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1. Details on initial condition and diffusive regime

The initial concentration field is defined by:

C(x, z, t = 0) =
1

2

[
1 + sgn

(
z

Ra0

− 1

2

)]
+ ε , (S1)

with ε the initial perturbation, whereas the initial velocity field is set to zero (u = w =
0). Note that the perturbation ε is applied only along the centerline, z = Ra0 /2. As a
consequence, the analytical solution of the solute balance equation, Eq. (2), is given by
C(η) = 1/2 [1 + erf (η)], where η = (z−Ra0 /2)/

√
4t. From the definition of the mean scalar

dissipation rate, and after some algebra, in the limit of small times and large Ra0 we obtain:

〈χ〉 =
t−1/2√

8π
erf

(
Ra0 /2√

2t

)
≈ t−1/2√

8π
. (S2)

We wish to remark that the evolution of the system depends on the amplitude of the initial
perturbation ε. In particular, the role played by ε is crucial during the intermediate phase
of the flow evolution, when fingers start to appear. This was also observed by De Paoli
et al. [1], who noticed that the universal behavior of the mixing length, i.e. the tip-to-rear
finger distance, became less robust during the transition from the diffusive to the convective
regime.

To measure the sensitivity of the results to the initial perturbation, we performed simula-
tions at all the Rayleigh-Darcy numbers considered using three different values of ε, namely
O(ε) ∈ {10−3, 10−4, 10−5}, and we monitor the time behavior of the quantityM(t). Results,
which are reported in Fig. S1 for Ra0 = 7244, show that the larger the initial perturbation,
the sooner the profile departs from the analytical diffusive solution t1/2. However, after a
transition during which the fingers merge, the growth of M(t) is the same for all perturba-
tions considered. Asymptotically, the value M∞ = Ra0 /8 is attained. Note also that it is
important to impose the same initial perturbation profile regardless of the value of Ra0 by
properly interpolating the concentration profile when changing the grid resolution.

FIG. S1. The temporal evolution of M(t) for Ra0 = 7244 is here shown. We report the data

corresponding to three different initial perturbations [O(ε) ∈ {10−3, 10−4, 10−5}]. Initially, the

evolution is independent from the perturbation, since controlled by diffusion (t1/2). For the in-

termediate regime, when the fingers merging occurs, the influence of the initial perturbation is

effective. The saturation value M∞, corresponding to Ra0 /8, is attained asymptotically.
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2. Physical meaning of the mean scalar dissipation rate

The mean scalar dissipation rate 〈χ〉 is used to characterize porous media flows con-
trolled by solute convection [2, 3]. To provide a further interpretation of 〈χ〉 as an indicator
of mixing/convection, we extend the analysis of 〈χ〉 and its dynamics to two other flow
configurations that are frequently taken as important archetypes for geophysical flows: The
Rayleigh-Bénard and the one-sided configuration.

We consider a two-dimensional and rectangular porous layer fully saturated by an in-
compressible fluid. The system is controlled by Eqs. (1)-(2). We assume that the domain is
periodic in horizontal direction and is confined by two horizontal walls, along which either
the concentration is fixed or the solute flux through the wall is set to zero. After some
algebraic manipulations, the solute transport equation (2) integrated over the domain gives
[2]:

∂〈C2〉
∂t

= 2(CtopFtop + CbotFbot − 〈χ〉), (S3)

where Ctop (Cbot) is the concentration at the top (bottom) boundary, Ftop = ∂C/∂z|z=Ra0 and

Fbot = ∂C/∂z|z=0 are the fluxes across the top and bottom boundaries, with · = L−1
∫ L

0
· dx

indicating the average over the horizontal direction. Eq. (S3) can be also used in this form
as an indicator to check the accuracy of the results obtained [4].

