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Rayleigh-Taylor convective dissolution in confined porous media
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Numerical simulations are used here to analyze the Rayleigh-Taylor instability in
confined and isotropic porous media. The Rayleigh-Taylor instability phenomena arise
when a layer of heavy fluid sits on top of a layer of a lighter fluid. Small fluctuations of
the interface separating the two fluid layers produce larger structures that eventually drive
the flow into a nonlinear convective stage. The flow is initially controlled by diffusion, but
rather quickly the action of gravity produces efficient fluid mixing in the entire domain. The
single parameter controlling the flow is the Rayleigh number, which is the dimensionless
ratio of diffusive to convective timescales. The flow evolution is often parametrized by
the mixing length (a suitably defined extension of the mixing region), which, according
to Gopalakrishnan et al. [Phys. Rev. Fluids 2, 012501(R) (2017)], has a linear growth.
From the analysis of a broad range of simulations spanning three orders of magnitude of
the Rayleigh number, we could observe a superlinear asymptotic growth of the mixing
length. The present results, which are in line with previous simulations, allow us to
evaluate precisely the superlinear evolution coefficient. We further provide simple scaling
arguments to justify the observed superlinear growth.

DOI: 10.1103/PhysRevFluids.4.023502

I. INTRODUCTION

When a layer of heavier fluid sits on top of a layer of lighter fluid, the interface separating the two
layers is prone to undergoing the Rayleigh-Taylor (RT) instability [1–3]. Gravity amplifies initially
small interfacial perturbations, which possibly evolve into fingerlike structures [4]. Reportedly,
the evolution of the average finger length with time is linear [5] and corresponds to a strong
convective mixing of the two fluids. Both finger structures and convective mixing have been broadly
investigated, with the theoretical foundations of the problem for the general case of buoyancy-driven
convection in pure fluids (i.e., not restricted to the case of flows in porous media) being originally
set by Rayleigh [1] and Taylor [2]. Such foundations were only later extended to the case of porous
media by Saffman and Taylor [3], who derived the conditions for the stability of two immiscible
fluids with different density and viscosity in a porous medium. They also introduced the idea that
the flow inside a porous medium can be experimentally reproduced employing the Hele-Shaw cell,
i.e., a cell composed of two large parallel plates separated by an extremely narrow size gap, which
has served the purpose of many important experimental investigations [6–9]. Although obtained
for the case of two immiscible fluids, the main findings of Saffman and Taylor [3] remain valid
also for the case of miscible fluids considered here (see also [4] for a broader discussion of the
topic). A comprehensive analysis of gravitationally unstable miscible fluids was conducted a few
years later by Wooding [10], who performed experiments in a Hele-Shaw cell and found that the
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mean amplitude of fingers generated at the liquid-liquid interface grows in time as t , while their
mean wavelength grows as t1/2. A further extension of these findings, so as to cover a wider range
of the governing parameters, was recently provided by [11–13] using numerical simulations. It is
now widely accepted that the time behavior of fingers is related to the influence of convection and
diffusion [5,14]: Convection dominates the dynamics of finger tips (hence influencing the fingers
amplitude), while diffusion dominates the lateral finger spreading (hence influencing the finger
width or wavelength).

It is worth noting that the problem of buoyancy-driven convection in fluid-saturated porous media
has been receiving increasing attention because of its importance in a number of industrial [15,16]
and environmental [17–19] applications. Specifically, the strategic planning regarding carbon
dioxide (CO2) sequestration into brine-filled geological formations has driven a number of recent
works on the topic [12,20–26]. In most cases, such works envision the process of dissolution-driven
CO2 transport as a Rayleigh-Bénard-like (RB) convection. In the RB case, the solute concentration
is kept constant at the top boundary. In the RT case, a lump of heavier fluid fills the top part of the
domain and penetrates the lighter fluid underneath [27,28].

