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Universal behavior of scalar dissipation rate in confined porous media
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We study the problem of fluid mixing induced by gravity-driven Rayleigh-Taylor
convective dissolution in porous media with top and bottom confinement. The competition
between buoyancy and diffusion is measured by the Rayleigh-Darcy number, Ra0, the value
of which controls the entire dynamics of the flow. In this work, mixing is quantified by the
mean scalar dissipation rate, ⟨χ⟩. Our results indicate that the time behavior of ⟨χ⟩ is
nontrivial and distinctly different from previous observations in Rayleigh-Bénard config-
uration. Analyzing a number of simulations for a broad range of Ra0, we clearly show
that, in the convection-dominated regime, ⟨χ⟩ exhibits a sublinear growth (⟨χ⟩ ∼ t0.3),
which, in the limit of large Ra0, is very robust, does not seem to depend on Ra0, and can
pave the way for new modeling perspectives.
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In this paper, we focus on a porous medium saturated by two fluids with different specific
weights. The investigated domain has top and bottom confinements, and the two fluids are initially
in an unstable configuration which is prone to Rayleigh-Taylor (RT) instability [1] (i.e., in which
the heavier fluid sits on top of the lighter fluid). This RT instability, which is driven here by
buoyancy effects due to solute concentration-induced density differences, naturally evolves into flow
convection. The convection problem is, however, complicated by non-negligible diffusion effects
that tend to homogenize the flow and to smooth over the existing solute concentration gradients.
The competition between buoyancy-induced convection and diffusion generates different evolution
scenarios. Motivated by the important environmental and geophysical implications such as water
contamination [2], solute transport in the context of petroleum maturation and migration [3], and
carbon dioxide sequestration [4], we decided to focus on the specific configuration in which the
porous domain has impermeable top and bottom boundaries.

The key dimensionless parameter that controls the time evolution of the flow is the Rayleigh-
Darcy number Ra0, which measures the importance of buoyancy compared to diffusion [5]. While at
small Ra0 the problem is controlled by diffusion, at large Ra0 gravity influences the overall physical
picture by amplifying initially small flow perturbations, which in turn evolve into convective fingers
and plumes. Regardless of the value of the Rayleigh-Darcy number, diffusion drives the initial
system evolution, until instabilities grow and become large enough to induce buoyancy-driven
convective flows. At this stage, the two fluids are vigorously mixed by convection. Quantifying
the amount of mixing in this physical situation is an extremely important aspect to characterize
fluid transport in a porous medium. Following previous studies in the field [6,7], we use the scalar
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dissipation rate χ as a mixing indicator. The normalized integral of χ over the entire domain (i.e.,
normalized by the horizontal extension of the domain), which we refer to as ⟨χ⟩, gives a clear and
robust measure of the amount of mixing [8].

The RT-like configuration has received relatively less attention compared to the classical
Rayleigh-Bénard (RB) configuration [9,10]: However, it exhibits features that are important in a
number of geophysical applications, including saline soils contamination [2], petroleum migration
[3], salinity inversion [11,12], and carbon dioxide sequestration [4,13].

Also important is to characterize the time behavior of mixing, which we do analyzing ⟨χ⟩
for a range of Ra0 that can be relevant for environmental applications. Our results indicate that
⟨χ⟩ has a nontrivial time-dependent behavior and does not achieve a constant steady-state value,
like in the RB configuration [7,9,14]. We also show that, in the limit of large Ra0, the behavior
of ⟨χ⟩ appears universal. Finally, we advance a further step in the direction of modeling by
computing the instantaneous Fourier modes, as well as the corresponding mean wave number, of
the scalar dissipation rate along the horizontal centerline of the domain. This computation provides
a quantitative and repeatable indication about the time behavior of the mixing rate occurring at
the center of the domain, a parameter which is of paramount importance in the development of
simplified phenomenological mass and solute transfer models. We believe that these results can
open new perspectives for future modeling and parametrization of flow convection and mixing inside
porous media.

