel [12]:

kel
kr

¼ 1:24ffiffiffiffiffiffiffiffiffiffiffiffi
ln krð Þ

p () ael ¼
a

1:24

ffiffiffiffiffiffiffiffiffiffiffiffi
ln krð Þ

p
: ð8Þ

Even if Eq. 8 is valid for an isolated slender particle,

previous studies (see e.g. [24]) have shown that the

maximum error in model predictions of orbit period

for rigid fibers in shear flow is below 3% for the range

of aspect ratios considered here. If Rep;r [ 0, then

inertial effects are incorporated via a suitably defined

drag coefficient CD;r, appearing in the drag force,

defined as FD
r ¼ ��A

D

r ur � vrð Þ, where ur is the fluid

velocity evaluated at the center of mass of the fiber

element and ��A
D

r is the resistance force tensor defined

as [21]:

��A
D

r ¼
6pkral XA

r
��I þ YA

r � XA
r

� �
oro

T
r

h i
if Rep;r ¼ 0 ;

2CD;rqkra2v?;r
��I � oro

T
r

� �
if Rep;r [ 0 :

8><
>:

ð9Þ

The coefficients XA
r and YA

r are defined as in [13, 21]

and are not reported here for sake of brevity. The

(a)

(b)

Fig. 1 Forces (a) and torques (b) applied on the r-th element of the fiber. Courtesy of Dotto and Marchioli [13]
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coefficient CD;r is computed using the following

expressions [11, 13]:

CD;r ¼

CI
D;r ¼ 9:689Re�0:78

p;r if Rep;r 2�0; 0:1� ;

CI
D;r 1þ 0:147Re0:82p;r

� �
if Rep;r 2�0:1; 5� ;

CI
D;r 1þ 0:227Re0:55p;r

� �
if Rep;r 2�5; 40� ;

CI
D;r 1þ 0:0838Re0:82p

� �
if Rep;r 2�40; 400� ;

1 if Rep;r [ 400 :

8>>>>>>>>>>><
>>>>>>>>>>>:

ð10Þ

The hydrodynamic torque is computed as

TD
r ¼ ��C

D

r Xr � xrð Þ, where ��C
D

r is the resistance torque

tensor, defined as [21]:

��C
D

r ¼
8pk3r a

3l XC
r
��I þ YC

r � XC
r

� �
oro

T
r

h i
if Rep;r ¼ 0 ;

2

3
CD;rqk

3
r a

4v?;r
��I � oro

T
r

� �
if Rep;r [ 0 ;

8><
>:

ð11Þ

where the coefficients XC
r and YC

r are defined as in

[13, 21] and are not reported here for sake of brevity.

The torque due to the velocity gradients at the center of

mass of each fiber element is defined as:

��H
D

r ¼
�8pla3k3r Y

H
r

���eor
� �

: _��cror

� �
if Rep;r ¼ 0 ;

� 2

3
a4k3rCD;rqv?;r

���eor
� �

: _��cror

� �
if Rep;r [ 0 ;

8><
>:

ð12Þ

where YH
r is defined as in [13, 21], ���e is the Levi-Civita

tensor, _��cr is the velocity gradient tensor, and the

operator : is defined such that:

���eor
� �

: _��cror

� ����
i
¼ eijk _cjl;rol;r

� �
oj;r:

Details on the LU factorization used to solve the

tridiagonal block-matrix system associated to the

constraint equation are given in [13], where a discus-

sion on the limitations of the model and its suitability

in the limit of dilute flow (not repeated here for sake of

brevity) can also be found.

2.3 Summary of simulations

Simulations are carried out at Res ¼ 150, with

us ¼ 0:1177 m/s. The corresponding bulk Reynolds

number, for the case of air, is Reb ¼ ubh=m ¼ 2250,

where ub ¼ 1:77 m/s is the bulk velocity. The

Reynolds number based on the hydraulic diameter is

ReD ’ 9000. The size of the computational domain is

Lx ¼ 1885� Ly ¼ 942� Lz ¼ 300 wall units (i.e. in

Fig. 2 Inextensibility cinematic constraint applied to the elements r and r þ 1 of the fiber. Courtesy of Dotto and Marchioli [13]
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terms of variables identified with the superscript ‘‘?’’

made dimensionless using m and us), discretized with

128� 128� 129 grid nodes. The non-dimensional

step for time integration is 0.003 in wall units.