Theories, experiments, and simulations have recently developed a fairly robust picture of the
RT instability in porous media, also providing a suitable scientific foundation for addressing more
complex problems of paramount importance [for example, the inclusion of chemical reactions
occurring during the fluid mixing (see [29–32])], but several aspects still remain to be fully
investigated. One of these aspects is the influence of top and bottom horizontal impermeable
boundaries on the overall dynamics of the flow triggered by the RT instability, and the corresponding
parametrization and modeling of the entire process. This is exactly the aim of the present paper. We
consider the RT instability developing in a porous medium delimited by two horizontal impermeable
boundaries. The governing dimensionless parameter of the flow evolution in this case is the
Rayleigh-Darcy number Ra, which represents a measure of the relative importance of buoyancy
compared to diffusion in a porous medium. For small values of Ra [typically Ra < O(10)] fingers do
not appear and the problem is fully controlled by diffusion. For larger Ra [typically Ra > O(102)],
although the stretching of the fingers is dominated by convection, molecular diffusion still plays
a role promoting the mixing of the two species all along the interface of the fingers (we refer the
reader to [11,33,34] for further details on the stability analysis in different flow configurations).

In the present study, we use numerical simulations to perform a systematic study for a wide
range of Ra so as to provide insights into the dissolution-driven convection.1 Together with the
phenomenological description of the flow structure, we will also present specific measurements of
global transfer coefficients and propose reliable parametrizations and models of the process.

II. METHODOLOGY

We consider a two-dimensional homogeneous and isotropic porous domain characterized by
uniform permeability k and porosity φ. The domain has dimensions L∗ and H∗ along the horizontal
(x∗) and vertical (z∗) directions, respectively. The upper (lower) half of the porous domain is initially
filled with a heavy (light) fluid.

In this physical configuration, the flow is driven by the composition-induced density difference
in the vertical direction (where the acceleration due to gravity g is directed). The fluid motion is
described by Darcy’s law written in the framework of the Oberbeck-Boussinesq approximation [35]

∂u∗

∂x∗ + ∂w∗

∂z∗ = 0, (1)

μ

k
u∗ = −∂ p∗

∂x∗ ,
μ

k
w∗ = −∂ p∗

∂z∗ − ρ∗g, (2)

1The computational results presented have been achieved using the Vienna Scientific Cluster.
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where u∗ and w∗ are the horizontal and vertical components of the fluid velocity, while p∗ and
ρ∗ are pressure and density. Note that the Oberbeck-Boussinesq approximation is valid only if
density variations are small compared to the reference fluid density. In many situations of practical
interest, and also in the context of geophysical and environmental applications, this approximation
is physically sound [19] and the adoption of the fully compressible approach does not introduce
substantial changes [36]. In the present study we assume that the density of the mixture is a linear
function of solute concentration C∗,

ρ∗ = ρ∗
s

[
1 − �ρ∗

s

ρ∗
s C∗

s

(C∗
s − C∗)

]
, (3)

where ρ∗
s is the density of the dense layer of saturated fluid, C∗

s is the corresponding concentration
of solute, and �ρ∗

s is the density difference between the saturated and the pure fluid (density jump
at the beginning of the simulation). To determine the local value of the fluid density ρ∗, which
is required to compute the buoyancy term in Eq. (2), we use the transport equation for the solute
concentration C∗,

φ
∂C∗

∂t∗ + u∗ ∂C∗

∂x∗ + w∗ ∂C∗

∂z∗ = φD

(
∂2C∗

∂x∗2
+ ∂2C∗

∂z∗2

)
, (4)

in which D is solute diffusivity and t∗ is time. We assume here that the diffusion coefficient is
constant (see [37–39] for a detailed discussion of the effects of dispersion on the flow stability and
on the dissolution process).

Dimensionless equations

The reference velocity scale for the present flow configuration is the free-fall buoyancy velocity
W ∗ = gk�ρ∗

s /μ, which is the characteristic downward velocity of a dense fluid parcel immersed in
a light fluid. We assume that the reference length scale is �∗ = φD/W ∗, defined as the length over
which advection is balanced by diffusion. Variables are made dimensionless as follows [12,40,41]:

x = x∗

�∗ , z = z∗

�∗ , u = u∗

W ∗ , w = w∗

W ∗ , (5)

p = p∗

�ρ∗
s g�∗ , C = C∗

C∗
s

, t = t∗

φ�∗/W ∗ . (6)

With reference to the dimensionless variables defined above, the governing balance equations
become

∂u

∂x
+ ∂w

∂z
= 0, (7)

u = −∂P

∂x
, w = −∂P

∂z
− C, (8)