We consider the two-dimensional (2D) flow of a binary mixture inside a porous layer char-
acterized by uniform permeability k and porosity φ and with dimensions L∗ and H∗ along the
horizontal (x∗) and vertical (z∗) directions, respectively. The two fluids that compose the binary
mixture have constant diffusivity D and viscosity µ and are perfectly miscible but have different
density that indeed does depend on the local solute concentration. The flow is initialized such that
the upper half of the domain is filled with a heavier fluid (characterized by a solute concentration
C∗ = C∗

s , with C∗
s the saturation value), while the lower half of the domain is filled with a lighter

fluid (characterized by a solute concentration C∗ = 0). The initial density difference between
the two fluids, #ρ∗ = ρ∗(C∗

s ) − ρ∗(0), induces the vertical buoyancy force (aligned with the
acceleration due to gravity, g) that ultimately drives the fluid motion. When made dimensionless
using the velocity scale W ∗ = gk#ρ∗/µ, the length scale ℓ∗ = φD/W ∗, the timescale φℓ∗/W ∗,
and the concentration C∗

s [14,15], the flow field (u,w) is described by the Darcy law written under
the Oberbeck-Boussinesq approximation [16]:

u = −∂P
∂x

, w = −∂P
∂z

− C,
∂u
∂x

+ ∂w

∂z
= 0, (1)

where P = p + z[ρ∗(C∗
s )/#ρ∗ − 1] is the reduced pressure. Note that the superscript ∗, which is

used to indicate dimensional variables, is dropped to refer to dimensionless variables. In the absence
of dispersion effects, solute transport is governed by the following advection-diffusion equation:

∂C
∂t

+ u
∂C
∂x

+ w
∂C
∂z

= ∂2C
∂x2

+ ∂2C
∂z2

. (2)

Using the proposed reference variables, the only governing parameter of the flow is the Rayleigh-
Darcy number, Ra0 = H∗/ℓ∗ = H , which corresponds to the dimensionless height of the porous
slab [15]. Impermeable boundary conditions are applied at the top and bottom sides (w = 0, ∂zC = 0
at z = 0, and z = Ra0), whereas periodic boundary conditions are applied at the left and right sides
(x = 0 and x = L). To initialize the flow, the solute concentration is C(x, z > Ra0 /2, t = 0) = 1
in the upper half of the domain and C(x, z < Ra0 /2, t = 0) = 0 in the lower half of the domain. A
small random perturbation of the concentration field (ε, made dimensionless by C∗

s ) is applied along
the interface of separation between the upper and the lower layers to trigger the initial flow instability
(further details on the initial condition are given in the Supplemental Material [17]). A sketch of the
computational domain is shown in Fig. 1, together with a contour map of the concentration field at
a given time instant t̃ and the indication of the boundary conditions.
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FIG. 1. Sketch of the computational domain with explicit indication of the boundary conditions. The
contour map of the solute concentration C(x, z, t̃ ) for Ra0 = 12 023 at t̃ ≈ 2×104 is also shown. See the file
Movie S1.mov in the Supplemental Material [17] for the time-dependent evolution of C(x, z, t ).

We consider a wide range of Rayleigh-Darcy numbers from Ra0 = 955 up to Ra0 = 19 553,
and, to avoid any possible influence of the domain width on the evolution of the system, we set
L = 19 953 and therefore an aspect ratio L/H ! 1 for all the simulations [18]. Equations (1) and (2)
have been solved by a Fourier-Chebyshev pseudospectral method. Since the domain width (L) is
fixed for all the simulations, we keep the resolution constant (2048) in the horizontal direction, and
we increase it with Ra0 in the vertical direction (up to 1025 collocation points). For further details
on the numerical scheme we refer the reader to Refs. [14,19,20].

