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Breakage, coalescence and size distribution of
surfactant-laden droplets in turbulent flow
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In this work, we compute numerically breakage/coalescence rates and size distribution
of surfactant-laden droplets in turbulent flow. We use direct numerical simulation
of turbulence coupled with a two-order-parameter phase-field method to describe
droplets and surfactant dynamics. We consider two different values of the surface
tension (i.e. two values for the Weber number, We, the ratio between inertial and
surface tension forces) and four types of surfactant (i.e. four values of the elasticity
number, βs, which defines the strength of the surfactant). Stretching, breakage and
merging of droplet interfaces are controlled by the complex interplay among shear
stresses, surface tension and surfactant distribution, which are deeply intertwined.
Shear stresses deform the interface, changing the local curvature and thus surface
tension forces, but also advect surfactant over the interface. In turn, local increases of
surfactant concentration reduce surface tension, changing the interface deformability
and producing tangential (Marangoni) stresses. Finally, the interface feeds back to
the local shear stresses via the capillary stresses, and changes the local surfactant
distribution as it deforms, breaks and merges. We find that Marangoni stresses have a
major role in restoring a uniform surfactant distribution over the interface, contrasting,
in particular, the action of shear stresses: this restoring effect is proportional to the
elasticity number and is stronger for smaller droplets. We also find that lower surface
tension (higher We or higher βs) increases the number of breakage events, as expected,
but also the number of coalescence events, more unexpected. The increase of the
number of coalescence events can be traced back to two main factors: the higher
probability of inter-droplet collisions, favoured by the larger number of available
droplets, and the decreased deformability of smaller droplets. Finally, we show
that, for all investigated cases, the steady-state droplet size distribution is in good
agreement with the −10/3 power-law scaling (Garrett et al., J. Phys. Oceanogr.,
vol. 30 (9), 2000, pp. 2163–2171), conforming to previous experimental observations
(Deane & Stokes, Nature, vol. 418 (6900), 2002, p. 839) and numerical simulations
(Skartlien et al., J. Chem. Phys., vol. 139 (17), 2013).
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1. Introduction
The accurate prediction of momentum, heat and mass transfer through an

interface is a fundamental problem in a wide range of industrial applications and
in nature (Kralova & Sjöblom 2009; Rosen & Kunjappu 2012; Pereira et al. 2018).
Mathematical models and empirical correlations based on macroscopic observables,
such as shape and extension of the interface, are often used to estimate these transfer
rates (Kiyomi & Fumitake 1974; Kelly & Kazimi 1982; Delhaye & Bricard 1994);
these correlations, though mostly tuned on experimental data, can often provide a
first estimate of transfer rates. To improve the accuracy of these predictions and to
gain a better comprehension of the underlying physics, the development of numerical
tools capable of performing high-fidelity simulations is highly desirable, and perhaps
possible to achieve these days.

In this paper, we focus on the simulation of breakage, coalescence and ultimately
the size distribution of surfactant-laden droplets in turbulent flow. This problem
is characterized by a physics acting at many different scales: from the molecular
scale of the interface, to the Kolmogorov scale and up to the largest problem
scales. Today’s computational methods can handle a scale separation of about three
or four orders of magnitude between large and small turbulence scales, but the
scale separation between interfacial phenomena and the smallest turbulence scales
is about another five orders of magnitude. Naturally, in these types of problems,
it is impossible to set the numerical resolution to the interfacial scale: there is not
enough computational power available. Therefore, in the recent past, several numerical
techniques have been developed to overcome the multiscale aspects of this problem.
Broadly speaking, these methods can be categorized as interface-tracking methods
and interface-capturing methods. Interface-tracking methods rely on the advection
of a set of Lagrangian marker points, which define the instantaneous position of
the interface. These methods proved to be excellent in the simulation of droplets
and bubbles in turbulence (Lu & Tryggvason 2008) and, recently, their capability
has been extended to model surfactant-laden droplets (Lu, Muradoglu & Tryggvason
2017) and coalescing interfaces (Lu & Tryggvason 2018). The downside of these
methods, however, is that closure models are needed to capture interface interactions
(e.g. coalescence) and complex re-meshing algorithms are required to describe the
interfacial dynamics. The other category, interface-capturing methods, includes several
types of approach, such as the volume of fluid method (Hirt & Nichols 1981), the
level-set method (Fedkiw et al. 1999), the lattice Boltzmann method (Shan & Chen
1993; He, Chen & Zhang 1999) and the phase-field method (Anderson, McFadden &
Wheeler 1998; Jacqmin 1999). We refer the reader to Scardovelli & Zaleski (1999)
for a review of the volume of fluid method, to Gibou, Fedkiw & Osher (2018) for the
level-set method and to Chen & Doolen (1998) for lattice-Boltzmann-based methods.
Interested readers can find in Scarbolo et al. (2013) a benchmark comparison between
lattice Boltzmann and phase-field methods.

In this work, we exploit the phase-field method (Anderson et al. 1998; Jacqmin
1999), which is characterized by a strong physical foundation: the method is indeed
the natural extension of the van der Waals theory of critical phenomena (van der
Waals 1979), and its thermodynamic derivation, which is rigorous for near-critical
mixtures, allowing the description of interface creation, breakage and merging in a
physically grounded framework. In the framework of the phase-field method, a scalar
order parameter (phase field) describes the local concentration of the two phases; the
order parameter has a constant value in the bulk of each phase, and undergoes a
smooth transition across a thin interfacial layer. The spatial and temporal evolution of
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the order parameter is governed by a Cahn–Hilliard equation (Cahn & Hilliard 1958,
1959a,b), which builds on a chemical potential derived from a free energy functional.

Most previous investigations of the interactions between large droplets and
turbulence have been based on pure fluids (Elghobashi 2019) with only a few
works (Skartlien, Sollum & Schumann 2013; Lu et al. 2017) considering also the
presence of surface-active agents (surfactants). However, real applications are always
characterized by the presence of impurities or surfactants, which locally modify the
surface tension value. Surfactant molecules are amphiphilic, so they have polar heads
and non-polar tails. Amphiphilic molecules tend to accumulate at interfaces, where
they produce a local decrease of the surface tension. The description of surfactants
and of their effects on the multiphase flow adds further complexity to the problem: an
additional variable, the surfactant concentration, has to be computed over a deformable,
topologically changing and ever-moving interface. Only a few numerical methods
capable of describing the dynamics of surfactant-laden interfaces have been proposed.
In particular, extensions to the methods previously presented for surfactant-free
multiphase flows have been developed in recent years for the front-tracking method
(Muradoglu & Tryggvason 2014; Lu et al. 2017), immersed boundary method (Lai,
Tseng & Huang 2008, 2010), volume of fluid method (Renardy, Renardy & Cristini
2002; James & Lowengrub 2004), level-set method (Xu & Zhao 2003; Xu et al.
2006; Piedfert et al. 2018), lattice Boltzmann method (Farhat et al. 2011; Liu et al.
2018) and phase-field method (Komura & Kodama 1997; Engblom et al. 2013).
In the framework of the phase-field method, the presence of a soluble surfactant
can be considered by introducing an additional order parameter, which describes
the surfactant concentration in the entire domain. In particular, this scalar variable
is uniform in the bulk of the two phases and reaches its maximum value at the
interface (where surfactant molecules accumulate preferentially). With respect to
other available approaches, the phase-field framework allows for the description of
surfactant dynamics (including also adsorption/desorption phenomena) by adding
an extra order parameter and, in general, allows one to avoid complex re-meshing
algorithms when dealing with topological changes.

In this work, we employ a two-order-parameter formulation of the phase-field
method (Engblom et al. 2013; Yun, Li & Kim 2014; Soligo, Roccon & Soldati
2019a) to describe the dynamics of a surfactant-laden system. A first order parameter,
the phase field φ, describes the dispersed phase morphology, while a second
order parameter ψ describes the surfactant concentration in the entire system. The
phase-field method is coupled with direct numerical simulation of turbulence to study
the behaviour of a swarm of surfactant-laden droplets in a turbulent channel flow at
a constant shear Reynolds number. Specifically, we consider droplets characterized by
two different values of surface tension (clean interface), set with the Weber number
(ratio between inertial and surface tension forces), and four different surfactant
strengths, set with the elasticity number (parameter that quantifies the magnitude
of surface tension reduction produced by the surfactant). To obtain a complete
benchmark, we also consider two clean (surfactant-free) systems in which surface
tension is constant. Our results indicate that the addition of a soluble surfactant
strongly modifies the morphology of the dispersed phase, especially when stronger
surfactants (larger elasticity numbers) are considered. Using quantitative statistics and
qualitative physical insights, we are able to describe the distribution of the surfactant
over the interface of the droplets and to characterize the modifications produced by
the surfactant in the number of droplets, coalescence and breakage rates, and droplet
size distribution (DSD).
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The paper is organized as follows. First, the governing equations and the numerical
method are presented in § 2. The outcome of the simulations is presented in § 3;
in the first part the effects of the Weber and elasticity numbers on the surfactant
concentration are detailed, while in the second part we focus on their effect on the
morphology of the dispersed phase, analysing the droplet population balance and the
DSD. Lastly, conclusions are drawn in § 4.

2. Methodology
The dynamics of the multiphase turbulent flow is described with direct numerical

simulation of the Navier–Stokes equations coupled with a modified phase-field method
used in a two-order-parameter formulation (Komura & Kodama 1997; Engblom et al.
2013; Yun et al. 2014; Soligo et al. 2019a). The Navier–Stokes equations, suitably
modified to account for the presence of a surfactant-laden interface, describe the flow
field while the phase-field method is used to compute the morphology of the dispersed
phase and the surfactant concentration.

2.1. Computational modelling of interface morphology and surfactant concentration
In the framework of the phase-field method, two scalar order parameters are used
to describe the dispersed-phase morphology and the surfactant concentration. A first
order parameter, the phase field, φ, describes the interface shape and position. The
phase field has a uniform value in the bulk of each phase and undergoes a smooth
transition across the thin interfacial layer. A second order parameter, ψ , is used
to describe the surfactant concentration (Laradji et al. 1992; Komura & Kodama
1997). The surfactant concentration has a low uniform value in the bulk of the
two phases, while at the interface it reaches its maximum value. Indeed, surfactant
molecules, because of their amphiphilic nature (hydrophobic tails and hydrophilic
heads), preferentially accumulate at the interface. The phase field and the surfactant
concentration dynamics are described by two Cahn–Hilliard-like equations, which in
dimensionless form (see appendix A for details) read as

∂φ

∂t
+ u · ∇φ =

1
Peφ
∇

2µφ + fp, (2.1)

∂ψ

∂t
+ u · ∇ψ =

1
Peψ
∇ · [ψ(1−ψ)∇µψ ], (2.2)

where u = (u, v, w) is the velocity field, Peφ and Peψ are the phase-field and the
surfactant Péclet numbers and µφ and µψ are the respective chemical potentials. The
two Péclet numbers are defined as follows:

Peφ =
uτh
Mφβ

, Peψ =
uτhα
Mψβ2

, (2.3a,b)

where uτ is the friction velocity, h the channel half-height, Mφ and Mψ , respectively,
the phase-field and the surfactant mobilities and α and β positive constants (see
appendix A). These two dimensionless parameters represent the ratio between the
diffusive time scale, h2/(Mφ,ψβ

2), and the convective time scale, h/uτ . The term
fp is the penalty flux of the profile-corrected formulation of the phase-field method
(Li, Choi & Kim 2016; Zhang & Ye 2017; Soligo, Roccon & Soldati 2019b). The
adoption of this formulation allows for a better conservation of the interfacial profile
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and to overcome some drawbacks (e.g. mass leakage among the phases, coarsening
and misrepresentation of the interfacial profile) present in the standard formulation of
the phase-field method (Yue, Zhou & Feng 2007; Li et al. 2016). The penalty flux
is defined as follows (Li et al. 2016):

fp =
λ

Peφ

[
∇

2φ −
1
√

2Ch
∇ ·

(
(1− φ2)