∂C

∂t
+ u

∂C

∂x
+ w

∂C

∂z
= ∂2C

∂x2
+ ∂2C

∂z2
, (9)

where P = p + z(ρ∗
s /�ρ∗

s − 1) is the reduced pressure. The governing parameter of the present
system is the global (or final) Rayleigh-Darcy number Ra0, defined as [40]

Ra0 = g�ρ∗
s kH∗

μφD
= H∗

�∗ . (10)

This dimensionless parameter represents the ratio of diffusive to convective timescales and contains
information about the fluid properties (�ρ∗

s , μ, and D), the porous medium properties (k and φ),
and the domain size (H∗). We will simply refer to Ra0 as the Rayleigh number hereinafter. Although
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∂C/∂z = 0, w = 0

z
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0 Lx C z, t̃ 10
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h

∂C/∂z = 0, w= 0

FIG. 1. (a) Sketch of the computational domain with explicit indication of the boundary conditions.
The contour map of the solute concentration C(x, z, t̃ ) for a given time instant t = t̃ is also shown to
provide a qualitative picture of the dynamics for the present physical configuration. (b) Horizontally averaged
concentration profile C(z, t̃ ) at the same time instant t̃ considered in (a). The instantaneous mixing length h is
explicitly indicated as the extension of the tip-to-rear finger region (dashed lines).

not explicitly appearing in the governing equations (7)–(9), this parameter enters the picture as the
dimensionless height of the domain.

Impermeable boundary conditions (i.e., no-flux conditions) for both fluid and solute are imposed
at the top and bottom horizontal boundaries, whereas periodicity is applied at the side boundaries
(along x). In dimensionless form, these boundary conditions become

w = 0,
∂C

∂z
= 0 for z = 0, z = Ra0. (11)

A key quantity that is usually introduced to describe the dynamics of RT instability is the
mixing length h∗ [5,27,42,43], which represents the average crest-to-throat distance of the deformed
liquid-liquid interface. This quantity can be defined based on the local [43] (i.e., threshold) or
global [44] (i.e., integral) value of the concentration field C(x, z, t ). Following De Wit [43], we
identify the dimensionless mixing length h as the region where ε < C(z, t ) < 1 − ε, with C(z, t ) =
1/L

∫ L
0 C(x, z, t )dx the concentration field averaged along the horizontal direction x, ε = 10−2

a small tolerance parameter, and L = L∗/�∗ the dimensionless layer extension in the horizontal
direction x. Further details on alternative definitions of the mixing length are provided in Sec. IV.
Note that a local Rayleigh number (also called mixing, effective, or current Rayleigh number) can
be defined using h∗ (rather than H∗) as the reference length:

Ra = g�ρ∗kh∗

μφD
= h∗

�∗ = h. (12)

Values of the local Rayleigh number range between 0 � Ra � Ra0, with this parameter being
conveniently introduced to compare systems that might be globally different, but locally similar,
since they are characterized by the same extension of the mixing region (i.e., same h). A sketch of
the computational domain is shown in Fig. 1(a) together with an instantaneous contour map of the
concentration field at a given Ra0 so as to give a flavor of the evolution of the flow [Fig. 1(a)] and
of the flow parameters [Fig. 1(b)].

The governing equations (7)–(9) have been solved with a pseudospectral Chebyshev-Tau method
employing a discrete Fourier transform in the horizontal direction and Chebyshev polynomials in
the vertical direction [24,40,45]. We performed numerical simulations for different values of the
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Rayleigh numbers Ra0 in the range 10 � Ra0 � 19 953. Starting from 10, Ra0 was increased by
a multiple factor of 10a, with a = 0.22. Since we want to characterize the dynamics of the entire
dissolution process in realistic conditions, in the following we will focus on large Ra0 only (i.e.,
Ra0 > 3 × 102). All the simulations have been performed on a domain with L = π/2, with the
exception of Ra0 = 19 953, which has been computed with L = π/4. The time step has been chosen
to fulfill the Courant-Friedrichs-Lewy condition. For the largest Rayleigh number considered here
(Ra0 = 19 953), we discretized the domain using 2048 × 1025 collocation points and adopting a
time step �t = 1/2.