Usually, the degree of mixing is evaluated by examining the time behavior of the concentration
variance σc = ⟨C2⟩ − ⟨C⟩2 [6,21]. Angular brackets ⟨·⟩ indicate the integration of a quantity over
the entire domain, normalized by the horizontal extension of the domain, L∗. The quantity σc is
maximum when the two fluids are segregated, while it drops down to σc = 0 when the two fluids
are perfectly mixed. Following Hidalgo et al. [7], multiplying Eq. (2) by C and integrating over the
entire domain (see also the Supplemental Material [17]), we can compute the time behavior of σc as

∂σc

∂t
= ∂⟨C2⟩

∂t
= −2⟨|∇C|2⟩. (3)

The quantity |∇C|2 is called scalar dissipation rate [8,21] and is indicated with χ (x, z, t ). The mean
scalar dissipation rate ⟨χ⟩ is a widely used mixing indicator since it is not influenced by ad hoc
defined threshold coefficients, and it is proven very robust [7]. An in-depth discussion on ⟨χ⟩ as a
mixing indicator, and a vis-à-vis comparison of the behavior of ⟨χ⟩ in different geophysically rele-
vant situations (including RB and RT configuration) is provided in the Supplemental Material [17].

The evolution in time of ⟨χ⟩ obtained by present numerical simulations is shown in Fig. 2(a)
for Ra0 = 12 023, a case for which the different aspects of the mixing process we wish to discuss
are clearly visible. Three snapshots with the spatial distribution of χ at three different time instants
are also shown in Figs. 2(b)–2(d). The analysis of Fig. 2 provides a comprehensive picture of the
entire dynamics of dissolution-driven convection in the RT configuration and offers some interesting
hints as to the corresponding amount of mixing. At the beginning, for t < 2×103, solute transport
is purely controlled by diffusion. During this stage, the fluid velocity is negligible, and the thickness
of the mixing region between the two fluid layers grows in time as t1/2 [15,22]. Accordingly, ⟨χ⟩
evolves as ⟨χ⟩ = t−1/2/

√
8π (see the Supplemental Material [17] for further details), confirming

previous predictions [4]. We wish to remark here that the magnitude of the initial perturbation O(ε)
plays a role in the initial development of the flow: the larger the magnitude of ε, the sooner the onset
of convection (we refer the reader to the Supplemental Material [17] for a deeper discussion of this
aspect). The diffusion layer builds up in time until it reaches a critical thickness, which is large
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FIG. 2. Time evolution of the RT system characterized by Ra0 = 12 023. (a) Mean scalar dissipation rate
⟨χ⟩ (solid line) and diffusive analytical solution (open circles). The flow structure, rendered by contour maps
of the scalar dissipation rate χ (x, z, t ), is also explicitly given at three specific time instants: (b) emerging
of fingering structures, with a local maximum of ⟨χ⟩, (c) convection-dominated regime, and (d) shutdown of
convection. See the file Movie S2.mov in the Supplemental Material [17] for the complete time-dependent
evolution of χ (x, z, t ).

enough to develop a buoyancy-induced instability that ultimately leads to the formation of fingers.
This happens at t ≈ 2×103. Fingers, by stretching and deforming the interface between the two
fluid layers, induce an increase of the mean scalar dissipation rate (and therefore of mixing). The
interplay between the interface stretching process driven by fingers (which reduces the interface
thickness and sharpens the concentration gradients) and the diffusion process (which tends to
smooth out concentration gradients) produces a nontrivial behavior of ⟨χ⟩ in time: ⟨χ⟩ develops
an initial crest at t ≈ 4×103 [Fig. 2(b)], due to a fast growth of the fingers and to a corresponding
fingers-induced interface stretching, followed by a dip at t ≈ 7×103, due to a renewed influence of
diffusion and of the corresponding merging of fingers. For t > 7×103, small fingers become larger
plumes that move predominantly in the vertical direction [Fig. 2(c)] during a stage which is marked
by plume elongation. After this stage (t > 2×104), large plumes impinge on the wall, and the
flow enters the convective shutdown stage characterized by a sharp drop of ⟨χ⟩ [Fig. 2(d)]. During
the shutdown stage, the confinement imposed by the boundaries progressively hinders convection
and favors diffusion. When a stable density profile is established, i.e., when the light fluid sits on
top of the heavy fluid, convection completely stops and diffusion acts, mixing the flow towards a
final, perfectly homogenous solution characterized by uniform concentration (no gradients of solute
concentration inside the flow).