Equations (1)–(2) are discretized using a pseudo-

spectral method based on transforming the field

variables into the wavenumber space, through a

Fourier representation for the periodic directions x

and y, and a Chebychev representation along z. A two-

level explicit Adams-Bashfort scheme for the non-

linear terms and an implicit Crank–Nicolson method

for the viscous terms are employed for the time

advancement. The convective non-linear terms are

first computed in the physical space and then trans-

formed in the wavenumber space using a de-aliasing

procedure based on the 2/3-rule; derivatives are

evaluated directly in the wavenumber space to main-

tain spectral accuracy. The equation for the orientation

vector or is integrated in time using a standard 4th-

order Runge-Kutta scheme, while Eqs. (3)–(5) are

solved using a mixed explicit/implicit differencing

procedure developed by [14]. The same time step size

as that of the fluid is used for integration, and the total

Lagrangian tracking time in wall units is tþ ¼ tm=u2s ¼
1250; which was enough to reach the steady state in

fiber wall-normal concentration. The relevant param-

eters for time integration are a, kr and the Stokes

number of the fiber element [43]:

Str ¼
2a2S

9m

kr lnðkr þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2r � 1

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

k2r � 1

q us
2

m
: ð13Þ

The different Stokes numbers considered in this study,

together with the main simulation parameters charac-

terising the different fiber sets, are given in Table 1.

The Stokes number relative to the entire fiber in its

fully-stretched configuration, Stf (equivalent to the

Stokes number of a rigid fiber with equal density and

total length Lf ¼ N � lr), and the different ratios of

fiber density to fluid density, S ¼ qr=q, are also

shown. All fibers have the same dimensionless radius

aþ ’ 0:17, corresponding to a ’ 11.8 lm for gas-

solid flow. To ensure converged statistics, swarms of

M ¼ 105 fibers, each having N ¼ 7 elements (as in

[2]), are tracked for each combination of values in the

(kr, Str) space.
In the present channel flow, the Kolmogorov length

scale has a mean value gþK;avg ’ 2, and varies from

gþK;min ’ 1:62 at the wall to gþK;max ’ 3:61 at the

channel center [38]. Therefore, individual fiber ele-

ments are smaller (or not longer, at least) than the

smallest scale in the flow, but the entire fiber is longer

regardless of kr. This implies that fiber elements will

experience slightly different local flow conditions

(velocity fluctuations and gradients) with respect to

their neighbours [39]: Our model takes these differ-

ences into account, and reproduces their effect on the

overall translational and rotational dynamics of the

fiber.

3 Results and discussion

In this section, we provide a statistical characterization

of fiber deformation inside the channel. Figure 3

provides qualitative visualizations of the instanta-

neous distribution of the Str ¼ 5 fibers with kr ¼ 5 in

two different fluid slabs at time tþ ¼ 900 of the

simulation. Fibers start as fully-stretched (all fiber

elements are aligned) at random position and with

random orientation, and attain a non-homogeneous

distribution that is biased by fiber inertia. Our aim is to

characterize from a statistical point of view fiber

bending at varying fiber elongation and inertia. Fibers

with different length (namely aspect ratio) and differ-

ent inertia (namely Stokes number) will respond

selectively to the fluid velocity gradients acting at

spatially-changing locations along the fiber.