∇φ

|∇φ|

)]
, (2.4)

where the numerical parameter λ is set via a suitable scaling (Soligo et al. 2019b).
The expression of the chemical potentials µφ and µψ is derived considering a two-

order-parameter Ginzburg–Landau free energy functional, F [φ,∇φ,ψ]. The functional
is composed of the sum of five different contributions:

F [φ,∇φ, ψ] =
∫
Ω

( f0 + fm + fψ + f1 + fb) dΩ, (2.5)

where Ω is the domain considered. The various contributions to the free energy
functional are defined as

f0 =
1
4(φ − 1)2(φ + 1)2, (2.6a)

fm =
Ch2

2
|∇φ|2 , (2.6b)

fψ = Pi[ψ logψ + (1−ψ) log(1−ψ)], (2.6c)
f1 =−

1
2ψ(1− φ

2)2, (2.6d)

fb =
1

2Ex
φ2ψ. (2.6e)

The first two terms, f0 and fm, are functions of the phase field only; their expression
matches exactly that used in the analysis of clean systems (Scarbolo, Bianco &
Soldati 2015; Roccon et al. 2017; Roccon, Zonta & Soldati 2019). The term f0
describes the phobic behaviour of the two fluids: a double-well potential (whose
minima correspond to the two pure phases) accounts for the tendency of the system
to separate into pure phases. The interfacial term, fm, accounts for the energy stored
in the interfacial layer (i.e. the surface tension). The Cahn number, Ch = ξ/h, is
the ratio between the interface length scale, ξ =

√
κ/β, and the problem length

scale, h, while κ is a positive constant (see appendix A). The Cahn number sets the
thickness of the thin interfacial layer. The three latter terms describe the surfactant
dynamics. The entropy term, fψ , describes the entropy decrease obtained when the
surfactant uniformly distributes in the entire domain. The temperature-dependent
parameter, Pi= κTα/β2, defines the surfactant diffusivity; larger values of Pi (higher
temperatures) promote a more uniform surfactant distribution in all the domain. This
term strictly bounds the surfactant concentration between ψ =0 (absence of surfactant)
and ψ = 1 (saturation of surfactant). The surfactant adsorption term, f1, accounts for
the amphiphilic behaviour and favours the collection of surfactant molecules at the
interface. The contribution of the adsorption term is important at the interface, while
it vanishes in the bulk of the two phases. The last contribution, fb, controls the
solubility of the surfactant in the bulk of the two phases. This term has negligible
contribution at the interface, while it is more effective in the bulk of the phases. The
surfactant solubility parameter, Ex = β/wb, defines the solubility of the surfactant:
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Surfactant-laden droplets in turbulent flow 249

larger values of Ex correspond to a greater solubility of the surfactant in the bulk
regions. For a complete description of all the various quantities, see appendix A.

The expressions of the two chemical potentials, µφ and µψ , are obtained by taking
the variational derivative of the free energy functional with respect to each order
parameter:

µφ =
δF [φ,∇φ, ψ]

δφ
= φ3
− φ −Ch2

∇
2φ +Ch2(ψ∇2φ +∇ψ · ∇φ)+

1
Ex
φψ︸ ︷︷ ︸

Cφψ

, (2.7)

µψ =
δF [φ,∇φ, ψ]

δψ
= Pi log

(
ψ

1−ψ

)
−
(1− φ2)2

2
+
φ2

2Ex
. (2.8)

The term Cφψ may lead to an unphysical behaviour of the thin interfacial layer:
to restore the correct interfacial behaviour, Cφψ has been neglected according to Yun
et al. (2014), and, therefore, surface tension forces are computed using a geometrical
approach (Popinet 2018), which relies on the phase field to compute the interface
curvature, together with an equation of state (EOS) describing the surfactant effect on
surface tension (Yun et al. 2014). This approach, compared to the thermodynamical
one (Laradji et al. 1992; Engblom et al. 2013), improves the flexibility of the method
since surfactant action on surface tension is completely customizable via the surface
tension EOS. From the expression of the chemical potentials, the equilibrium profiles
for the two order parameters can be derived; at equilibrium, µφ and µψ are uniform
in the entire domain, and therefore

∇µφ = 0, ∇µψ = 0. (2.9a,b)

Considering a planar interface located at x= 0 (where x is the direction normal to
the interface), an analytic solution can be derived for both of the order parameters

φ(s)= tanh
(

s
√

2Ch

)
, (2.10)

ψ(φ)=
ψb

ψb +ψc(φ)(1−ψb)
, (2.11)

where s is the coordinate normal to the interface. The auxiliary variable, ψc, is a
function of the phase field, and it is defined as follows:

ψc(φ)= exp
[
−

1− φ2

2Pi

(
1− φ2

+
1
Ex

)]
. (2.12)

The phase field is uniform in the bulk of the two phases (φ± 1) and it undergoes a
smooth transition following a hyperbolic tangent profile across the interface. Similarly,
the surfactant concentration is uniform in the bulk of the two phases (surfactant bulk
concentration, ψb) and reaches its maximum value at the interface (peak value, ψ0).
The peak value ψ0 is influenced by the surfactant parameters Pi and Ex, and by the
surfactant bulk concentration, ψb, as indicated by (2.11)–(2.12). The two equilibrium
profiles are shown in figure 1(a): the phase field is shown in red (linear scale on the
left-hand axis), while the surfactant concentration is shown in blue (logarithmic scale
on the right-hand axis).
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FIGURE 1. (Colour online) (a) Equilibrium profiles for the phase field (red, linear scale
on the left-hand axis) and for the surfactant concentration (blue, logarithmic scale on
the right-hand axis). The phase field is uniform in the bulk (φ = ±1) and undergoes a
smooth transition following a hyperbolic tangent profile across the interface. The surfactant
concentration is uniform in the bulk (ψ =ψb) and reaches its peak at the interface (ψ =
ψ0). (b) Modified Langmuir EOS for different elasticity numbers βs. A stronger surfactant
(larger βs) introduces a considerable surface tension reduction even for low concentrations.
The surface tension decrease is bounded to fσ = 0.5 (thin dashed black line). Indeed,
according to experiments, surface tension does not decrease below this threshold (roughly).

2.2. Hydrodynamics
To describe the hydrodynamics of the multiphase system, the phase field and the
surfactant concentration transport equations have been coupled with the Navier–Stokes
equations. The presence of a surfactant-laden interface and of the accompanying forces
are accounted for by introducing an interfacial term in the Navier–Stokes equations.
Here, surface tension forces are calculated adopting a geometrical approach (Yun et al.
2014): the curvature of the interface is calculated using the Korteweg tensor (Korteweg
1901) while an EOS is used to describe the surface tension reduction produced by
the surfactant. In this work, to focus on the effects of the surfactant, we consider two
phases with matched density (ρ = ρ1 = ρ2) and viscosity (µ = µ1 = µ2). With these
assumptions, the continuity and Navier–Stokes equations result in

∇ · u= 0, (2.13)

∂u
∂t
+ u · ∇u=−∇p+

1
Reτ
∇

2u+
3
√

8

Ch
We
∇ · [ fσ (ψ)T c], (2.14)

where u= (u, v, w) is the velocity field, ∇p is the pressure gradient (including also
the mean pressure gradient that drives the flow; see Soldati & Banerjee (1998)), T c=

|∇φ|2I − ∇φ ⊗ ∇φ is the Korteweg tensor and fσ (ψ) is the surface tension EOS
(Chang & Franses 1995; Bazhlekov, Anderson & Meijer 2006). The last term, which
includes the Korteweg tensor and the surface tension EOS, accounts for the interfacial
forces induced by the surfactant-laden interface on the flow. This term can be split in
a component normal to the interface (capillary) and one tangential to the interface
(Marangoni):

∇ · [ fσ (ψ)T c] = fσ (ψ)∇ · T c︸ ︷︷ ︸
Normal (capillary)

+ ∇fσ (ψ) · T c︸ ︷︷ ︸
Tangential (Marangoni)

. (2.15)
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When surface tension is constant, the Marangoni contribution vanishes, leaving only
the capillary (normal) contribution.

The dimensionless groups appearing in (2.14) are the shear Reynolds number and
the Weber number. The Reynolds number, Reτ = ρuτh/µ, is the ratio between inertial
and viscous forces, where uτ =

√
τw/ρ is the friction velocity, τw the mean wall-

shear stress, ρ the density, µ the viscosity and h the channel half-height. The Weber
number, We= ρu2

τh/σ0, is the ratio between inertial and surface tension forces and it
is computed using as a reference the surface tension of a clean interface, σ0.

The EOS adopted in this work is a modified version of the Langmuir EOS.
While at low surfactant concentrations the original Langmuir EOS well follows
the experimental measurements, there are experimental evidences for liquid–liquid
(López-Díaz, García-Mateos & Velázquez 2006; Ju et al. 2017) and gas–liquid
(Chang & Franses 1995) systems showing that surface tension never decreases
below about 30 % to 60 % of the clean interface surface tension for any surfactant
concentration. This is a consequence of the saturation of the interface: once a
monolayer of surfactant molecules is formed over the interface, no more surfactant
can collect there and, thus, surface tension remains constant (Porter 1991, p. 26).
The Langmuir EOS, however, predicts an unbounded surface tension decrease for
increasing surfactant concentrations. Thus, we use a modified EOS, in which the
minimum surface tension value was set to half the clean interface surface tension;
while this value was arbitrarily chosen, it was selected within the range of measured
values (Chang & Franses 1995; López-Díaz et al. 2006; Ju et al. 2017). The modified
Langmuir EOS adopted in this work is

fσ (ψ)=
σ(ψ)

σ0
=max

1+ βs log (1−ψ)︸ ︷︷ ︸
Langmuir EOS

, 0.5

 , (2.16)

where σ(ψ) is the dimensional surface tension of the surfactant-laden interface and
βs=RTψ∞/σ0 is the elasticity number, R being the ideal gas constant, T the absolute
temperature and ψ∞ the maximum surfactant packing concentration. The elasticity
number quantifies the surfactant strength: for a fixed surfactant concentration, a higher
surface tension reduction can be obtained with a stronger surfactant (higher βs). The
profiles of the EOS for the different elasticity numbers considered in this work are
reported in figure 1(b).

The limitation on the minimum surface tension that can be reached influences
also the Marangoni stresses, which are produced by surface tension gradients and
vanish whenever the surface tension is uniform along the interface. Beside Marangoni
stresses, surfactant accumulation at the interface produces an effect, called interface
viscosity, which contributes to immobilizing the interface (Langevin 2014; Elfring,
Leal & Squires 2016). This effect, which becomes important only when surfactant
accumulation at the interface reaches saturation conditions, has been here neglected
as we adopt a soluble surfactant (Langevin 2014).

2.3. Numerical simulation of breakage and coalescence: current limitations
The object of this section is to analyse to what extent current methodologies adopted
to simulate breakage and coalescence phenomena can tell us about the real physics,
and, more specifically, what they cannot tell us. One of the most challenging
aspects that has to be tackled in turbulent multiphase flows is the description of
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the topological modifications of the interface (i.e. coalescence and breakage). A fully
resolved simulation of these phenomena would require resolving all the scales, from
the molecular scale of the interface (Rekvig & Frenkel 2007; Sreehari et al. 2019)
up to the largest scales of the flow. Such a simulation, however, is way beyond
the capabilities of any existing supercomputing infrastructure. The usual choice is
to avoid resolving the small interfacial scales and find a way to approximate their
dynamics on a much larger scale. In particular, here we limit the resolved range to
the scales of turbulence: from the Kolmogorov length scale up to the problem size.
Thus, phenomena occurring at scales smaller than the Kolmogorov scale are smeared
out on the smallest resolved scale. In the following the various stages of a breakage
and of a coalescence event will be detailed, particularly focusing on their multiscale
character. This description will be the starting ground to assess the reliability of the
numerical description of topological changes of the interface.