III. RESULTS

In the following we will present and analyze the results obtained from an extensive campaign
of numerical simulations of Rayleigh-Taylor convective dissolution in confined porous media, for
different Rayleigh numbers in the range 347 � Ra0 � 19 953.

A. Flow phenomenology

We start our discussion by looking at the qualitative evolution of the flow field. Results are shown
for Ra0 = 12 023 only, since all the essential physical mechanisms we wish to discuss are clearly
observable at this value of the Rayleigh number. The evolution of the flow field is faithfully rendered
in Fig. 2 using contour maps of the concentration field C at different time instants, as explicitly indi-
cated in the caption. The concentration field is initialized such that a heavier fluid layer (white layer
in Fig. 2) lies on top of a lighter fluid layer (black layer in Fig. 2). Unstable modes are triggered by
adding a random perturbation of the interface separating the two fluids, i.e., along z = Ra0 /2. The
perturbation, characterized by an amplitude of 10−3, is only applied at the first time instant (t = 0).
After an initial stage dominated by diffusion [Fig. 2(a)], small fingers form at the interface [Fig. 2(b)]
and start moving upward and downward in an almost symmetric fashion. Upon formation, fingers
grow in time and interact, generating large ascending and descending plumes [Figs. 2(c)–2(e)]
during a stage that, although dominated by convection, remains influenced by diffusion that drives
the lateral spreading of the fingers’ interface [5,14]. Under the vigorous action of buoyancy, plumes
move predominantly in the vertical direction until they impinge on the boundaries where, due to
the impermeability condition, they are forced to move laterally along the horizontal direction. At
this stage, heavy fluid settles at the bottom of the domain, while light fluid accumulates at the top
[Figs. 2(f)–2(h)]. This creates a stable density stratification that progressively hinders convection
until the complete shutdown [Fig. 2(i)]. Naturally, the dynamics of fingers and plumes described
above shares similarities with that observed for RB convection in porous media [20,21,24].

The evolution of the averaged concentration profile C(z/ Ra0, t ) corresponding to the different
flow instances discussed above is shown in Figs. 2(j)–2(l) as a function of the vertical coordinate
z/ Ra0. In each of these three panels, the averaged profiles obtained from the three qualitative
pictures displayed on the same row are shown. Note that overbars denote an average done in space
and performed along the horizontal direction only.

As expected, shortly after perturbing the interface, the concentration profile follows closely the
analytical profile of pure diffusion [see the mean profile in Fig. 2(j) corresponding to the qualitative
picture in Fig. 2(a) taken at t = 0.02 × 104]. As soon as fingers develop and grow, the concentration
profile becomes more fluctuating. Upon impingement of plumes with the boundaries, concentration
rises at the bottom and drops at the top [Fig. 2(f) taken at t = 3.27 × 104, and the corresponding
mean profile in Fig. 2(k)]. This marks the beginning of the shutdown phase, which is characterized
by the progressive achievement of a completely stable density profile [Fig. 2(i) taken at t = 1.34 ×
105, and the corresponding mean profile in Fig. 2(l)]. In the long-term limit, a fully homogeneous
concentration profile [C(z, t → ∞) = 1/2] is finally attained.

To characterize further the transient evolution of the flow, we focus on the time behavior of
the dimensionless mixing length h normalized by the Rayleigh number Ra0 and of the Sherwood
number Sh (Fig. 3). The Sherwood number, which represents a dimensionless measure of the
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FIG. 2. (a)–(i) Snapshots of the concentration field for Ra0 = 12 023 at different time instants: (a) t =
0.02 × 104, (b) t = 0.29 × 104, (c) t = 0.57 × 104, (d) t = 1.11 × 104, (e) t = 2.19 × 104, (f) t = 3.27 ×
104, (g) t = 4.35 × 104, (h) t = 6.53 × 104, and (i) t = 1.34 × 105. Note that the aspect ratio of the cell has
been modified here to L/H = 1 for visualization purposes only. (j)–(l) Instantaneous horizontally averaged
concentration profiles corresponding to snapshots in a given row: (j) profiles from (a)–(c); (k) profiles from
(d)–(f); and (l) profiles from (g)–(i).