Note that, in the present simulations, fibers have

zero flexural rigidity and therefore do not have a

unique equilibrium conformation (minimal energy

Table 1 Summary of the simulation parameters relative to the

fibers

Str Stf kr lþr lr ½lm� Lþf Lf =h S

1 2.2 2 0.67 46.3 4.7 0.032 102.4

1.8 5 1.68 116.0 11.8 0.079 66.5

5 11.0 2 0.67 46.3 4.7 0.032 512.0

9.1 5 1.68 116.0 11.8 0.079 322.8

30 64.9 2 0.67 46.3 4.7 0.032 3071.8

54.5 5 1.68 116.0 11.8 0.079 1996.5

The length of a fiber element is given both in wall units (lþr )
and in dimensional units (lr , microns). The length of the entire

fiber is given in wall units (Lþf ) and as a function of the channel

half height (Lf =h)
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conformation). In fact, all conformations attained by

the fibers are equivalent from an energy point of view.

One observable that can be examined to character-

ize bending is the solid angle a between two neigh-

bouring fiber elements: a ¼ 0 corresponds to a fully-

stretched fiber in which elements have the same

orientation, whereas bending is associated with pos-

itive values of a (the stronger the bending, the higher

the value of a). We thus start our analysis by

examining the PDF of the solid angle, ah i, shown in

Fig. 4. Brackets indicate averaging over the six values

of a that can be calculated considering all pairs of

neighbouring elements in one fiber. PDFs are time-

averaged and conditioned to the location of the fibers

in the wall-normal direction. In particular, we

considered two sub-sets: Fibers with instantaneous

distance from the wall smaller than 5 times the viscous

sublayer thickness, dSV , and those with distance larger
than 20dSV , corresponding to a fluid slab of thickness

10dSV in the channel center.

In the Str ¼ 1 case (Fig. 4a), we observe that fibers

in the near wall region sample rather uniformly all

possible values of the solid angle, for both kr ¼ 2

(solid line) and kr ¼ 5 (dashed line): there is a smooth

peak at ah i ’ 1 and a smooth decay around this peak.

Fibers in the center of the channel (filled circles for

kr ¼ 2, filled squares for kr ¼ 5) sample roughly the

same angles ah i, but their PDF exhibits a more

irregular shape: there is a relative minimum at ah i ’
0:7 and a sharp peak at ah i ’ 1. We remark here that a

Fig. 3 Instantaneous

distribution of Str ¼ 5 fibers

with k ¼ 5 in turbulent

channel flow. In a, only
fibers in the slab

698\xþ\1306,

297\yþ\705,

0\zþ\150 are shown. The

close-up view in b refers to a
smaller portion of the flow

domain (698\xþ\1021,

297\yþ\559,

0\zþ\120). The colormap

at the side of the two

snapshots shows the

streamwise fluid velocity

distribution (red: higher-

than-mean velocity, blue:

lower-than-mean velocity).

Flow structures are

visualised using the Q-

criterion [18]: Isosurfaces

correspond to Q ¼ �0:05
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uniform distribution of angles would correspond to the

value ah i ’ 1:2. Therefore, Fig. 4a suggests that Str ¼
1 fibers are characterized (on average) by a rather

uniform distribution of deformations, regardless of

their location within the flow.

In the Str ¼ 5 case (Fig. 4b), we still find a

preferential sampling for values of ah i that correspond
to a statistically uniform distribution of deformations,

but only for the subset of fibers in the center of the

channel. A more complex behaviour is observed for

the fibers in the near-wall region: As indicated by the

sharp peak of the PDF, shorter fibers (kr ¼ 2, solid

line) sample preferentially angles close to ah i ¼ 0 that

correspond to the fully-stretched conformation. No

such peak is found for the more elongated fibers

(kr ¼ 5, dashed line), which are characterized by a

positively skewed PDF. This different behaviour can

be ascribed to the different tendency of the Str ¼ 5

fibers to accumulate at the wall at varying length, not

discussed here but shown in [13]: The kr ¼ 2 fibers

develop a peak of concentration inside the viscous

sublayer, where they can be more easily stretched by

mean shear while being subject to low turbulent

velocity fluctuations; the kr ¼ 5 fibers develop a peak

of concentration just outside the viscous sublayer and

are exposed to weaker shear and higher velocity

fluctuations, which act to buckle interconnected

elements. We remind that, for a given value of Str,

the fiber-to-fluid density ratio decreases with kr so

shorter fibers have higher inertia (see also Table 1). In

the Str ¼ 30 case (Fig. 4c), the PDFs become less

sensitive to changes in fiber elongation. Fibers in the

center of the channel are characterized by a quasi-

Gaussian distribution, indicating uniform distribution

of deformations especially for the kr ¼ 2 case; fibers

in the near-wall region are characterized by a clear

preferential sampling of small or zero values of the

solid angle, indicating strong stretching.