From the physical viewpoint, a breakage event can be divided into several stages
(Notz & Basaran 2004). (i) Thread formation: the shear stresses stretch the droplet and
a ligament is formed. (ii) Pinch-off: the thread elongates and capillary instabilities
pinch off the ligament (neck formation). (iii) Thread breaking: the liquid thread
breaks at the pinch-off and the newly formed droplets separate. Upon separation,
surface tension reshapes the droplets and the threads are retracted. Overall, breakage
is a very quick phenomenon that can be well approximated without resolving the
dynamics at the molecular scale; there is evidence that the Navier–Stokes equations
alone provide an adequate description of a breakage event (Eggers 1995). In addition,
the small time scale of a breakage limits the impact of the approximation on the
overall dynamics of the flow (Herrmann 2011; Lu & Tryggvason 2018, 2019).
Therefore, regardless of the methodology used, the description of breakages on
turbulence-resolved grids is considered to be rather accurate, although in the pinch-off
region the high curvature of the interface may not be perfectly resolved. Breakage
events are implicitly described in interface-capturing methods (Hirt & Nichols 1981;
Jacqmin 1999; Sethian 1999), while interface-tracking methods require explicit extra
efforts, which turn into the identification of suitable closure models to manage the
connectivity of the marker points (Tryggvason et al. 2001; Tryggvason, Scardovelli
& Zaleski 2011). In figure 2(a–d) we report the current numerical simulation of a
breakage event, together with the computational grid and the length scale in wall
units. In figure 2(b–d) the different stages of the breakage are reported with the
running time of the simulation. Although the grid resolution is sufficient to resolve
the Kolmogorov length scale of the turbulent flow (see § 2.5) and corresponds to a
considerable computational effort, it is clear from the time sequence that the physical
phenomena occur at length scales smaller than the grid resolution. As discussed
before, however, the breakage occurs on a very short time scale (see figure 2c,d), so
that we expect a rather good numerical representation of this phenomenon.

The dynamics of a coalescence event is more complex compared to that of a
breakage. It is influenced by phenomena occurring at very small length scales (order
of the molecular scale) and it occurs on larger time scales. From the physical
viewpoint, the coalescence process can be divided into the following stages (Kamp,
Villwock & Kraume 2017). (i) Approach: the two droplets approach each other.
(ii) drainage: the thin liquid film between the droplets starts to drain. (iii) Coalescence:
small-scale interactions lead to the rupture of the thin liquid film and to the formation
of a coalescence bridge. (iv) Reshaping: surface tension forces reshape the droplet.
Considering the small scales involved in film drainage and rupture, the description
of a coalescence event in numerical simulations is extremely challenging. In addition,
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50 w.u.

t+ = 0 t+ = 0t+ = 2.5 t+ = 5.0 t+ = 15 t+ = 30

50 w.u.(a) (e)

(b) (c) (d) (f) (g) (h)

FIGURE 2. (Colour online) Time sequence of a breakage event (b–d) and of a coalescence
event ( f –h). The breakage refers to the droplet reported in (a) while the coalescence
refers to the droplets reported in (e). Time increases from left to right; the snapshots
referring to the breakage event are captured every 1t+ = 2.5 while those referring to the
coalescence event every 1t+= 15. Panels show a small portion of the domain in the x–y
plane. Considering the breakage event, the thin thread becomes progressively thinner (b,c)
and subsequently breaks (e). Conversely, considering the coalescence event, after the initial
approach ( f ), the thin liquid film drains, a bridge is formed and the two droplets merge
(g); finally surface tension forces reshape the droplet (h). As a reference, the computational
grid employed (which has a spacing 1x+= 3.68 wall units (w.u.) and 1y+= 3.68 w.u.) is
also reported. A red box (a,e) identifies the region of the domain reported in the smaller
panels (b–d, f –h).

the physical mechanisms driving film rupture are still being investigated (Chen et al.
2004; Rekvig & Frenkel 2007; Sreehari et al. 2019), and a correct prediction of
the time required for film rupture cannot be explicitly obtained (Kamp et al. 2017).
Therefore, a part of the physics involved in the coalescence process cannot be
resolved or included in the two-phase flow numerical simulations. Current numerical
simulations rely on different approaches to describe and/or model coalescence: closure
models are required in interface-tracking methods (Tryggvason et al. 2001; Lu &
Tryggvason 2018, 2019), while coalescence is implicitly handled in interface-capturing
methods, where two separate interfaces merge when they are closer than the
grid resolution (Dodd & Ferrante 2016; Rosti, De Vita & Brandt 2019a; Rosti
et al. 2019b). The current literature standpoint is that, regardless of the specific
approach employed to describe coalescence, numerical simulations fail to describe
physical coalescence, with this inaccuracy referred to as numerical coalescence.
For all interface-capturing approaches, numerical coalescence over-predicts physical
coalescence. Numerical coalescence for the interface-tracking methods depends on the
parameters of the coalescence models used. Which is the best method to circumvent
the issues produced by numerical coalescence is still debated: currently some
numerical methods exploit film drainage models (Kwakkel, Breugem & Boersma
2013). These models, however, are based on strong simplifications (e.g. laminar
flow of the film, flat or imposed interface shape, etc.), which might not be fully
representative of the real configuration (Charles & Mason 1960; Allan, Charles &
Mason 1961) and require the use of ad hoc tuned parameters. In figure 2(e–h)
we report the numerical simulation of a coalescence event, together with the
computational grid and the length scale in wall units. The different stages of
the coalescence are reported with the simulation running time in figure 2( f –h).
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Considering the grid employed, it is clear that the approach (figure 2f ), the film
drainage, the coalescence bridge formation (figure 2g) and the reshaping (figure 2h)
stages can be accurately resolved, while film rupture (not shown here) is approximated
on a much larger scale.

In the simulations presented in this work, we decided to maintain the method
based on its thermodynamic foundations, without using any coalescence or breakage
models. However, to examine the influence of numerical coalescence on the obtained
results, we performed an assessment on a much finer grid with twice the number
of points in all directions (i.e. Nx × Ny × Nz = 2048 × 1024 × 1025). The use of a
refined grid allows for the use of a halved thickness of the thin interfacial transition
layer (i.e. a halved Cahn number) and at the same time allows one to mitigate
the effect of the numerical coalescence on the results obtained. A comparison of
the results obtained on the two grids (coarse: Nx × Ny × Nz = 1024 × 512 × 513;
fine: Nx × Ny × Nz = 2048 × 1024 × 1025) seems to suggest that it is possible to
obtain fairly consistent results only slightly influenced by the grid resolution. This
fairly good convergence of the results is achieved also because of the adoption a
proper scaling between the mobility (Péclet number) and the thickness of the thin
interfacial layer (Yue, Zhou & Feng 2010; Magaletti et al. 2013). For the sake of a
complete discussion of this point, we anticipate here some details of §§ 3.6 and 3.8.
We find that coalescence and breakage rates obtained with the two grids differ by
no more than 10 %; we also observe that the resulting DSDs almost overlap. The
simulations here presented seem a fair approximation of the two-phase flow system
from the macroscopic point of view (e.g. dispersed-phase morphology, coalescence
and breakage rates, surfactant distribution). However, we ought to underline that a
main shortcoming of these simulations – based on a continuum description of the
system – is that the molecular-scale physics governing the drainage and rupture
(Kamp et al. 2017) cannot be simulated. Thus, these simulations cannot be used
to extract microscopic information concerning film rupture and the role played by
the surfactant molecules in such a process. Clearly, the importance of including the
full physics (and the way in which it is modeled and included) cannot be estimated
a priori on a quantitative basis, and this is still an important open research question.

2.4. Numerical method
The governing equations (2.1), (2.2)–(2.13) and (2.14) have been solved in a
closed-channel geometry using a pseudo-spectral method (Hussaini & Zang 1987;
Canuto et al. 1988; Peyret 2002). In particular, the equations are discretized using
Fourier series along the streamwise and spanwise directions (x and y) and Chebyshev
polynomials along the wall-normal direction (z). All the unknowns (velocity u, phase
field φ and surfactant concentration ψ) and their respective governing equations are
Eulerian and are solved on the same Cartesian grid.

The governing equations are advanced in time using an implicit–explicit scheme.
The linear diffusive term of the equations is integrated using an implicit scheme, while
the nonlinear part is integrated using an explicit scheme. For the the Navier–Stokes
equations, an Adams–Bashforth scheme is used for the nonlinear part while a Crank–
Nicolson scheme is used for the linear term. For the Cahn–Hilliard-like equations, the
nonlinear terms are time-discretized using an Adams–Bashforth algorithm while linear
terms are discretized using an implicit Euler algorithm. The adoption of the implicit
Euler scheme allows for the damping of unphysical high-frequency oscillations that
could arise from the steep gradients present in the Cahn–Hilliard equations (Badalassi,
Ceniceros & Banerjee 2003; Yue et al. 2004).
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In this scheme, the Navier–Stokes equations are not directly solved but are rewritten
in the so-called velocity–vorticity formulation: instead of three second-order equations
for each component of the velocity, a fourth-order equation for the wall-normal
component of the velocity and a second-order equation for the wall-normal component
of the vorticity ωz are obtained (Kim, Moin & Moser 1987; Speziale 1987). The phase
field and the surfactant concentration transport equations are directly solved in their
original formulation. Further details of the method can be found in Soligo et al.
(2019a,b).

The system of transport equations is completed by a set of suitable boundary
conditions. For the Navier–Stokes equations a no-slip boundary condition is imposed
at the two walls at z=±1:

u(z=±1)= 0. (2.17)

For the phase field, the surfactant concentration and the respective chemical
potentials, no-flux boundary conditions are enforced at the two walls. This is formally
equivalent to imposing the following boundary conditions:

∂φ

∂z
(z=±1)= 0,

∂3φ

∂z3
(z=±1)= 0,

∂ψ

∂z
(z=±1)= 0. (2.18a−c)

Along the streamwise and spanwise directions (x and y), periodic boundary
conditions are implicitly imposed (Fourier discretization) on all variables. The
adoption of these boundary conditions leads to the conservation of both phase
field and surfactant concentration over time:

∂

∂t

∫
Ω

φ dΩ = 0,
∂

∂t

∫
Ω

ψ dΩ = 0. (2.19a,b)

As a consequence, the total mass of the two phases and of the surfactant
concentration is conserved. Despite this, mass conservation of each of the two
phases, φ =+1 and φ =−1, is not guaranteed (Yue et al. 2007; Soligo et al. 2019b)
and some small leakages between the phases may occur. In the cases presented here,
because of the adoption of the profile-corrected formulation (Li et al. 2016; Soligo
et al. 2019b), mass leakages occur only during the initial transient; the total mass
loss of the dispersed phase reaches at most 8 % in the worst case. This issue is
linked with the initial condition adopted and will be discussed in more detail in the
next section.