dissolution efficiency, is defined as [20,27]

Sh = 〈w∗C∗〉h∗

φDC∗
s

, (13)

where angular brackets represent the average computed over the entire domain. The Sherwood
number can be rewritten in terms of dimensionless variables as

Sh = 〈wC〉Ra, (14)
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FIG. 3. Time evolution of (a) the normalized mixing length h/ Ra0 and (b) the normalized Sherwood
number Sh / Shmax for Ra0 = 12 023. A vertical dashed line is drawn to indicate the time instant at which
plumes impinge at the boundary. A contour map of the concentration distribution at this specific instant is also
included for clarity.

with Ra the local Rayleigh number defined in Eq. (12). Sometimes the Sherwood number defined
as in Eq. (13) is also called the mass-transfer Nusselt number. As expected, the mixing length
[Fig. 3(a)] is a monotonic increasing function of time: The mixing process, which is initially
slow and controlled by diffusion, becomes faster when dominated by convective fingers or plumes.
Naturally, the mixing length has a maximum when plumes reach the boundaries (and this maximum
corresponds to the domain height, i.e., h/ Ra0 = 1). More detailed considerations of the time
behavior of h will be given in Sec. III B.

During the initial diffusive stage, the Sherwood number remains approximately zero (solute
convection is negligible). As soon as small fingers appear (t � 2 × 103), the Sherwood number
increases, though remaining small in magnitude. During this stage, finger growth is linear and
occurs predominantly in the vertical direction, with little or no lateral movement. After this initial
linear growth, fingers become long enough so that their vertical motion turns out to be unstable
and exhibits also lateral movements. At this stage (t � 5 × 103), fingers interact and merge into
large plumes. Such a complex interaction promotes solute convection and induces a rapid increase
of the Sherwood number. When large plumes reach the opposite boundary (t � 2.3 × 104), the
Sherwood number is still increasing (see the dashed line indicating the first impact of a plume with
the boundary). This happens because the main contribution to the Sherwood number comes from
the core part of the domain (where momentum and energy transfer are higher), which is still not
influenced by the presence of the boundaries. Upon impact of plumes with the boundaries, heavy
(light) solute deposits at the bottom (top) boundary, hence hindering convection and mixing until
the final complete shutdown.

B. Mixing length and Sherwood number: Analysis and modeling approaches

The temporal evolution of the mixing length for all the Rayleigh numbers considered in this
study is presented in Fig. 4. The entire evolution of the mixing length h appears universal, in that
its behavior is essentially independent of the value of the global Rayleigh number Ra0 (whose value
is explicitly indicated next to each curve). For t < 103, the process of solute transport is purely
controlled by diffusion, and the behavior of the concentration C, obtained starting from the initial
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10-2
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FIG. 4. Evolution in time of the mixing length h (symbols) for all the values of the global Rayleigh number
Ra0 (explicitly indicated next to each curve) considered in this study. The proposed fitting (red solid line) and
the scaling laws (triangles) are also shown for comparison: During the diffusive stage h ∼ t1/2, whereas during
the asymptotic nonlinear convective stage h ∼ tα , with α = 1.208 ± 0.008 (superlinear scaling). To emphasize
the proposed scaling law for the mixing length in the asymptotic nonlinear convective stage, a plot of h/t1.2 is
also shown in the inset.

stepwise profile, follows the analytical solution for the purely diffusive case

C(z, t ) = 1
2 [1 + erf(ψ )], (15)

where ψ = (z − Ra0 /2)/
√

4t . The corresponding mixing length, computed as explained in Sec. II,
becomes

h(t ) = z2 − z1 = −2
√

4t erf−1(2ε − 1) (16)

≈
√

4π (1 − 2ε)
√

t ∼ √
t . (17)

This theoretical behavior fits nicely the results of the numerical simulations during the initial stage
(see Fig. 4). A similar trend was recently observed by Gopalakrishnan et al. [5] in the same flow
configuration analyzed here. This trend was also recovered for the case of RT instability in pure
fluids and assuming different initial conditions by Biferale et al. [46].