The trends just discussed for the solid angle can be

naturally correlated with the mean shear rate acting on

the fibers, especially in the near-wall region. To

quantify this correlation, in Figs. 5, 6 and 7, we show

the scatter plots of the solid angle, ah i, as a function of
the spanwise vorticity, Xy;G, sampled at the fiber’s

center of mass, G. Both values of the aspect ratio are

considered here, and scatter plots are conditioned to

fiber location with respect to the wall: the top panels in

Figs. 5, 6 and 7 were obtained by counting only the

fibers instantaneously located inside the near-wall

fluid slab of thickness 5dSV ; while the fibers in the

centre of the channel (zþ � 20dSV ) were used to

compute the plots in the bottom panels. We remind

that, close to the wall, Xy;G is nearly equal to the mean

shear, du=dz: The colormap shows low correlation in

blue and strong correlation in red, with values ranging

from 0 to 1 upon normalisation by the total number of

fibers counted. At lower inertia (Str ¼ 1; Fig. 5), we

observe a persistent correlation between values of ah i
close to unity, corresponding to the peak of the PDFs

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

(a)

(b)

(c)

Fig. 4 PDF of the solid angle, hai, conditioned to fiber location.
Lines represent the PDF of fibers instantaneously located within

a distance zþ ¼ 5dSV from the wall, symbols represent the PDF

of fibers instantaneously located in the channel centre

(zþ � 20dSV ). a Str ¼ 1; b Str ¼ 5; c Str ¼ 30
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in Fig. 4), and a wide range of near-wall values ofXG;y;

as shown in the top panels of Fig. 5. For the fibers in

the center of the channel, the correlation is still

maximum at ah i ’ 1 yet for values of XG;y that are

much smaller than those sampled near the wall, as

shown in the bottom panels of Fig. 5. The behaviour of

the PDFs implies that the effect of shear on low-inertia

fibers is not strong enough to overcome the effect of

the smallest flow scales (which acts to deform the

fibers and is only partially filtered out by their inertia at

low Stokes number) and induce significant stretching

in the wall proximity. At intermediate inertia (Str ¼ 5;

Fig. 6), the scatter plot in the near-wall region (top

panels) changes significantly with fiber elongation:

For the kr ¼ 2 fibers (Fig. 6a), the most evident

correlation is found for relatively high values of XG;y

but small values of ah i for the kr ¼ 2 fibers (Fig. 6a).

On the other hand, for the kr ¼ 5 fibers (Fig. 6b), the
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Fig. 5 Scatter plot of the

solid angle, ah i; versus the
fluid spanwise vorticity,

XG;y; conditionally sampled

at the Str ¼ 1 fiber position.
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near-wall region, lower

panels related to the bulk

region; left kr ¼ 2, right
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correlation is high for high values of ah i. In the center
of the channel (Fig. 6c, d), fibers sample low values of

spanwise vorticity regardless of their aspect ratio and

highest correlations are found for ah i just above unity.
Overall, the strongest correlations are always found

for values of the solid angle that correspond to peaks in

the PDFs of Fig. 5b). At high inertia (Str ¼ 30, Fig. 7),

scatter plots are not much affected by aspect ratio

anymore. In the near-wall region (top panels), fibers

are stretched in regions of high vorticity (mean shear).

In the center of the channel (bottom panels), fibers

undergo bending in the regions of low vorticity

characterized by nearly isotropic and homogeneous

turbulent flow conditions.