All the systems considered in this section are characterized by the same value of the
governing parameter Ra0 = 7244.

a) Rayleigh-Bénard system [Fig. S2(a-i)-(a-ii)]: the concentration is fixed at the upper
(Ctop = 1) and lower (Cbot = 0) boundaries. After a transition phase that depends on
the initial concentration field, the flow enters a statistically steady-state regime [3, 5, 6],

which is independent of the initial condition. We indicate with · = 1/T
∫ t+T/2

t−T/2 · dt the

time-average operator and we compute the time-average form of Eq. (S3), which is

F = 〈χ〉 , (S4)

since ∂t〈C2〉/2 = 0 and F = Ftop [3]. However, the term ∂t〈C2〉/2 may be instanta-
neously either positive or negative, as shown in Fig. S2(a-i). The expected (theoretical)

behavior of the steady state value F can be evaluated with the correlation proposed
by Hewitt et al. [7] and adapted to the present dimensionless set of variables. In par-

ticular, we have F = (0.00688 Ra0 +2.75)/Ra0 [dashed line in Fig. S2(a-i)], which is
independent from the Rayleigh-Darcy number in the limit of high Ra0.

b) One-sided system [Fig. S2(b-i)-(b-ii)]: the domain is initially filled with pure fluid
[C(x, z, t = 0) = 0] and the concentration is fixed at the top boundary (Ctop = 1). The
systems is closed with respect to solute fluxes across the lower boundary (Fbot = 0).
With these constraints, Eq. (S3) gives

∂〈C2〉
∂t

= 2 (F − 〈χ〉) , (S5)

where F = Ftop. The evolution of the one-sided configuration is time-dependent (see
De Paoli et al. [8] for a description of the whole dissolution process). However, after
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FIG. S2. Three different flow configurations are here considered: (a) Rayleigh-Bénard, (b) One-

sided and (c) Rayleigh-Taylor. In all the three cases, Ra0 = 7244. Left panels: evolution of

the parameters 〈χ〉, F and ∂t〈C2〉/2. Right panels: exemplar concentration fields taken at the

times indicated by the blue arrows in panels (a-i), (b-i) and (c-i), during the convection-dominated

regime. The expected value of F is also reported (dashed lines) in panels (a-i) and (b-i).

an initial diffusive regime, the dissolution rate F is nearly constant [7–11] and equal to
approximately 0.017 [dashed line in Fig. S2(b-i)]. A similar behavior of 〈χ〉 is observed
in the instance of a Rayleigh-Taylor system characterized by a non-monotonic density-
concentration profile [2, 12].

c) Rayleigh-Taylor system [Fig. S2(c-i)-(c-ii)]: the boundaries are impermeable with re-
spect to solute fluxes (Ftop = Fbot = 0). The concentration field is initialized with an
unstable density profile in which C(x, z > Ra0 /2, t = 0) = 1 [C(x, z < Ra0 /2, t =
0) = 0] in the upper [lower] half of the domain. Therefore, Eq. (S3) gives

∂〈C2〉
∂t

= −2〈χ〉. (S6)

After an initial phase in which diffusion dominates, fingers form and merge [1]. Then, a
convection-dominated regime occurs, and 〈χ〉 is observed to grow. After impingement
of the fingers on the boundaries, the mean scalar dissipation rate decreases due to
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the reduction of the local concentration differences induced by the saturation of the
domain.

We observe that a regime in which the flow is dominated by convection exists in these three
configurations. However, some differences occur: while in cases a) and b) 〈χ〉 is statistically
constant and slightly decreasing respectively, in case c) a growth of 〈χ〉 is observed. This
increase is only arrested when the fingers reach the boundaries of the domain.

3. Caption for “Movie S1”

Time-dependent evolution of a system characterized by Rayleigh-Darcy number Ra0 =
12023 and amplitude of the initial perturbation O(ε) = 10−5. (a) Concentration distribu-
tion with explicit indication of the finger extension (mixing length, red dashed lines). (b)
Horizontally-averaged concentration profile. (c) Time dependent evolution of M(t).

4. Caption for “Movie S2”

Time-dependent evolution of a system characterized by Rayleigh-Darcy number Ra0 =
12023 and amplitude of the initial perturbation O(ε) = 10−5. (a) Scalar dissipation rate
distribution. (b) Horizontally-averaged scalar dissipation rate profile. (c) Time-dependent
evolution of 〈χ(t)〉.

5. Caption for “Movie S3”

Time-dependent evolution of a system characterized by Rayleigh-Darcy number Ra0 =
12023 and amplitude of the initial perturbation O(ε) = 10−5. (a) Scalar dissipation rate dis-
tribution. (b) Power spectrum computed along the centerline. (c) Time-dependent evolution
of mean wavenumber.
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