2.5. Simulation set-up
The computational domain is a closed channel with dimensions Lx × Ly × Lz =

4πh × 2πh × 2h corresponding to L+x × L+y × L+z = 3770 × 1885 × 600 wall units
(see appendix B for details on the wall units scaling). Equations are discretized on
a grid with Nx × Ny × Nz = 1024× 512× 513 collocation points. The simulations are
performed at a fixed shear Reynolds number of Reτ = 300. We consider two values of
the surface tension, corresponding to We= 1.50 and We= 3.00. The selected surface
tension values match those commonly found in oil–water mixtures (Than et al.
1988). To analyse the effects introduced by the surfactant, for each surface tension
value (Weber number), we test four different surfactants, characterized by increasing
elasticity numbers (i.e. increasing surfactant strength). In particular, we consider the
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System Reτ We Ch Peφ Peψ Pi Ex ψb βs

Clean 300 1.50 0.025 40 — — — — —
Surfactant-laden 300 1.50 0.025 40 100 1.35 0.117 0.01 0.50
Surfactant-laden 300 1.50 0.025 40 100 1.35 0.117 0.01 1.00
Surfactant-laden 300 1.50 0.025 40 100 1.35 0.117 0.01 2.00
Surfactant-laden 300 1.50 0.025 40 100 1.35 0.117 0.01 4.00
Clean 300 3.00 0.025 40 — — — — —
Surfactant-laden 300 3.00 0.025 40 100 1.35 0.117 0.01 0.50
Surfactant-laden 300 3.00 0.025 40 100 1.35 0.117 0.01 1.00
Surfactant-laden 300 3.00 0.025 40 100 1.35 0.117 0.01 2.00
Surfactant-laden 300 3.00 0.025 40 100 1.35 0.117 0.01 4.00

TABLE 1. Summary of the parameters used for the different cases examined. For each
Weber number, one clean (surfactant free) and four surfactant-laden systems have been
considered. The surfactant-laden systems differ in the value of the elasticity number, which
spans the range from βs = 0.50 (weaker surfactant) to βs = 4.00 (stronger surfactant).

following elasticity numbers: βs = 0.50 (weaker surfactant), βs = 1.00, βs = 2.00 and
βs = 4.00 (stronger surfactant). In all these cases the total amount of surfactant is
kept fixed (set with the surfactant bulk concentration, ψb). Overall, we performed a
total of 10 simulations: a clean system and four surfactant-laden systems for each
Weber number; refer to table 1 for an overview of the parameters considered.

The Cahn number has been set to Ch= 0.025: this value has been chosen according
to the grid resolution as it allows for the accurate description of the steep gradients
present at the interface. The phase field Péclet number, Peφ , has been set to Peφ =
1/Ch= 40, in order to respect the guidelines given in Yue et al. (2010) and Magaletti
et al. (2013), which, for increasing grid resolutions, allows convergence to the sharp
interface limit. The choice of these two parameters is crucial and, as will be discussed
in § 3.8, the adoption of the scaling Peφ ∝ Ch−1 guarantees the convergence of the
results. Clearly, on increasing the grid resolution (and thus the computational cost),
smaller Cahn numbers can be adopted and the dynamics of smaller droplets can be
captured. However, the dynamics of the larger droplets (droplets large enough to be
described with the current grid resolutions) is almost unchanged. Finally, the penalty
flux parameter has been set to λ = 2.5 following the indications given by Li et al.
(2016) and Soligo et al. (2019b).

For the surfactant, the bulk concentration was kept fixed in all cases to ψb = 0.01.
The Péclet number has been set to Peψ = 100; this value can be considered
representative of the behaviour of non-ionic and anionic surfactants in aqueous
solutions (Weinheimer, Fennell & Cussler 1981). The temperature-dependent parameter
has been set to Pi= 1.35 and the surfactant solubility parameter to Ex= 0.117. These
values have been set according to previous work of Engblom et al. (2013). Despite
these two parameters having a physical relevance, their effect is not investigated here
for reasons of simplicity. However, it can be anticipated that for smaller Ex and/or
larger Pi (stronger adsorption and diffusion), we expect a more uniform surfactant
concentration due to enhanced diffusion.

At the beginning of the simulations, a regular array of 256 spherical droplets with
diameter d = 0.4h (corresponding to d+ = 120 wall units) is initialized in a fully
developed turbulent channel flow; this flow field is obtained from a preliminary direct
numerical simulation of a single-phase flow at Reτ = 300. With this configuration,
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the dispersed-phase volume fraction Φ=Vd/(Vc+Vd) (Vd and Vc being the volume of
the dispersed and carrier phases, respectively) is Φ ' 5.4 %; the same volume fraction
was used in previous works (Scarbolo et al. 2015; Scarbolo, Bianco & Soldati 2016).
The phase field and the surfactant concentration are initialized with their respective
equilibrium profiles: the phase field is constant in the bulk of the phases (φ =+1 in
the droplets and φ=−1 in the carrier fluid) and undergoes a smooth transition across
the thin interfacial layer. Similarly, the surfactant concentration is uniform in the bulk
of the two phases (ψ =ψb) and reaches its peak value at the interface (ψ =ψ0). At
the beginning of the simulation, turbulent fluctuations of the undisturbed flow field
strongly perturb the phase-field interfacial profile, leading to a reduction of the mass
of the dispersed phase. After this initial transient, during which the flow field and the
phase field couple together, the mass of each phase remains constant over time.

Before proceeding, we justify the initial condition chosen for the phase field, which
may seem unrealistic, since a swarm of spherical droplets is suddenly appearing in a
single-phase flow field. To prove its consistency and to guarantee the independence
of the results from the selected initial condition, we performed further preliminary
simulations (not reported here) in which different initial conditions were considered,
such as, for instance, the injection of a liquid sheet at the channel centre. All
the different initial conditions tested achieve the same statistically steady results,
indicating that memory of the initial condition is completely lost after an initial
transient. In addition, the initial condition we chose requires a shorter time to reach a
steady-state configuration with respect to the other initial conditions tested. For these
reasons and to better compare our results with previous works (Scarbolo et al. 2015,
2016; Roccon et al. 2017), the presented initial condition (regular array of spherical
droplets) has been employed here.

3. Results
We characterize the behaviour of the multiphase system from both qualitative and

quantitative viewpoints so as to obtain a physically grounded understanding of the
outcome of the competition among inertial forces, viscous forces and surface tension
forces. After describing on a qualitative basis the steady state of the system, for each
of the examined cases we characterize the surfactant concentration over the droplet
interface by computing its probability density function (PDF) and by studying the
influence of the droplet size on its distribution. Then, we focus on the modifications
produced by the surfactant dynamics on the dispersed phase morphology, which
we characterize using macroscopic indicators, such as the number of droplets and
their breakage and coalescence rates. Finally, we analyse the resulting DSD and we
compare it with the theoretical scaling developed by Garrett, Li & Farmer (2000).
A detailed description of turbulence modifications produced by the presence of a
swarm of droplets is beyond the scope of this work and will be investigated in the
future. However, we can anticipate that, as reported in previous works (Scarbolo et al.
2016; Roccon et al. 2017), a slight increase of the flow rate (' 1 %) is observed
for all cases considered (simulations are performed with a constant pressure gradient
driving the flow).

3.1. Qualitative behaviour of multiphase flow
After the release of the droplets in the turbulent channel flow (t+ = 0), each
single droplet starts to interact with the background turbulence and with the
neighbouring droplets. In this initial transient, droplets are deformed by the action
of the shear stress, and coalescence and breakage phenomena start to take place.
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FIGURE 3. (Colour online) Top view of the steady-state configuration (t+= 3750) attained
by six different cases: (a,c,e) We = 1.50; (b,d, f ) We = 3.00. (a,b) Clean cases; (c,d)
βs = 1.00; (e, f ) βs = 4.00. In each panel, the interface of the droplets (iso-contour φ = 0)
is coloured in red for the clean cases (a,b) and by the surfactant concentration for the
surfactant-laden cases (c–f ): red identifies regions with a low concentration, while white
identifies regions with a high concentration. In the background, an x+–y+ plane located
at z+ = 0 (centre of the channel) shows the magnitude of the velocity fluctuations, u′ · u′.
In (d), a yellow box highlights the sample droplet used in the following to present the
interaction between shear stresses and Marangoni stresses (see figure 5).

At the same time, surfactant is redistributed according to the local flow field and
to the dispersed phase morphology (number and shape of the droplets). After this
transient, memory of the initial condition is lost and the multiphase flow reaches
a statistically steady configuration. This new configuration is shown in figure 3 for
six different combinations of the parameters at t+ = 3750. Panel (a,c,e) refers to
We = 1.50 and (b,d, f ) to We = 3.00. Each row corresponds to a different elasticity
number: clean (a,b), βs = 1.00 (c,d) and βs = 4.00 (e, f ). The system configuration
is displayed showing all the droplets in the top half of the channel, identified by
the iso-contour φ = 0 (interface); for the surfactant-laden cases (c–f ), the interface is
coloured by the surfactant concentration. In addition, to give a qualitative overview
of the modifications induced in the carrier fluid turbulence by the dispersed phase,
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the magnitude of the velocity fluctuations, u′ · u′, on an x+–y+ plane located at the
channel centre (z+ = 0) is reported in greyscale (white, low; black, high).

From these qualitative pictures, we can make two important observations: the
different combinations of the Weber and elasticity numbers have a strong impact
on the dispersed-phase morphology and the surfactant distribution over the interface
of the droplets is non-uniform. In particular, analysing the surfactant concentration,
we observe that larger droplets exhibit a highly non-uniform surfactant distribution
while for smaller droplets the distribution tends to be more uniform. In addition, we
observe also the presence of small regions that exhibit high surfactant concentrations
(bright yellow/white regions). Turning to the dispersed-phase morphology, we can
clearly notice the effect of the Weber and elasticity numbers. Specifically, for both
Weber numbers, an increase of the elasticity number leads to the formation of smaller
droplets and to the consequent increase of the number of droplets and of the total
interfacial area. The typical droplet size reduces as either the elasticity number or
the Weber number is increased: a reduction of the surface tension weakens surface
tension forces and promotes larger curvature values and, eventually, droplet breakage.
Finally, we can observe some qualitative differences from the map of the velocity
fluctuation magnitude: for We = 1.50 (a,c,e), regions characterized by large velocity
fluctuations are more elongated and cover a significant area, while for We = 3.00
(b,d, f ) these regions are smaller and more fragmented. This difference can be better
appreciated comparing the two extreme cases: figures 3(a) and 3( f ).

3.2. Shear stresses, Marangoni stresses and breakage/coalescence of droplets
Before proceeding with a more quantitative characterization of the results, it is worth
briefly describing the complex interactions among the flow, the interface and the
local surfactant concentration. These interactions, which are graphically summarized
in figure 4, are deeply interconnected and the contribution of each single factor (flow,
interface and surfactant) cannot be disentangled easily. We start by considering the
action of the turbulent flow on the phase field (dispersed-phase morphology) and on
the surfactant concentration. The turbulent flow, with the associated shear stresses,
transports surfactant over the interface, depleting some regions of surfactant and
accumulating it in others (top to bottom-left arrow). In addition, the shear stresses
directly influence the dispersed phase morphology: strong shear stresses deform the
interface and promote breakage of the droplets (top to bottom-right arrow). In turn,
the surfactant-laden interface generates stresses according to the local dispersed-phase
morphology and surfactant concentration (bottom to top arrows). These stresses
modify the local flow field and shear stresses, which in turn affect the merging,
breaking and stretching of the interface and the surfactant distribution. For instance,
Marangoni stresses (tangential to the interface) help in preventing coalescence, since
they hinder the drainage of the liquid film separating the droplets (Dai & Leal 2008;
Soligo et al. 2019a). In a similar way, the modifications of the local flow field
produced by Marangoni stresses are crucial in the breakage of droplets (Stone &
Leal 1990) and in the pinch-off of liquid threads (Kamat et al. 2018).