To further quantify bending, we consider next a

different observable: The fiber end-to-end distance,

Lþ, defined as the three-dimensional distance between

the end points of the fiber. When the fiber is fully

elongated, the end-to-end distance is equal to the fiber

length, Lþf ; when the end-to-end distance is zero, the

two end points of the fiber touch each other; interme-

diate values indicate bending and buckling of neigh-

bouring elements. This observable was also examined

by Verhille et al. [9, 15] for fibers much longer than

those considered here and for a different flow config-

uration (homogeneous isotropic turbulence). Figure 8

shows the time evolution of the mean end-to-end

distance, averaged over all fibers in the flow domain

and in time (over the last 350 viscous time units of the

simulation). Insets labeled with d), e) and f) show the

same time evolution when Lþ is normalised by Lþf . As

done before, the statistics is conditioned to fiber

position to highlight the effect of flow anisotropy. The

length of a fully-stretched fiber, represented by the

thin horizontal lines in Fig. 8, is Lþf ¼ 4:7 for fibers

with kr ¼ 2 and Lþf ¼ 11:8 for fibers with kr ¼ 5:

Dotto and Marchioli [13] have shown that the region

of largest stretching, namely largest Lþ, correlates
well with the region of maximum turbulent Reynolds

stress and that the strength of this correlation depends

on inertia, as well as on elongation since longer fibers

appear to get stretched closer to the wall than shorter

ones.

Starting from the initial time step of the simulations

(in which the fibers are fully stretched) we first

observe, for all fiber sets and regardless of fiber

location, a transient during which Lþ decreases

followed by a steady state characterized by a constant

value of Lþ. In this respect, the dynamical properties

of our fibers are clearly different from those of elastic

fibers, like those considered by Rosti et al. [40], which

were found to obey a flapping regime characterized by

fiber oscillations completely determined by the turbu-

lent flow field. This difference stems from the fact that

they considered fibers with length in the inertial range

of scales that are allowed to stretch under the action of
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the fluid velocity gradients. In general we see that our

inextensible fibers reach the steady state condition

earlier in the near-wall region (lines) rather than in the

center of the channel (symbols). Also, fibers with

lower aspect ratio reach the steady state earlier than

those with higher aspect ratio, especially at low inertia.

In the Str ¼ 1 case (Fig. 8a), the steady state value of

Lþ for the fibers in the near-wall region is the same for

the fibers in the center of the channel, regardless of

their distance from the wall and regardless of kr. The
inset 8d) shows that the steady state value of Lþ is

approximately equal to 0:6Lþf , in agreement with the

findings of [13]. In the near-wall region, such steady

state is reached at tþ ’ 75 by the shorter fibers (solid

line) and at tþ ’ 150 by the longer fibers (dashed line).

In the channel center, the steady state is reached at

tþ ’ 150 by the shorter fibers (circles) and at tþ ’ 300

by the longer fibers (squares). In the Str ¼ 5 case

(Fig. 8b), the steady state value of Lþ is higher for the

fibers in the near-wall region, especially for kr ¼ 2,

indicating lower bending. The inset 8e) shows that the

steady state value of Lþ changes significantly with the

aspect ratio kr. The trend highlighted by Fig. 8b

becomes more evident for the high-inertia fibers, as

can be seen in Fig. 8c. For these fibers, the inset 8e

shows that the steady state value of Lþ is less

dependent on kr and more sensitive to the position of

the fiber with respect to the wall. The results shown in

Fig. 8 indicate that mean fiber deformation is charac-

terized by an initial transient during which fibers adapt

to the local flow conditions and ‘‘forget’’ about the

imposed initial condition. This transient is generally

shorter in the near-wall region because of the persis-

tent action of the mean shear, while fibers in the bulk

of the flow are subject to a nearly delta-correlated flow

field, in both space and time. Eventually, a steady state

is always reached, and the effect of flow anisotropy on

mean deformation is felt only at sufficiently-high fiber

inertia (Str � 5 in the present simulations). We remark

that the time evolution of the end-to-end distance is the

same as that of the fluid velocity fluctuations (not

shown), especially at low fiber inertia [13]. This

indicates a clear connection between the local flow

conditions experienced by the fibers and their defor-

mation, an observation that is in qualitative agreement

with the findings of Verhille et al. [6, 15, 44]. The

correlation weakens as fiber inertia increases, indicat-

ing that bending dynamics is not much affected by the
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Fig. 8 Time evolution of the dimensionless fiber end-to-end
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instantaneous turbulent flow but, rather, by its time-

persistent features, as the mean shear experienced by

fibers upon accumulating in the near-wall region.