After the initial stage dominated by diffusion, perturbations grow and the flow enters a long stage
dominated by convection and characterized by the appearance and corresponding development of
fingers (see also the description of the flow phenomenology provided in Sec. III A). A trend based
on data fitting has been proposed by Gopalakrishnan et al. [5], who found a linear scaling for
the growth of the mixing length in the convective stage. In this work, we are also able to come
to a more precise estimate of this scaling. We notice that the asymptotic behavior of the mixing
length (i.e., the behavior for t > 104, which can be attained only for Ra0 > 4 × 103) is apparently
universal but superlinear, being approximated by the power law h ∼ tα , with α = 1.208 ± 0.008.
Therefore, to emphasize the robustness of the proposed scaling in the nonlinear convective stage,
we compute the quantity h/t1.2. Results are shown in the inset of Fig. 4. As expected, the rescaled
mixing length h/t1.2 relaxes onto an horizontal plateau, clearly indicating the attainment of such an
asymptotic regime. We have extensively tested the proposed scaling also changing the aspect ratio
of the domain in the range π/4 � L/ Ra0 � π/2 to be sure that this result is not influenced by the
domain size [47]. Note that there is an elusive region between the initial diffusion-dominated stage
and the final convection-dominated stage (103 < t < 104), during which the behavior of h slightly
depends on the value of Ra0 and cannot be easily parametrized.
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FIG. 5. Evolution in time of the Sherwood number rescaled as Sh × Ra0 (symbols) for all the values of the
global Rayleigh number Ra0 considered in this study. Results are shown up to the instant at which the fastest
plume impinges on the boundary. The proposed scaling Sh × Ra0 ∼ t2.7 is also shown for comparison. In the
inset, we also show the behavior in time of the Sherwood number Sh, i.e., without the rescaling factor Ra0.

In Fig. 5 we focus on the behavior of the Sherwood number Sh: In the inset we show the evolution
of Sh in time for all the values of the global Rayleigh number Ra0 considered here (347 � Ra0 �
19 953), whereas in the main panel we show the behavior in time of the Sherwood number rescaled
as Sh × Ra0. All the results in this picture are shown up to the time instant at which the faster plume
reaches the boundary, so as to exclude from the analysis the shutdown phase, during which Sh
inevitably drops. As already discussed in Fig. 3, for a given value of Ra0, Sh increases monotonically
in time. While the increase of Sh is slow at the beginning, when the flow is controlled by diffusion,
it becomes faster when the flow is dominated by convection. When properly rescaled as Sh × Ra0,
all results collapse and follow the unified asymptotic behavior Sh × Ra0 ∼ t2.7. We believe that
such a prediction could be helpful for future parametrization of transport processes in the present
configuration.

C. Wall-induced convective shutdown

In almost all the flow transport instances of practical importance in environmental and industrial
applications, the presence of boundaries plays a crucial role [12,48]. Despite this, the presence of
boundaries is usually neglected in the framework of the RT instability and the flow dynamics is
analyzed only up to the point at which flow structures reach the limit of the computational domain
in the vertical direction. There are only a few works [5,29] on RT instability in confined porous
media, which however mainly focused on the role of chemical reactions at the fluid-fluid interface,
or on the relative role of diffusion and convection during the initial flow evolution (i.e., ruling out
the shutdown phase occurring after plume impingement).

Here we quantify the effect of the vertical confinement by computing the time tt required for
rising (falling) fingers to impinge on the top (bottom) boundary. In particular, we define tt as

tt ∀t � tt , h(t )/ Ra0 � 1 − ε, (18)

with ε = 10−2. In other words, at time larger that tt , the normalized distance of the average finger
tip from the wall is smaller than ε. As apparent from Fig. 6, the behavior of tt as a function of the
Rayleigh number Ra0 (in the range of moderate to large Rayleigh numbers) is well described by
the power law tt = 14.98 × Ra0.78

0 . This reflects the physical intuition that the time a plume takes
to reach the boundary is increasing with Ra0, i.e., with the domain height. However, the increase is
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102 103 104 105
103

104

105

FIG. 6. Time taken by fingers to reach the horizontal boundaries (tt ) as a function of Ra0 for simulations in
the range 347 � Ra0 � 19 953. The proposed fitting 14.98 × Ra0.78

0 is also explicitly shown.

lower than the expected linear increase that would occur in the case of a simple rising and falling
plume in pure fluids moving at constant (buoyancy) velocity, hence indicating a vertical plume
acceleration. This behavior is possibly due to the complex nonlinear interaction among plumes that
characterizes the entire mixing process and hinders the application of simplified considerations
to parametrize it. After plumes impinge on the boundaries, convection becomes gradually less
important compared to diffusion and the system enters the shutdown phase, with the concentration
distribution slowly attaining an equilibrium (and stable) profile characterized by a perfectly mixed
solute.