The surfactant distribution and the dispersed-phase morphology are closely linked
together. In particular, the interface deformation (stretching and compression) favours
the accumulation or dilution of surfactant and thus leads to a change in the local
surfactant concentration (right to left arrow). In addition, the interface curvature
influences the adsorption of surfactant from the bulk towards the interface and
vice versa (Hsu, Chang & Lin 2000; Eggleton, Tsai & Stebe 2001). The resulting
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FIGURE 4. Graphical representation of the main interactions among flow field, dispersed-
phase morphology and surfactant concentration. On the one hand, the shear stresses
produced by the flow field affect the dispersed-phase morphology and the surfactant
distribution (top to bottom arrows). On the other hand, capillary and Marangoni stresses
influence the local flow field (bottom to top arrows). Then, also the dispersed-phase
morphology and the surfactant concentration mutually interact: the surfactant distribution
locally reduces surface tension and increases the interface deformability (left to right
arrow). This effect is reflected in the interface morphology and dynamics, which in turn
affect the surfactant distribution (right to left arrow).

surfactant distribution, in turn, influences the local curvature: surfactant increases the
interface deformability (lower surface tension) and, as a consequence, large curvature
values are favoured by high surfactant concentrations (left to right arrow).

We now focus on the main factors determining the surfactant concentration over the
interface of the droplets: an interesting coupling between shear and Marangoni stresses
can be highlighted. This coupling is explained using figure 5, which shows the shear
stresses (figure 5a), the surfactant concentration (figure 5b) and Marangoni stresses
(figure 5c) on the interface of the sample droplet marked by a yellow rectangle in
figure 3(d). First, we consider the shear stresses; their action, in conjunction with
the droplet shape, leads to a non-uniform surfactant distribution. This first interaction
can be appreciated by looking at figure 5(a,b), showing the component tangential to
the interface of the shear stresses, St, normalized by its magnitude (reported only
on the interface, blue, small; red, large), and showing the surfactant distribution on
the droplet interface (red, low; yellow, high). The resulting non-uniform surfactant
distribution generates a non-uniform surface tension which, in turn, gives rise to
Marangoni stresses, which are tangential to the interface and act to restore a uniform
value of the surface tension by sweeping surfactant from high-concentration regions
(low surface tension, yellow) towards low-concentration regions (high surface tension,
red). Marangoni stresses are proportional to the surface tension gradient and can be
directly linked to the surfactant concentration via the surface tension EOS. Their
action is shown in figure 5(c), which reports the spatial distribution of Marangoni
stresses (normalized by their magnitude) on the droplet interface (coloured as in
figure 5b). It is interesting to observe that Marangoni stresses oppose the shear
stresses (which generate a non-uniform surfactant distribution) and, therefore, lead to
a reduction of the shear stresses at the droplet interface (right to left arrow).
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Shear stress(a) (b) (c)Surfactant concentration Marangoni stresses

High ¥ (low ß)

Low ¥ (high ß)

FIGURE 5. (Colour online) Sketch of the coupling between shear and Marangoni stresses.
The sketch is realized considering the droplet marked by the yellow box in figure 3(d).
(a) The component tangential to the interface of the shear stresses, St, on the droplet
interface and normalized by its magnitude (see appendix C for details of St). The interface
is coloured by the shear stress magnitudes (blue, small; red, large). (b) The resulting non-
uniform surfactant distribution (red, low; yellow, high). This distribution, in turn, leads
to a non-uniform surface tension distribution and thus gives rise to Marangoni stresses,
shown in (c) using unit length vectors. These stresses try to restore a uniform value of
the surface tension, driving flow from regions of high surfactant concentration (yellow)
towards regions with a lower concentration (red). The Marangoni stresses feed back to
the local shear stress distribution (right to left arrow).

3.3. Probability density function of interfacial surfactant concentration
To quantify the outcome of the interaction among flow field, dispersed-phase
morphology and surfactant concentration, we start by analysing the surfactant
distribution over the interface of the droplets. As suggested by figure 4, the
distribution of the surfactant is determined by the interplay between local shear
stresses, Marangoni stresses, dispersed-phase morphology and adsorption/desorption
phenomena. To quantify the outcome, we compute the PDF of the interfacial surfactant
concentration (i.e. the surfactant concentration at the interface, identified as the
iso-contour φ = 0). The results, computed once a steady configuration is obtained
(from t+> 2500 until the end of the simulation), are reported in figure 6 for We= 1.50
and We= 3.00.

For We = 1.50 (figure 6a), the PDFs are asymmetric and skewed to the right:
stronger positive fluctuations in the surfactant concentration are more likely to occur,
while strong negative fluctuations rarely happen. The asymmetry present in the PDF
shape becomes more pronounced as the elasticity number increases. In addition,
we observe that the mean value of the interfacial surfactant concentration shifts
towards smaller values for larger elasticity numbers. This shift can be traced back
to the increase of the total interfacial area, which is originated by a larger number
of droplets with a more deformable interface. This effect is more pronounced for
stronger surfactants (higher elasticity numbers), which indeed are more effective in
reducing surface tension. Since surfactant distributes over the droplet interface, a
larger interface extension reduces the average surfactant concentration.

We now focus on the three lower elasticity numbers (βs = 0.50, βs = 1.00 and
βs = 2.00); the case for βs = 4.00 requires a specific consideration and will be
discussed later on. For these three cases, we can clearly notice that the PDF narrows
about its peak as the elasticity number is increased. This effect originates from
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FIGURE 6. (Colour online) The PDF of the interfacial surfactant concentration: (a) We=
1.50; (b) We = 3.00. The different colours refer to βs = 0.50 (blue), βs = 1.00 (green),
βs = 2.00 (yellow) and βs = 4.00 (red). The concentration at which the shutdown of
Marangoni stresses occurs (shutdown concentration, ψs) is reported with thin dashed lines
(same colours as before). In general, for higher elasticity numbers, the PDF becomes taller
and narrows around the most probable value. However, for the cases at βs = 4.00, the
shutdown of Marangoni stresses markedly affects the PDF shape. This modification is
particularly evident for βs = 4.00 and We= 1.50, the red line in (a).

the action of the Marangoni stresses, which act to restore a uniform value of
the surface tension and whose amplitude is proportional to the elasticity number.
Indeed, Marangoni stresses favour a uniform surfactant distribution, as reflected by
the narrowing of the surfactant concentration about its peak. In addition, we can
also observe that low values of the surfactant concentration are strongly penalized:
the surfactant concentration is strictly bounded in ψ = (0, 1), as prescribed by the
chemical potential (equation (2.8)). Turning now to the highest elasticity number
(βs= 4.00), the PDF exhibits a markedly different behaviour: the most probable value
of the PDF is lower (with respect to βs = 2.00) and the shape is more right-skewed.
The origin of this behaviour is connected to the shutdown of Marangoni stresses.
Indeed, the maximum surface tension reduction is bounded and once the surfactant
concentration is higher than a critical value, here referred to as shutdown concentration
ψs, surface tension remains constant and the action of Marangoni stresses ceases. The
shutdown concentration, ψs, can be computed from the surface tension EOS by
imposing fσ (ψs)= 0.5:

ψs(βs)= 1− e−0.5/βs . (3.1)

The resulting shutdown concentrations (ψs = 0.117 for βs = 4.00, ψs = 0.221 for
βs = 2.00 and ψs = 0.393 for βs = 1.00) are reported in figure 6 with thin dashed
vertical lines with colours corresponding to the PDF data. The shutdown concentration
for βs = 0.50 (ψs = 0.632) is not shown since it exceeds the plot limits. As can be
appreciated from figure 6(a), the shutdown affects only marginally the PDF shape
for βs = 2.00 (and for lower βs), while a more pronounced effect is observed for
βs = 4.00. For this latter case, the shutdown occurs at concentrations lower than
the most probable value. Therefore, surface tension is constant for ψ > 0.117 and
Marangoni stresses vanish, thus eliminating their feedback action on the shear stresses;
this results in a wider and more asymmetric PDF. Finally, we can observe that the
most probable value for the case βs = 4.00 is shifted towards lower concentrations.
This shift originates from the higher number of droplets (larger interfacial area)
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attained by this latter case (see also § 3.5 for a detailed characterization of the
number of droplets).

For We = 3.00 (figure 6b), the PDF of the surfactant concentration follows a
monotonic trend: large fluctuations in the surfactant concentration are less frequent
and the most probable value shifts towards lower concentrations for larger elasticity
numbers. These two observations directly reflect the action of Marangoni stresses,
which favour a more uniform surfactant concentration. Interestingly, for the cases
here considered (We= 3.00), the shutdown of Marangoni stresses has a minor impact
on the shape of the PDF. Indeed, the higher Weber number (lower clean reference
surface tension) leads to a much larger total interfacial area, and thus the average
concentration is lower. As a consequence, the resulting PDFs of these latter cases are
shifted towards lower concentrations and a smaller portion of the PDF is influenced
by the shutdown of Marangoni stresses. This minor impact of the shutdown is clearly
reflected in the PDFs: as the elasticity number is increased, the PDFs narrow and the
amplitude of the PDF peak continuously increases. However, for the highest elasticity
number (βs = 4.00), the effect of the shutdown is still visible and the respective
PDF is strongly skewed to the right. Indeed, for this latter case, the shutdown
concentration, ψs = 0.117, is slightly larger than the peak of the PDF. Therefore,
only the part located to the right of the PDF peak is influenced by the shutdown.
Finally, we can observe that for the two lower βs values, the boundedness of the
surfactant concentration (ψ > 0) penalizes large negative fluctuations and affects the
left tail of the distribution. This results in a more asymmetric PDF, especially for the
lower elasticity numbers, as the PDF is wider (weaker restoring effect of Marangoni
stresses) and shifted towards lower concentrations (larger interfacial area).

3.4. Droplet size influence on the interfacial surfactant concentration
In this subsection the influence of the droplet size on the surfactant distribution
over the interface is investigated. In particular, we aim at quantifying the correlation
between droplet size and surfactant concentration previously observed qualitatively
in figure 3. For this purpose, the PDF of the surfactant concentration over the
interface has been calculated separately for each droplet and then sorted depending
on the droplet size. For each droplet, we compute the equivalent diameter, d+eq, as
the diameter of an equivalent spherical droplet with the same volume as the droplet
considered:

d+eq =

(
6V+

π

)1/3

, (3.2)

where V+ is the volume of the droplet.
For the sake of clarity, only the mean value and the 5th and 95th percentiles of

the surfactant concentration over the droplet interface are reported in figure 7; solid
lines identify the mean value, while dashed lines correspond to the percentiles (5th
percentile below the mean value and 95th percentile above the mean value). The usual
colour scheme is adopted to distinguish among the various cases: βs = 0.50 (blue),
βs = 1.00 (green), βs = 2.00 (yellow) and βs = 4.00 (red). We start by analysing the
results obtained for We= 1.50 (figure 7a). First, we notice that for all cases the mean
surfactant concentration on the interface is not significantly influenced by droplet
size. This indicates that the mixing effect induced by the coalescence and breakage
events promotes a uniform surfactant distribution over the entire range of droplet
sizes. Second, we observe that for higher elasticity numbers, the mean surfactant
concentration on the interface is slightly reduced. This result is in agreement with
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FIGURE 7. (Colour online) Influence of droplet size on surfactant concentration at the
interface; thick solid lines represent the mean surfactant concentration, while dashed lines
represent the 5th and 95th percentiles: (a) We= 1.50; (b) We= 3.00. The different cases
are marked with different colours: βs = 0.50 (blue), βs = 1.00 (green), βs = 2.00 (yellow)
and βs = 4.00 (red). The mean concentration is almost constant and is not affected by
the droplet size; conversely, the droplet size has an influence on the fluctuations in the
surfactant concentration (as indicated by the percentile lines) and smaller droplets exhibit
a more uniform concentration. This effect originates from Marangoni stresses, which are
more effective on smaller droplets (smaller length scale).

our previous observation for the PDF of the surfactant concentration (figure 6): the
lower surface tension (stronger surfactant) increases the total interfacial area, thus
reducing the average surfactant concentration over the interface.