The bending dynamics observed so far and the

effect of the fluid velocity gradients on fiber defor-

mation can be interpreted by means of the constraint

forces generated within the fiber, which are a direct

outcome of the Lagrangian tracking. The components

parallel and orthogonal to the major symmetry axis of

the r-th fiber element are defined, in terms of modulus,

as jXr � orj (tensile force) and jXr � orj (bending

force), respectively. The behaviour of these two

components along the wall-normal direction of the

channel is shown in Fig. 9, where profiles refer to

force components that were averaged over the last 350

viscous time units of the simulation. Starting from the

wall, andmoving towards the center of the channel, we

notice an increase of both force components until a

peak is reached: The location of the peak almost

coincides with the location at which fiber concentra-

tion reaches a maximum and the momentum trans-

ferred by the fluid to the fibers is also maximum [13].

Beyond this peak, the curves decrease monotonically

and reach a plateau that is maintained all the way to the

channel center. Longer fibers (dashed lines) are

characterized by higher values of both tensile and

bending force compared to shorter fibers (solid lines).

We also observe that the magnitude of the constraint

force components is proportional to fiber inertia: As

the Stokes number increases, constraint forces also

increase, spanning more than one order of magnitude

going from Str ¼ 1 to Str ¼ 30. This clearly indicates
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that elements belonging to longer fibers and/or high-

inertia fibers exhibit a stronger tendency towards

relative translation and bending of their major sym-

metry axis. The role played by the aspect ratio can be

easily explained by considering that longer fibers

sample instantaneously regions of different fluid

velocities and velocity gradients, which in turn

determine a stronger influence of one fiber element

on translation and rotation of the other fiber elements.

4 Conclusions and future developments

In this work, we have provided a statistical character-

ization of the bending dynamics of inertial flexible

fibers dispersed in turbulent channel flow. The motion

of the fibers was simulated numerically, using an

Eulerian-Lagrangian approach based on direct numer-

ical simulation of turbulence and Lagrangian fiber

tracking. The rod-chain model of Lindström and

Uesaka [24] was adopted and results obtained for

different values sampling the (kr; Str) space have been
presented. The most general feature we could observe

is that fibers are stretched by mean shear in the near-

wall region, while retaining a more deformed confor-

mation in the centre of the channel. Fiber deformation

is affected by flow anisotropy and fiber inertia, which

determine a different time evolution of the three-

dimensional end-to-end distance, used here to quantify

fiber bending. Differences are more evident for fibers

with higher inertia, but never lead to an unsteady

behaviour of the end-to-end distance. In fact, a steady

state is reached within relatively short times upon fiber

injection into the flow. We also examined the tensile

and bending forces acting on the individual elements

into which fibers are discretized. These forces are

higher for longer fibers, indicating a stronger action of

stretching and bending of the fiber’s major symmetry

axis exherted by the fluid.

As far as bending is concerned, the most relevant

future development of the present work is the inclu-

sion of bending rigidity effects in the equations of fiber

motion. In particular, the inclusion of an internal

resistance torque will allow a more realistic represen-

tation of fiber bending dynamics by taking into

account the existence of an equilibrium conformation,

and measuring the energy to be transferred from the

fluid to the fibers in order to deviate from such

conformation. Since fiber bending is ultimately

controlled by the hydrodynamic fluid-fiber interaction,

and a dependency on the flow Reynolds number is

expected, another development will be the study of

Reynolds numbers effects by performing simulations

at Res much larger than the single value considered

here.

Finally, it would be interesting to examine wether

or not flexible fibers in wall-bounded turbulence tend

to align preferentially with the direction of the

strongest Lagrangian fluid stretching, as already

observed for the case of rigid fibers [34, 36, 51].
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