IV. PHENOMENOLOGICAL MODEL FOR THE TIME EVOLUTION OF MIXING LENGTH

In this section we propose a simplified phenomenological model to estimate the amount of
mixing induced by RT instability in a porous medium. Such an estimate is of specific importance
to design industrial equipments employing porous material or to analyze environmental and
geophysical processes.

Since there is no model available to predict the mixing process for RT configuration in porous
media, we took inspiration from the models mostly developed for turbulent flows. A comprehensive
review of this topic was recently offered by Boffetta and Mazzino [27].

The model we present in this section is inspired by the work of Cook et al. [44], who described
the growth of the mixing region during RT instability in pure fluids. This model is based on
the evaluation of the mass fluxes across an horizontal surface located at a specific height z = z0

at which the value of the mean concentration is C(z0, t ) = 1/2. Due to the symmetry of our
system, and considering also the boundary conditions (impermeable walls, i.e., closed system) and
the initial condition (upper and lower half of the domain characterized by C = 1 and by C = 0,
respectively), we have z0 = Ra0 /2. To identify properly the mixing region, we conveniently rescale
the concentration profile as

Cr (C) = 1 − 2|C − 1/2| (19)

so as to have Cr = 1 when both fluids are mixed in equal proportion (ρ∗ = ρ∗
s − �ρ∗

s /2) and Cr = 0
when only one fluid is present (ρ∗ = ρ∗

s or ρ∗ = ρ∗
s − �ρ∗

s ). The behavior of C and Cr with the fluid
density is shown in Fig. 7(a). When plotted as a function of the vertical position z/ Ra0, the actual
(C) and the rescaled (Cr) mean concentrations behave as shown in Fig. 7(b). As already mentioned in
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0 1/2 1
0

1/2

1

FIG. 7. (a) Dimensionless concentration C (solid line) and rescaled concentration Cr (dash-dotted line)
represented as a function of the local density ρ∗. Due to the definition adopted in (19), the value of Cr is
maximum for C = 1/2 and minimum when C = 0 or C = 1. (b) Example of rescaled concentration field Cr

plotted as a function of the average concentration field C(z).

Sec. II, different definitions are available to quantify the mixing length h that measures the extension
of the mixing region. Here we follow Cook et al. [44] and we define the mixing length as

h = α

∫ Ra0

0
Cr (z)dz. (20)

The use of this latter definition for h, which gives the same results compared to the definition of h
introduced in Sec. II and based on the identification of a threshold value, is however more suitable
to derive theoretical models based on analytical approaches. Nice agreement between the results
obtained by the two different definitions of h is reached upon introduction of the factor α = 9.3 in
Eq. (20). Assuming that the mean concentration profile is symmetric with respect to z0 = Ra0 /2,
and using the definition (19), Eq. (20) becomes

h = 2α

∫ Ra0

Ra0 /2
[1 − 2C(z)]dz. (21)

Mass conservation for incompressible miscible fluids immersed in homogeneous and isotropic
porous media reads [49]

φ
∂ρ∗

∂t∗ + ∂ (ρ∗u∗)

∂x∗ + ∂ (ρ∗w∗)

∂z∗ = 0. (22)

Assuming that the flow is periodic along x and that u∗ = w∗ = 0 (i.e., no mean flow along x and z),
Eq. (22), averaged along x and complemented by Eq. (3), becomes

∂C

∂t
+ ∂ Cw

∂z
= 0. (23)

The time derivative of Eq. (21), written using also Eq. (23), gives

∂h

∂t
= −4αCw(z0). (24)

023502-11



DE PAOLI, ZONTA, AND SOLDATI

102 103 104 105

10-6

10-5

10-4

1 2 3
102

103

104

FIG. 8. (a) Behavior of the correlation −Cw as a function of the local Rayleigh number Ra for different
simulations in the range 347 � Ra0 � 19 953 (open circles). The proposed fitting [red solid line, Eq. (25)] of
−Cw is also explicitly shown. (b) Comparison between the averaged behavior of h computed from the entire
numerical database (closed circles) and the prediction of the phenomenological model [Eq. (26)].