While the droplet size does not change the mean concentration of surfactant over the
interface, a clear effect of the droplet size on the surfactant concentration fluctuations
can be appreciated: the 5th and 95th percentile lines are closer to the mean value
for smaller droplets. This means that smaller droplets have a more uniform surfactant
distribution over their interface with respect to larger droplets. This effect can be
traced back to Marangoni stresses, the magnitude of which is proportional to the
surface tension gradient. The surface tension gradient can be approximated as the
ratio of the surface tension variation, 1σ , over the droplet equivalent diameter, here
used as a characteristic length scale of the droplet. The magnitude of the surface
tension variation, 1σ , is of the same order of magnitude for all the droplet sizes
(roughly similar to the difference between the 5th and the 95th percentiles). Hence, the
action of Marangoni stresses (which act to restore a uniform surfactant distribution)
is more effective on smaller droplets, as they are characterized by a lower equivalent
diameter. It is important to note that, for the higher elasticity number considered here
(βs = 4.00), the shutdown of Marangoni stresses has a marked effect on the positive
fluctuations in the surfactant concentration: as Marangoni stresses vanish (surface
tension is constant for surfactant concentrations above the shutdown concentration),
their restoring effect on the surfactant distribution ceases. Indeed, the trend of the
95th percentile line is lost for the stronger surfactant (βs= 4.00), which is superposed
to the 95th percentile line of the case at βs = 2.00. Considering the 5th percentile
lines, a similar trend can be observed among all the cases; this trend is particularly
marked for larger droplets, d+eq > 100. This effect arises from the surfactant chemical
potential, which strictly bounds the surfactant concentration between 0 and 1: thus,
extremely low values of surfactant concentration are energetically unfavourable (high
chemical potential) and strong negative fluctuations are hindered.
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The effect of the droplet size on the surfactant distribution becomes more
pronounced for We= 3.00 (figure 7b). A decrease in the mean surfactant concentration
is observed for increasing elasticity numbers: the same total amount of surfactant
distributes over a larger surface (higher interfacial area). As observed for We= 1.50
(figure 7a), the mean surfactant concentration does not depend on the droplet size,
while the amplitude of the fluctuations increases with the droplet size. In particular,
a clear trend is observed for the 95th percentile: as the elasticity number increases,
Marangoni stresses become stronger and extreme values of surfactant concentration
are less likely to occur. Due to the shutdown of Marangoni stresses, this trend is
not observed between the cases with βs = 2.00 and βs = 4.00: for this latter case
surface tension remains constant above the shutdown concentration (ψs = 0.117) and,
consequently, the action of Marangoni stresses vanishes. As the equilibrium-restoring
effect of Marangoni stresses is partially lost, similar positive fluctuations of the
surfactant concentration are observed for the two stronger surfactants (βs = 2.00 and
βs= 4.00). Also for these cases, the boundedness of the surfactant chemical potential
(which prevents large negative fluctuations of the surfactant concentration) leads to a
very similar behaviour for all the 5th percentile lines.

3.5. Time evolution of the number of droplets
The distribution of the surfactant over the droplet interface has direct consequences
for the dispersed-phase morphology. In fact, the presence of surfactant produces a
local decrease of surface tension (whose amplitude depends on the local surfactant
concentration) and introduces Marangoni stresses, thus affecting the dynamics of
coalescence and breakage events and the resulting dispersed-phase morphology
(Dai & Leal 2008; Takagi & Matsumoto 2011; Liu et al. 2018). With the aim
of characterizing the dispersed-phase morphology and of quantifying the previous
qualitative observations (figure 3), we compute the time evolution of the number of
droplets, N(t+). The results, normalized by the initial number of droplets N0 = 256
(same for all the cases), are shown in figure 8.

We start the discussion with the low-Weber-number cases (figure 8a). During the
initial stages of the simulation, all cases evolve in a similar manner: the total number
of droplets decreases down to about 40 % of the initial value. Then, the five cases
start to depart from each other: the effect of surfactant and of its strength is clearly
reflected in the number of droplets. The clean and weak surfactant cases show a
faster decrease in the number of droplets with respect to the strong surfactant cases.
Finally, at t+ ' 2500, a steady state for the number of droplets is reached indicating
that coalescence and breakage events balance out. The effect of surface tension on
the steady-state number of droplets is clear: the clean case has the lowest number
of droplets at the end of the simulation. As the elasticity number is increased, also
the final number of droplets increases. On average stronger surfactants are able to
produce a greater number of smaller droplets in the channel. The different number
of droplets attained at steady state can be linked to the maximum stable diameter
(Hinze 1955), which is determined by the competition between stabilizing effects (e.g.
surface tension) and destabilizing effects (e.g. turbulent fluctuations). Decreasing the
average surface tension over the interface (stronger surfactant) leads to a reduction in
the maximum stable diameter, thus to the formation of smaller droplets. The effect
of surfactant can be better appreciated from the inset of figure 8(a), which shows the
time evolution of the number of droplets at steady state. With respect to the clean case,
the final number of droplets is increased by a factor ranging from 1.32 (βs= 0.50) up
to 3.32 (βs = 4.00).
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FIGURE 8. (Colour online) Time evolution of the normalized number of droplets,
N(t+)/N0: (a) We = 1.50; (b) We = 3.00. Different colours distinguish the various cases:
clean (black), βs = 0.50 (blue), βs = 1.00 (green), βs = 2.00 (yellow) and βs = 4.00 (red).
The action of surfactant can be clearly observed: on increasing the elasticity number βs,
the surface tension reduction is larger and a greater number of droplets is found in the
channel. For the cases at We= 1.50, this effect can be better appreciated from the inset
of (a).

A markedly different behaviour is observed for the cases at We= 3.00 (figure 8b):
after an initial decrease (up to t+ = 300) in the number of droplets for all cases,
a marked increase is observed for the stronger surfactant cases. For these cases
breakage events outnumber coalescence events, thus increasing the total number
of droplets. After the initial transient stage, at about t+ = 2500, the number of
droplets reaches a statistically steady-state value, which increases with the surfactant
strength. In particular, the number of droplets in the clean and weak surfactant cases
(βs = 0.50 and βs = 1.00) reaches a steady-state value N(t+) ' 0.5N0, while for the
stronger surfactant (βs = 4.00) it reaches about N(t+) ' 1.5N0. With respect to the
clean case, the steady-state number of droplets is increased by a factor ranging from
1.18 (βs = 0.50) to 3.16 (βs = 4.00). It is interesting to observe that although the
steady-state number of droplets strongly differs between the two Weber numbers,
ranging between 19 (clean case) and 63 (βs = 4.00) for We= 1.50 and between 116
(clean case) and 366 (βs= 4.00) for We= 3.00, the increase in the number of droplets
with respect to the clean reference cases is similar: from a factor of about 1.25 for
the weakest surfactant (βs = 0.50) up to about 3.25 for the strongest one (βs = 4.00).

3.6. Coalescence and breakage rates
The number of droplets, while still being an important consideration, does not give
any information on the actual number of coalescence or breakage events occurring,
but just on their balance. To obtain a better insight into the surfactant effects on
the morphology of the dispersed phase, the droplet population balance has been
considered. In particular, in all the cases presented here, the number of droplets
can be modified only by coalescence and breakage events (Lasheras et al. 2002;
Eastwood, Armi & Lasheras 2004). Hence, the following balance equation can be
used to describe the time evolution of the number of droplets:

dN(t+)
dt+

= Ṅc(t+)+ Ṅb(t+), (3.3)
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FIGURE 9. (Colour online) Time evolution of the coalescence rate, Ṅc(t+), and of the
breakage rate Ṅb(t+). The rates are shown (a,b) non-normalized and (c,d) normalized by
the actual number of droplets, N(t+). Breakage rates, as they increase the number of
droplets, are represented as a positive quantity, while coalescence rates, as they reduce the
number of droplets, are reported as a negative quantity. (a,c) We= 1.50; (b,d) We= 3.00.
In all panels, the steady-state values are reported with thick dashed lines. For both the
Weber numbers considered, the addition of a soluble surfactant leads to an increase (in
magnitude) of both coalescence and breakage rates. This increase is larger when stronger
surfactants are considered (larger elasticity numbers, βs).

where Ṅc(t+) and Ṅb(t+) are the coalescence and the breakage rates, i.e. the number
of coalescence/breakage events occurring in a unitary time. Predictions of these
rates are extremely difficult, as many different factors are involved in the complex
dynamics of interface breaking and merging (Tsouris & Tavlarides 1994; Valentas &
Amundson 1966; Luo & Svendsen 1996; Colella et al. 1999; Liao & Lucas 2010).
The problem further complicates when a soluble surfactant, which modifies the
interfacial dynamics, is added to the multiphase system. Indeed, as shown in previous
investigations performed in laminar flow conditions considering two droplets of equal
size, the presence of a surfactant prevents (or at least delays) their coalescence (Dai
& Leal 2008; Xu et al. 2011; Engblom et al. 2013; Soligo et al. 2019a), but at the
same time it also promotes droplet breakage (Bazhlekov et al. 2006; Liu et al. 2018).

Figure 9 shows the time evolution of the coalescence and breakage rates for the
different cases examined. The rates have been calculated considering the number of
coalescence and breakage events, Nc and Nb, occurring in a time window 1t+ = 90:

Ṅc(t+)=
Nc

1t+
, Ṅb(t+)=

Nb

1t+
. (3.4a,b)
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The coalescence and breakage rates are reported non-normalized (i.e. as computed
from (3.4)) in figure 9(a,b) and normalized by the actual number of droplets, N(t+),
in figure 9(c,d).

We start by discussing the results obtained for We = 1.50 (figure 9a). For these
cases, during the initial transient, the coalescence rate is larger than the breakage
rate (in magnitude). This results in a reduction of the number of droplets (figure 8a).
After reaching a peak value at t+' 600, the two rates start to smoothly decrease until
a steady-state value is reached for t+> 2500, after which the average coalescence and
breakage rates (dashed lines) are equal (in magnitude). Comparing the different cases,
we can identify an interesting behaviour: stronger surfactants (larger βs) increase both
breakage and coalescence rates. While the former effect is expected (a lower average
surface tension increases the likelihood of the interface breaking), the latter effect is
not as obvious. Indeed, previous works (Dai & Leal 2008; Xu et al. 2011; Engblom
et al. 2013; Soligo et al. 2019a) showed that surfactant hinders the coalescence of
two droplets, while here we observe an increase of the coalescence rate for stronger
surfactants. However, differently from previous works (Dai & Leal 2008; Xu et al.
2011; Engblom et al. 2013; Soligo et al. 2019a), in the cases presented here, the
average droplet size and the number of droplets differ among the different cases.
Specifically, in the cases here considered, the average surface tension is reduced for
increasing surfactant strengths. Thus, for higher elasticity numbers, droplets will more
likely break apart generating a greater number of smaller droplets. The resulting
smaller droplets are less deformable (i.e. they have a lower droplet Weber number,
Wed= ρu2

τdeq/σ0) and they will more likely coalesce (faster drainage of the thin liquid
film separating the two droplets). This size effect is directly reflected in the behaviour
of the coalescence and breakage rates, which are enhanced when higher elasticity
numbers are considered.

To remove the influence of the number of droplets on the coalescence and breakage
rates, the rates have been normalized by the actual number of droplets (figure 9c). In
the initial stages, t+< 1500, the time evolution of the non-normalized and normalized
rates is similar. However, differently from the non-normalized rates, for t+ > 1500,
the normalized rates reach a steady-state value. This suggests that the decrease of
both breakage and coalescence rates (non-normalized) is due to the smaller number
of droplets present in the channel. Hence, while the coalescence and breakage rates
(non-normalized) can be directly linked to the population balance as they represent
the effective change in the number of droplets, the normalized rates give more general
information about the surfactant effects on the coalescence and breakage rates.