The time behavior of the mean scalar dissipation rate ⟨χ⟩ for all the values of Ra0 considered in
this study is shown in Fig. 3(a). It is interesting to note that, in the limit of large Ra0, the evolution
of ⟨χ⟩ appears almost universal and only slightly influenced by Ra0 itself (with Ra0 influencing the
time at which the shutdown stage starts). As already discussed before (see Fig. 2 and comments
therein), during the diffusion stage (t < 2×103) all curves collapse onto the theoretical prediction
⟨χ⟩ = t−1/2/

√
8π [symbols in Fig. 3(a)]. Shortly after the diffusion stage, there is an intermediate

stage (characterized by the competition between diffusion and convection [22]) during which the
behavior of ⟨χ⟩, although universal, is rather complex and cannot be easily parameterized. Later,
during the stage dominated by convection (t > 7×103), our results indicate that the mean scalar
dissipation rate increases in time as ⟨χ⟩ ∼ t0.3, until the flow enters the shutdown stage. It is
reasonable to argue that ⟨χ⟩ ∼ t0.3 is a truly universal asymptotic law emerging for Ra0 → ∞
(i.e., negligible diffusion).
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FIG. 3. Time evolution of the mean scalar dissipation rate ⟨χ⟩ (a) and of the integral quantity M(t ) (b) for
different Ra0. The specific value of Ra0 is given in panel (a) close to each curve, while the amplitude of the
initial perturbation is O(ε) = 10−5. The analytical evolution during the diffusive stage (⟨χ⟩ = t−1/2/

√
8π and

M = t1/2/
√

2π) is also reported.

The universal behavior of mixing in the RT configuration appears even more clearly when
inferred from the behavior of the mean scalar dissipation rate time integral, M(t ) =

∫ t
0 ⟨χ (t ′)⟩ dt ′,

a quantity that bears interesting information about the history of the system. Our results, which
are presented in Fig. 3(b) for the different Ra0 considered here, indicate fairly well the differ-
ent scaling laws M(t ) ∼ t1/2 and M(t ) ∼ t1.3, which characterize the regimes dominated by
diffusion and by convection, respectively [23]. Interestingly, M(t ) has an asymptotic limit that
can be predicted upon integration of Eq. (3) from t = 0 to t → ∞, i.e., upon evaluation of
M∞ = [⟨C2(0)⟩ − ⟨C2(t → ∞)⟩]/2. From the initial condition, C(x, z > Ra0 /2, t = 0) = 1 and
C(x, z < Ra0 /2, t = 0) = 0, we get ⟨C2(0)⟩ = Ra0 /2. For the final, and perfectly mixed condition
C(x, z, t → ∞) = 1/2, we get ⟨C2(∞)⟩ = Ra0 /4. This reasoning finally gives M(t → ∞) =
M∞ = Ra0 /8. Such prediction, which is explicitly shown for the different Ra0 by the dashed lines
in Fig. 3(b), represents the asymptotic limit of the evolution of the system.