This equation, which expresses the time variation of the mixing length h, is valid for both confined
and unconfined porous media in the vertical direction, provided C(z0) = 1/2.

At this stage, to obtain the explicit behavior of h(t ) we introduce a proper parametrization for Cw.
From the analysis of our numerical database, we observe that the correlation Cw, when properly
rescaled, exhibits a rather robust behavior [Fig. 8(a)] that can be conveniently parametrized. In
particular, we observe that

−Cw(z0) ≈ β Raγ , (25)

where β and γ are two model constants that are introduced to reproduce faithfully the numerical
results. Based on our computation, we get γ = 0.169 ± 0.014 and β = 0.0035 ± 0.0004.

Using the correlation (25), and considering that Ra = h, the integral of Eq. (24) with the initial
condition h(t0) = t0 = 0 gives

h = δt1/(1−γ ), (26)

where δ = [4αβ(1 − γ )]1/(1−γ ) = 0.0687. Note that the value of the exponent that characterizes
the growth of h with time t , i.e., 1/(1 − γ ) = 1.204, is in good agreement with that observed
in the numerical simulations, 1.208 (see Fig. 4 and the corresponding description). The explicit
comparison of the time behavior of h = f (t ) is shown in Fig. 8(b). Symbols are obtained by
averaging all the numerical results for Ra0 � 347 (a value that we took as a threshold to indicate the
beginning of a convection-dominated regime). As expected, the agreement between the prediction
given by the model [red line in Fig. 8(b)] and the numerical simulations [symbols in Fig. 8(b)]
is satisfactory. This is partially due to the construction of the model, which used some of
the simulations data, but indicates also the robustness of the employed modeling strategy and
hypotheses. We wish also to remark here that the growth rate of h with time t is close to the linear
behavior estimated in previous studies [5]. Yet it is superlinear, a result that makes the growth of the
mixing length faster than expected.

V. CONCLUSION

In this work, numerical simulations were used to analyze the evolution of solute convection
driven by Rayleigh-Taylor instability in isotropic and homogeneous vertically confined porous
media. We performed an extensive campaign of pseudospectral numerical simulations for different
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values of the Rayleigh number Ra0 in the range 347 � Ra0 � 19 953. The initial condition of
each simulation consists of a layer of heavy fluid sitting on top of a layer of light fluid. The
time-dependent dynamics of the flow is characterized by the appearance of three consecutive main
stages: At the beginning, the process of solute transport at the liquid-liquid interface is dominated by
diffusion; later, small fingers appear at the interface, grow in time, and merge to form larger plumes
during a stage dominated by convection. Finally, plumes reach the boundaries and the flow enters a
shutdown stage. The entire transient dynamics described above has been carefully characterized,
focusing in particular on the evolution of the mixing length h, a quantity used to measure the
extension of the mixing region. During the initial diffusive stage, the mixing length evolves as
h ∼ t1/2. After the diffusive stage, the flow enters a convection-dominated stage that is ultimately
characterized by an asymptotic superlinear behavior of the mixing length. With our results, we
confirm the qualitative trend found in previous numerical and experimental studies [5], but we also
evaluate precisely the value of the exponent to be h ∼ t1.2. Based on the original results of the
present computations, we have also developed a simplified phenomenological model to predict the
time evolution of the mixing length in RT instability in porous media.

Although experiments, simulations, and theoretical analysis have provided plentiful data on the
dynamics of viscosity and gravity-driven flows in porous media, the field remains rich in future
challenges. One important aspect that in our opinion requires further attention is the inclusion
of chemical reactions taking place during the mixing process between the two fluids. Chemical
reactions usually occur at the interface separating the two fluids and can trigger or suppress fluid
instabilities. This issue was recently studied for the case of miscible fluids [29] and should be also
studied for the case of partially miscible [30,50,51] or immiscible fluids [52].
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