Turning to We = 3.00 (figure 9b), the higher Weber number (lower clean surface
tension) has a clear effect on the coalescence and breakage rates. In the initial
transient, both coalescence and breakage rates increase until they reach their peak
value at about t+ = 600. After reaching this peak, the coalescence rates are almost
constant at their steady-state value, while the breakage rates slightly decrease before
reaching a steady-state value. For the stronger surfactant (βs = 4.00), the breakage
rate during the initial stage of the simulation exceeds the coalescence rate; this
feature is reflected in the total number of droplets (figure 8b), which for this case
at steady state is much higher than the initial number of droplets, about 1.5N0.
The surfactant strength has a clear effect on the rates: indeed, for larger elasticity
numbers, the coalescence and breakage rates are larger (in magnitude). This is a
direct consequence of the greater number of smaller droplets present in the channel:
these smaller droplets will more likely coalesce (smaller size) and at the same time
will more likely undergo breakage (lower surface tension).
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Also for these cases, to remove the effect of the number of droplets on the
coalescence and breakage rates, the rates have been normalized by the actual
number of droplets present in the channel (figure 9d). The trends observed are
similar to those exhibited by the non-normalized rates and, for higher elasticity
numbers, the steady-state values of the coalescence and breakage rates become larger
(in magnitude); however, the differences among the cases become smaller. This
observation suggests that the greater number of droplets present when larger elasticity
numbers are considered produces an amplification of the non-normalized rates. In
addition, the peak in the breakage rate exhibited by the two stronger surfactants
(βs = 2.00 and βs = 4.00) becomes more pronounced. This indicates that the strong
reduction of the surface tension induced by the surfactant strongly favours the
breakage of the droplets.

3.7. Droplet size distribution
The addition of a soluble surfactant in the system, which modifies the droplet
deformability (lower surface tension) and introduces Marangoni stresses, directly
influences the coalescence and breakage rates and as a consequence the resulting
DSD. The DSD is a fundamental tool, which has been extensively used in the past to
characterize dispersed-phase morphology; several empirical models for the calculation
of the DSD have been proposed in the past (Calabrese, Wang & Bryner 1986;
Babinsky & Sojka 2002; Lee & Robinson 2011). The DSDs for all the different
cases (clean and surfactant-laden) have been computed using the droplet equivalent
diameter as a measure of the droplet size. The distributions have been computed
once the simulations reached a steady condition (t+ > 2500). The results are shown
in figure 10 for We= 1.50 and We= 3.00. In order to better highlight the differences
among the different cases, only three of them are shown: clean (black), βs = 1.00
(green) and βs = 4.00 (red).

For We = 1.50 (figure 10a), the low number of droplets does not allow one to
obtain a clear statistic (especially for the clean case). However, a trend for increasing
surfactant strength can still be appreciated: smaller droplets are more likely to be
found as the elasticity number is increased. Indeed, for the stronger surfactant (βs =

4.00), the DSD peaks for d+eq < 100 and falls almost to zero for larger droplet sizes.
Conversely, for the clean case there is a low probability of having very small droplets,
d+eq<50, and a much higher probability of having larger droplets, 200<d+eq<500. This
observation can be directly linked to the average surface tension reduction produced by
the surfactant: for higher elasticity numbers (larger surface tension reduction), larger
droplets are not stable and undergo breakage and, as a consequence, the presence
of smaller droplets is favoured. This finding is in agreement with the breakage rates
(figure 9a,c), which increase when stronger surfactants are considered.

For We= 3.00 (figure 10b), a greater number of droplets is present (figure 8b) and
a much clearer trend can be observed. In particular, all the DSDs exhibit a marked
peak for small droplet sizes, d+eq < 100; this peak shifts towards smaller diameters
and increases its value as the elasticity number is increased. Indeed, for the clean
case the peak value is at about d+eq ' 75, while it reduces to d+eq ' 50 for the two
surfactant-laden cases, with the stronger surfactant showing a higher peak value. The
probability of having larger droplet sizes, d+eq > 200, is extremely low, at least one
order of magnitude lower than the peak value. The effect of the elasticity number can
be appreciated also for the larger droplet sizes: a higher probability of finding larger
droplets is observed for the clean case and for βs = 1.00.
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FIGURE 10. (Colour online) The DSD for We= 1.50 (a) and We= 3.00 (b). The different
colours refer to the clean case (black), βs=1.00 (green) and βs=4.00 (red). For We=1.50,
the low number of droplets does not allow one to obtain a clear trend; however, on a
qualitative basis, it can be observed that on increasing the surfactant strength (i.e. the
elasticity number βs), the probability of finding smaller droplets increases. This trend
becomes clearer for the higher Weber number, We = 3.00: on increasing the elasticity
number βs, the presence of small droplets is favoured.

Overall, for both Weber numbers the situation observed can be summarized as
follows. A larger surfactant strength (and the respective higher surface tension
reduction) favours the breakage of the droplets and thus smaller droplets are more
likely to be found.

3.8. Comparison with theoretical scaling
The importance of the DSD raised the attention of many researchers and several
models to predict the resulting DSD were proposed. Among these, the most commonly
adopted distributions are as follows: normal (Brown & Pitt 1972; Chen & Middleman
1967), log-normal (Chatzi & Kiparissides 1994; Lovick et al. 2005; Perlekar, Biferale
& Sbragaglia 2012), Rosin–Rammler (Karabelas 1978), Weibull (Brown & Wohletz
1995), upper limit equation (Mugele & Evans 1951) and power law (Garrett et al.
2000; Deane & Stokes 2002; Skartlien et al. 2013; Deike, Melville & Popinet 2016).
Although universal agreement over several decades has not yet been demonstrated, a
reasonable number of experimental (Deane & Stokes 2002) and numerical (Skartlien
et al. 2013) works showed good agreement with the power-law scaling proposed by
Garrett et al. (2000). According to Garrett et al. (2000), the DSD follows a −10/3
power law scaling with the droplet diameter. Deane & Stokes (2002) showed that
this distribution well described the DSD for droplet diameters larger than the relevant
breakage scale; this latter scale can be estimated as the droplet maximum stable
diameter, commonly referred to as the Hinze inviscid scale, d+H (Hinze 1955). For
the simulation set-up considered here, the Hinze inviscid scale can be computed as
follows: (Perlekar et al. 2012; Roccon et al. 2017)

d+H = 0.725
(
σ0

σav

We
Reτ

)−3/5

|εc|
−2/5, (3.5)

where the ratio σ0/σav is used to account for the average surface tension reduction
produced by the surfactant and εc is the turbulent dissipation at the channel centre.
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FIGURE 11. (Colour online) Droplet size distributions reported on a log–log scale. The
results refer to We= 3.00 and the various cases are identified with different colours: black
(clean), βs = 0.50 (blue), βs = 1.00 (green), βs = 2.00 (yellow) and βs = 4.00 (red). The
theoretical scaling d+eq

−10/3 is reported with a thin continuous black line. The Hinze inviscid
scale for each case is reported with vertical dashed lines (same colour code as the DSDs).
The DSDs obtained are in good agreement with theoretical scaling. The quality of the
agreement increases for larger elasticity numbers (larger number of samples). In addition,
to discuss the effect of the grid resolution on the DSD, the results obtained from the
simulation at We = 3.00 and βs = 4.00 rerun on a finer grid (refined in each direction,
Nx ×Ny ×Nz = 2048× 1024× 1025) are reported with red open circles.

Generally, the turbulent dissipation depends on the distance from the wall; however,
since droplets are more likely to be found in the core region of the channel (Scarbolo
et al. 2016), the dissipation at the channel centre is used as a reference.

The DSDs obtained from the larger Weber number, We = 3.00, are reported on
a log–log plot and compared with the power-law scaling proposed by Garrett et al.
(2000) in figure 11. Results at the lower Weber number are not reported here, as the
low number of droplets does not constitute a sufficient statistical sample (especially
for the clean case); however, a good agreement (not reported here) is found for the
highest elasticity number, βs= 4.00 (highest number of droplets). In figure 11, a thin
black line identifies the theoretical scaling, d+eq

−10/3, while thick lines identify the
different cases: clean (black), βs = 0.50 (blue), βs = 1.00 (green), βs = 2.00 (yellow)
and βs = 4.00 (red). The Hinze inviscid scales (maximum stable diameter of the
droplet) are reported with dashed vertical lines using the same colour code as the
DSDs; as the elasticity number is increased, the average surface tension, σav, reduces,
thus decreasing the Hinze inviscid scale.

The resulting DSDs are in good agreement with the power-law scaling proposed
by Garrett et al. (2000) for equivalent diameters larger than the Hinze inviscid
scale, d+eq > d+H . This latter observation seems to confirm the validity of the scaling
for droplets larger than the Hinze inviscid scale, as reported also by Deane &
Stokes (2002), who analysed the size distribution of bubbles in breaking ocean
waves, and by Skartlien et al. (2013), who analysed the size distribution of droplets
in surfactant-laden liquid–liquid systems. The quality of the agreement between
numerical results and theoretical scaling improves for larger elasticity numbers and
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specifically for the cases βs = 2.00 and βs = 4.00. Indeed, the considerably greater
number of droplets obtained for these cases leads to a smoother DSD over a wider
range of diameters. In addition, for larger elasticity numbers, the Hinze inviscid scale,
d+H , shifts towards lower values and the agreement can be observed for a wider range
of droplet equivalent diameters. Albeit the good agreement obtained between our
results and the scaling proposed by Garrett et al. (2000), the data and the range of
sizes available are not sufficient to exclude other power-law scalings with slightly
different exponents (Deike et al. 2016). Widening the size span of the droplets would
require simulations at a higher Reynolds number. The Hinze inviscid scale is only
marginally influenced by the Reynolds number, while the maximum droplet size is
roughly the total channel height (which is proportional to the Reynolds number).
Addressing this issue would require a much higher computational cost which, at the
present time, we cannot afford. However, in this respect, we tried at least to address
the issue of the interface resolution. We rerun a single simulation at We = 3.00 and
βs=4.00 on a finer grid (refined in each direction, Nx×Ny×Nz=2048×1024×1025)
and employing a halved Cahn number, Ch = 0.012. Results of this simulation are
shown using open red circles in figure 11. Comparing the two simulations at βs= 4.00
(open and filled red circles), we can find excellent agreement showing that the large
diameters are not much influenced by the grid resolution (for the examined grid
resolution values). We notice, however, a slightly larger number of small droplets
(' 10 w.u.) where the simulation on the refined grid better captures the dynamics of
the smaller droplets.