Finally, and to prepare further ground to develop currently available models of solute transport
based on plume dynamics to the present flow configuration, we estimate the evolution in time of
the flow structures along the horizontal centerline of the porous domain. We propose to use the
Fourier decomposition of the scalar dissipation rate χ to extract the dominant flow features and to
provide a clearer estimate of mixing evolution. This approach is based on the observation that the
evolution of mixing between two species is determined by the behavior of two key quantities: the
amount of interface separating the two species and the magnitude of the concentration gradient at
the interface. Remarkably, χ contains information both on structure and extension of the interface
and on the concentration gradient. We compute the power spectrum of χ , and we evaluate the mean
wave number as [24–26]

k̂(t ) =
∫

kn|An|2 dkn∫
|An|2 dkn

at z = Ra0 /2, (4)

with kn the wave number and |An|2 the squared amplitude of the nth basic harmonic function
obtained from the Fourier decomposition of χ along the domain centerline, z = Ra0 /2. Results
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FIG. 4. Time evolution of the mean wave number k̂(t ), which is an estimate for the number of plumes in the
interior part of the domain. The behavior is independent from Ra0 in the convective regime. See the file Movie
S3.mov in the Supplemental Material [17] for the time-dependent evolution of the power spectrum during the
entire mixing process.

are shown in Fig. 4 for 2630 " Ra0 " 19 953. Note that the vertical dashed lines indicate the
time at which plumes reach the boundary, ti, for the different values of Ra0, therefore marking
the beginning of the shutdown phase. Our calculation suggests that, during the stage of convective
mixing (t > 7×103), the mean wave number k̂(t ) = 2πnp/(2L) evolves in time as k̂ ∼ t−0.6, where
np is the number of plumes (the coefficient 2 at the denominator is due to the fact that χ is maximum
at the plume interface, i.e., twice per plume). This scaling extends far beyond the time instant at
which plumes impinge on the boundaries and appears robust in the limit of large Ra0. At this stage
of research, it seems hard to derive a physically based correspondence between the scaling of k̂ and
that of ⟨χ⟩.

To summarize, in this paper we have examined the behavior of fluid mixing for RT convective
dissolution in confined porous media. More precisely, we have analyzed the time evolution of
mixing by examining the mean scalar dissipation ⟨χ⟩. Observing the time behavior of ⟨χ⟩, it was
possible to confirm that the entire dynamics of the RT convective dissolution is composed of three
stages [15], each characterized by a different physical phenomenology. These stages are classified
by the prevailing transport mechanism, which is initially diffusion, then convection, and finally
diffusion again. Correspondingly, mixing behavior is profoundly different from stage to stage, and
this is reflected by the time behavior of ⟨χ⟩.

In the initial stage, diffusion dominates over buoyancy and, as in all alike diffusion-dominated
processes, mixing decreases with ⟨χ⟩ ∼ t−1/2. In the second stage, convection prevails and mixing
is promoted. Vigorous phenomena occurring in this stage control the largest proportion of mixing
in the domain, and we have observed a corresponding increase of ⟨χ⟩, which goes as ∼t0.3. It is
important to underline here that this time growth has a character distinctly different from analogous
phenomena in similar flows, such as RB convection [5,9,14]. The final stage, which takes over once
the vigorous convection starts decreasing its influence, is called shutdown [4], with slower diffusion
phenomena again prevailing. The reported time scaling of ⟨χ⟩ observed during the convective stage
can be of paramount practical importance: It can be a very useful guideline to derive simple models.
For example, it can give a quick estimate of the amount of solute mixed within the convective stage
in geophysical applications [2,3]. There is some evidence that the present flow phenomenology and
the corresponding scaling laws, obtained by 2D simulations, are consistent with those obtained by
three-dimensional (3D) simulations [24]. However, future computations in 3D domains, possibly
including additional effects like fluid miscibility and/or chemical reactions [25,27,28], are foreseen
to improve current knowledge and physical modeling of solute transport in confined porous media.
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1. Details on initial condition and di↵usive regime

The initial concentration field is defined by:

C(x, z, t = 0) =
1

2


1 + sgn

✓
z

Ra0
�

1

2

◆�
+ " , (S1)

with " the initial perturbation, whereas the initial velocity field is set to zero (u = w =
0). Note that the perturbation " is applied only along the centerline, z = Ra0 /2. As a
consequence, the analytical solution of the solute balance equation, Eq. (2), is given by
C(⌘) = 1/2 [1 + erf (⌘)], where ⌘ = (z�Ra0 /2)/

p
4t. From the definition of the mean scalar

dissipation rate, and after some algebra, in the limit of small times and large Ra0 we obtain:

h�i =
t�1/2

p
8⇡

erf

✓
Ra0 /2
p
2t

◆
⇡

t�1/2

p
8⇡

. (S2)