4. Conclusions

In this work, we investigated the dynamics of a swarm of surfactant-laden droplets
in wall-bounded turbulence, using direct numerical simulations of the Navier–Stokes
equations coupled with a two-order-parameter phase-field method. This formulation
of the phase-field method uses two order parameters to describe the dispersed-phase
morphology (first order parameter) and the surfactant concentration (second order
parameter). We examined two different values of the surface tension (Weber number,
We) and a range of different surfactant strengths (elasticity number, βs): our object
was to investigate the influence of these different parameters on the distribution of
surfactant, on the morphology of the dispersed phase, on breakage and coalescence
rates and ultimately on DSD. The local value of the surface tension depends on
two parameters: the Weber number, which determines the reference surface tension
value (surface tension of a surfactant-free interface); and the elasticity number, which
instead defines the surfactant strength and, in conjunction with the local surfactant
concentration, determines the amount by which surface tension is locally reduced. The
investigated problem has a high degree of complexity given by the strong coupling
among the different elements, flow field, dispersed-phase morphology and surfactant
concentration, which are deeply interconnected and feed back to each other. The flow
field deforms the interface and advects the surfactant. In turn, the interface feeds back
to the local flow field and modifies the surfactant concentration, as it stretches, breaks
and merges. Finally, the surfactant locally modifies the surface tension, increasing
the local deformability of the interface and generating Marangoni stresses. These
stresses (tangential to the interface) originate from surface tension gradients (i.e.
surfactant concentration gradients) and promote a uniform surfactant distribution
over the droplet interface. In particular, we found that Marangoni stresses are more
effective on smaller droplets, as their magnitude roughly scales with the inverse of
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the droplet length scale, and indeed the results of our numerical simulations show a
more uniform surfactant concentration on smaller droplets. Surface tension determines
also the maximum stable size for a droplet: as surface tension forces weaken, larger
droplets become unstable and break. Indeed, as either the Weber number or the
elasticity number is increased, more and smaller droplets are found in the channel: as
the total volume fraction is kept constant among all the simulations, the reduction of
the droplet maximum stable size increases the total number of droplets. In addition,
increasing the Weber number or the elasticity number increases also the breakage
and coalescence rates. While the former is expected, as surface forces are weakened,
the latter is, at first, counterintuitive. The increase in the breakage rate leads to
many smaller droplets, which are more likely to coalesce: smaller droplets are
less deformable and droplet–droplet collisions are more frequent due to the greater
number of droplets. Increases (in magnitude) of coalescence and breakage rates
become more pronounced for increasing Weber or elasticity numbers. Finally, we
found that the resulting DSD roughly scales with the inverse of the droplet volume.
This observation is in agreement with previous theoretical and computational works:
the computed DSD follows indeed the −10/3 theoretical power-law scaling proposed
by Garrett et al. (2000), which was also confirmed by experimental (Deane & Stokes
2002) and numerical (Skartlien et al. 2013) investigations.

As a concluding remark, we emphasize that the results presented here are obtained
from simulations based on a continuum description of the system. Thus, the
small-scale physics governing the film rupture in the coalescence process (Chen et al.
2004; Kamp et al. 2017) cannot be directly resolved therefore it has to be smeared
out on a larger resolved scale. However, considering the tests performed on different
grid resolutions (see § 2.3 for details) and the fairly good convergence of the results
obtained, we are confident that the present simulations constitute a fair approximation
of a real two-phase flow and can be used to extract reliable information of the
macroscopic behaviour of the system. Clearly, microscopic information involving the
dynamics of the film drainage and of the consequent film rupture cannot be obtained
from these simulations and will be the object of future investigations, which can
enrich the physics described by the current phase-field approach used.

Acknowledgements
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Appendix A. Details of the dimensionless equations and parameters
A.1. Free energy functional

In this section, further details of the dimensionless equations and parameters are given.
Dimensional variables are denoted here as θ̃ , while those dimensionless as θ , the latter
being a generic variable. The dimensional free energy functional is

F̃ =
∫
Ω

( f̃0 + f̃m + f̃ψ + f̃1 + f̃b) dΩ. (A 1)

The dimensional phase-field variable is defined as φ̃ = (
√
β/α)φ, where α, β and

κ are positive constants of the Cahn–Hilliard model (Jacqmin 1999). The dimensional
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form of the first two terms is

f̃0 + f̃m =
α

4

(
φ̃ +

√
β

α

)2 (
φ̃ −

√
β

α

)2

+
κ

2
|∇φ̃|2

=
β2

α

[
1
4
(φ − 1)2 (φ + 1)2 +

Ch2

2
|∇φ|2

]
, (A 2)

where in the equation above we have exploited the relationship ε=
√
κ/β that defines

the characteristic interface length scale. This length scale is employed in the definition
of the Cahn number, Ch, which is

Ch=
ξ

h
, (A 3)

where h is the channel half-height. The dimensional form of the entropy term (third
contribution) is

f̃ψ = κT
[
ψ logψ + (1−ψ) log(1−ψ)

]
=
β2

α
Pi
[
ψ logψ + (1−ψ) log(1−ψ)

]
, (A 4)

where ψ is the surfactant concentration (already dimensionless from its definition
and ranging from ψ = 0 up to ψ = 1), while α, β and κ are the same positive
constants employed in the definition of the phase-field free energy functional
(first two contributions). This contribution can be recast in order to highlight the
temperature-dependent parameter, Pi, which is defined as follows:

Pi=
κTα
β2

, (A 5)

where T is the absolute temperature. The dimensional surfactant adsorption term
(fourth contribution) is defined as follows:

f̃1 =−
α

2
ψ

(
β

α
− φ̃2

)2

=−
β2

α

1
2
ψ(1− φ2)2, (A 6)

where also this term has been recast in order to highlight the coefficient β2/α. The
dimensional surfactant bulk term (fifth contribution) is

f̃b =
wb

2
ψφ̃2
=
β2

α

1
2Ex

ψφ2, (A 7)

where Ex is the surfactant solubility parameter that is defined as follows:

Ex =
β

wb
, (A 8)

wb being a dimensional value defining the surfactant solubility in the bulk.
The resulting dimensionless form of the free energy functional is

F =
α

β2
F̃ =

∫
Ω

(
1
4
(φ − 1)2 (φ + 1)2 +

Ch2

2
|∇φ|2

+Pi[ψ logψ + (1−ψ) log(1−ψ)] −
1
2
ψ(1− φ2)2 +

1
2Ex

ψφ2

)
dΩ. (A 9)
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A.2. Phase-field transport equation
Turning to the transport equation for the phase field (first order parameter), the
respective equation, expressed in a dimensional form, is

∂φ̃

∂ t̃
+ ũ · ∇φ̃ =∇ · (Mφ∇µ̃φ). (A 10)

From the dimensionless procedure of the free energy functional we get that the
dimensionless chemical potential for the phase variable is defined as µφ =

√
α/β3µ̃φ .

The length scale of the problem is the channel half-height, h, the velocity scale is
the friction velocity, uτ , and the time scale is h/uτ . Thus, the resulting dimensionless
transport equation for the phase field is

∂φ

∂t
+ u · ∇φ =

1
Peφ
∇

2µφ, (A 11)

where Peφ is the Péclet number for the phase field, which is defined as follows:

Peφ =
uτh
βMφ

, (A 12)

Mφ being the phase-field mobility.

A.3. Surfactant concentration transport equation
The dimensional equation for the surfactant concentration transport is

∂ψ̃

∂ t̃
+ ũ · ∇ψ̃ =∇ · (M̃(ψ)∇µ̃ψ). (A 13)

The dimensional mobility M̃ψ(ψ) can be rewritten as a reference constant
dimensional mobility Mψ multiplied by a dimensionless variable part mψ =ψ(1−ψ):

M̃ψ(ψ)=Mψmψ =Mψψ(1−ψ), (A 14)
and the resulting dimensionless transport equation for the surfactant concentration is

∂ψ

∂t
+ u · ∇ψ =

1
Peψ
∇ · [ψ(1−ψ)∇µψ ], (A 15)

where Peψ is the Péclet number for the surfactant concentration, which has the
following definition:

Peψ =
uτhα
Mψβ2

. (A 16)

A.4. Navier–Stokes equations
For the Navier–Stokes equations, assuming two phases with matched density (ρ=ρ1=

ρ2) and viscosity (µ=µ1 =µ2), the dimensional equations result in

ρ

(
∂ũ
∂ t̃
+ ũ · ∇ũ

)
=−∇p̃+µ∇2ũ+∇ · [κσ̃ (ψ)T̃ c]. (A 17)

The velocity scale is the friction velocity, uτ , the length scale is the channel
half-height, h, and the time scale is their combination, h/uτ . The term σ̃ (ψ)
is the dimensional EOS for the surface tension and can be made dimensionless
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dividing by the surface tension of a clean interface, σ0: fσ (ψ) = σ̃ (ψ)/σ0 (see also
equation (A 26)). The dimensional pressure is defined as p̃=ρu2

τp, while the Korteweg
stress tensor is made dimensionless as follows:

T c =
β

αh2
T̃ c, (A 18)

and the resulting dimensionless Navier–Stokes equations are

∂u
∂t
+ u · ∇u=−∇p+

1
Reτ
∇

2u+
3
√

8

Ch
We
∇ · ( fσ (ψ)T c), (A 19)

where Reτ is the shear Reynolds number and We is the Weber number. The shear
Reynolds number is defined as follows:

Reτ =
ρuτh
µ

, (A 20)

where ρ is the density, uτ the friction velocity, h the channel half-height and µ the
viscosity. While the Weber number is defined as follows:

We=
ρu2

τh
σ0

, (A 21)

where ρ is the density, uτ the friction velocity, h the channel half-height and σ0 the
surface tension of a clean interface.

The surface tension term has been recast exploiting the definition of surface tension
(i.e. integral of the specific energy stored at the interface):

σ̃ (ψ)= σ0 fσ (ψ)=

√
8

3
k

1
2β3/2

α
fσ (ψ), (A 22)

and thus the dimensionless expression of the surface tension forces term is

h
ρu2

τ

κ

h
β

αh2
∇ · ( fσ (ψ)T c), (A 23)

where the first part comes from the dimensionless procedure of the left-hand side of
the Navier–Stokes equations. The coefficient can be recast as follows:

h
ρu2

τ

κ

h
β

αh2
=

√
κ

β

h

√
β3κ

α

1
hρu2

τ

=Ch
3
√

8
σ0

1
hρu2

τ

=
3
√

8

Ch
We
. (A 24)

A.5. Equation of state for surface tension
The EOS for the surface tension here employed is of the Langmuir type, which in
dimensional form is

σ̃ (ψ)= σ0 + RTψ∞ ln(1−ψ), (A 25)

where σ0 is the surface tension of a clean interface, R is the ideal gas constant, T is
the absolute temperature, ψ∞ is the maximum surfactant packing concentration and ψ
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is the surfactant concentration. The equation can be made dimensionless using the
surface tension of a clean interface, σ0, as a reference,

σ̃ (ψ)

σ0
= 1+ βs ln(1−ψ), (A 26)

where βs is the elasticity number that is defined as follows:

βs =
RTψ∞
σ0

. (A 27)

Appendix B. Wall units scaling system
In this work, the results are presented using the wall units scaling system. The

variables in the wall units scaling system can be obtained as follows:

x+ = Reτx, u+ = u, t+ = Reτ t, φ+ = φ, ψ+ =ψ. (B 1a−e)

For ease of notation, since velocity field, phase field and surfactant concentration are
unchanged, the superscripts have been dropped. Conversely, superscripts are kept for
both time and length scales.

Appendix C. Shear stress
Considering an incompressible flow and a uniform and constant viscosity (phases

with matched density and viscosity), the three components of the shear stress vector,
S= (Sx, Sy, Sz), can be computed as follows:

Sx = τyz =
1

Reτ

(
∂v

∂z+
+
∂w
∂y+

)
, (C 1)

Sy = τxz =
1

Reτ

(
∂u
∂z+
+
∂w
∂x+

)
, (C 2)

Sz = τxy =
1

Reτ

(
∂u
∂y+
+
∂v

∂x+

)
. (C 3)

The shear stress can be decomposed into a contribution normal to the interface, Sn,
and one tangential to the interface, St, as follows:

S= (S · n)n︸ ︷︷ ︸
Normal

+ S− (S · n)n︸ ︷︷ ︸
Tangential

, (C 4)

where n= (nx, ny, nz) is the unit vector normal to the interface, which can be directly
computed from the phase field (Aris 1989; Sun & Beckermann 2007):

n=−
∇φ

|∇φ|
. (C 5)

The minus sign is needed to get the outward-pointing normal.
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