We wish to remark that the evolution of the system depends on the amplitude of the initial
perturbation ". In particular, the role played by " is crucial during the intermediate phase
of the flow evolution, when fingers start to appear. This was also observed by De Paoli
et al. [1], who noticed that the universal behavior of the mixing length, i.e. the tip-to-rear
finger distance, became less robust during the transition from the di↵usive to the convective
regime.

To measure the sensitivity of the results to the initial perturbation, we performed simula-
tions at all the Rayleigh-Darcy numbers considered using three di↵erent values of ", namely
O(") 2 {10�3, 10�4, 10�5

}, and we monitor the time behavior of the quantityM(t). Results,
which are reported in Fig. S1 for Ra0 = 7244, show that the larger the initial perturbation,
the sooner the profile departs from the analytical di↵usive solution t1/2. However, after a
transition during which the fingers merge, the growth of M(t) is the same for all perturba-
tions considered. Asymptotically, the value M1 = Ra0 /8 is attained. Note also that it is
important to impose the same initial perturbation profile regardless of the value of Ra0 by
properly interpolating the concentration profile when changing the grid resolution.

FIG. S1. The temporal evolution of M(t) for Ra0 = 7244 is here shown. We report the data
corresponding to three di↵erent initial perturbations [O(") 2 {10�3, 10�4, 10�5

}]. Initially, the
evolution is independent from the perturbation, since controlled by di↵usion (t1/2). For the in-
termediate regime, when the fingers merging occurs, the influence of the initial perturbation is
e↵ective. The saturation value M1, corresponding to Ra0 /8, is attained asymptotically.
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2. Physical meaning of the mean scalar dissipation rate

The mean scalar dissipation rate h�i is used to characterize porous media flows con-
trolled by solute convection [2, 3]. To provide a further interpretation of h�i as an indicator
of mixing/convection, we extend the analysis of h�i and its dynamics to two other flow
configurations that are frequently taken as important archetypes for geophysical flows: The
Rayleigh-Bénard and the one-sided configuration.

We consider a two-dimensional and rectangular porous layer fully saturated by an in-
compressible fluid. The system is controlled by Eqs. (1)-(2). We assume that the domain is
periodic in horizontal direction and is confined by two horizontal walls, along which either
the concentration is fixed or the solute flux through the wall is set to zero. After some
algebraic manipulations, the solute transport equation (2) integrated over the domain gives
[2]:

@hC2
i

@t
= 2(CtopFtop + CbotFbot � h�i), (S3)

where Ctop (Cbot) is the concentration at the top (bottom) boundary, Ftop = @C/@z|z=Ra0 and

Fbot = @C/@z|z=0 are the fluxes across the top and bottom boundaries, with · = L�1
R L

0 · dx
indicating the average over the horizontal direction. Eq. (S3) can be also used in this form
as an indicator to check the accuracy of the results obtained [4].

All the systems considered in this section are characterized by the same value of the
governing parameter Ra0 = 7244.

a) Rayleigh-Bénard system [Fig. S2(a-i)-(a-ii)]: the concentration is fixed at the upper
(Ctop = 1) and lower (Cbot = 0) boundaries. After a transition phase that depends on
the initial concentration field, the flow enters a statistically steady-state regime [3, 5, 6],

which is independent of the initial condition. We indicate with · = 1/T
R t+T/2

t�T/2 · dt the

time-average operator and we compute the time-average form of Eq. (S3), which is

F = h�i , (S4)

since @thC2i/2 = 0 and F = Ftop [3]. However, the term @thC2
i/2 may be instanta-

neously either positive or negative, as shown in Fig. S2(a-i). The expected (theoretical)

behavior of the steady state value F can be evaluated with the correlation proposed
by Hewitt et al. [7] and adapted to the present dimensionless set of variables. In par-

ticular, we have F = (0.00688Ra0 +2.75)/Ra0 [dashed line in Fig. S2(a-i)], which is
independent from the Rayleigh-Darcy number in the limit of high Ra0.

b) One-sided system [Fig. S2(b-i)-(b-ii)]: the domain is initially filled with pure fluid
[C(x, z, t = 0) = 0] and the concentration is fixed at the top boundary (Ctop = 1). The
systems is closed with respect to solute fluxes across the lower boundary (Fbot = 0).
With these constraints, Eq. (S3) gives

@hC2
i

@t
= 2 (F � h�i) , (S5)

where F = Ftop. The evolution of the one-sided configuration is time-dependent (see
De Paoli et al. [8] for a description of the whole dissolution process). However, after
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FIG. S2. Three di↵erent flow configurations are here considered: (a) Rayleigh-Bénard, (b) One-
sided and (c) Rayleigh-Taylor. In all the three cases, Ra0 = 7244. Left panels: evolution of
the parameters h�i, F and @thC2

i/2. Right panels: exemplar concentration fields taken at the
times indicated by the blue arrows in panels (a-i), (b-i) and (c-i), during the convection-dominated
regime. The expected value of F is also reported (dashed lines) in panels (a-i) and (b-i).

an initial di↵usive regime, the dissolution rate F is nearly constant [7–11] and equal to
approximately 0.017 [dashed line in Fig. S2(b-i)]. A similar behavior of h�i is observed
in the instance of a Rayleigh-Taylor system characterized by a non-monotonic density-
concentration profile [2, 12].

c) Rayleigh-Taylor system [Fig. S2(c-i)-(c-ii)]: the boundaries are impermeable with re-
spect to solute fluxes (Ftop = Fbot = 0). The concentration field is initialized with an
unstable density profile in which C(x, z > Ra0 /2, t = 0) = 1 [C(x, z < Ra0 /2, t =
0) = 0] in the upper [lower] half of the domain. Therefore, Eq. (S3) gives

@hC2
i

@t
= �2h�i. (S6)

After an initial phase in which di↵usion dominates, fingers form and merge [1]. Then, a
convection-dominated regime occurs, and h�i is observed to grow. After impingement
of the fingers on the boundaries, the mean scalar dissipation rate decreases due to
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the reduction of the local concentration di↵erences induced by the saturation of the
domain.

We observe that a regime in which the flow is dominated by convection exists in these three
configurations. However, some di↵erences occur: while in cases a) and b) h�i is statistically
constant and slightly decreasing respectively, in case c) a growth of h�i is observed. This
increase is only arrested when the fingers reach the boundaries of the domain.

3. Caption for “Movie S1”

Time-dependent evolution of a system characterized by Rayleigh-Darcy number Ra0 =
12023 and amplitude of the initial perturbation O(") = 10�5. (a) Concentration distribu-
tion with explicit indication of the finger extension (mixing length, red dashed lines). (b)
Horizontally-averaged concentration profile. (c) Time dependent evolution of M(t).

4. Caption for “Movie S2”

Time-dependent evolution of a system characterized by Rayleigh-Darcy number Ra0 =
12023 and amplitude of the initial perturbation O(") = 10�5. (a) Scalar dissipation rate
distribution. (b) Horizontally-averaged scalar dissipation rate profile. (c) Time-dependent
evolution of h�(t)i.

5. Caption for “Movie S3”

Time-dependent evolution of a system characterized by Rayleigh-Darcy number Ra0 =
12023 and amplitude of the initial perturbation O(") = 10�5. (a) Scalar dissipation rate dis-
tribution. (b) Power spectrum computed along the centerline. (c) Time-dependent evolution
of mean wavenumber.
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