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In this work, we use direct-numerical-simulation-based Eulerian-Lagrangian simula-
tions to investigate the dynamics of small gyrotactic swimmers in free-surface turbu-
lence. We consider open-channel flow turbulence in which bottom-heavy swimmers are
dispersed. Swimmers are characterized by different vertical stability, so that some realign
to swim upward with a characteristic time smaller than the Kolmogorov timescale, while
others possess a reorientation time longer than the Kolmogorov timescale. We cover one
order of magnitude in the flow Reynolds number and two orders of magnitude in the
stability number, which is a measure of bottom heaviness. We observe that large-scale
advection dominates vertical motion when the stability number, scaled on the local
Kolmogorov timescale of the flow, is larger than unity: This condition is associated to
enhanced migration toward the surface, particularly at low Reynolds number, when swim-
mers can rise through surface renewal motions that originate directly from the bottom-
boundary turbulent bursts. Conversely, small-scale effects become more important when
the Kolmogorov-based stability number is below unity: Under this condition, migration
toward the surface is hindered, particularly at high Reynolds, when bottom-boundary bursts
are less effective in bringing bulk fluid to the surface. In an effort to provide scaling
arguments to improve predictions of models for motile microorganisms in turbulent water
bodies, we demonstrate that a Kolmogorov-based stability number around unity represents
a threshold beyond which swimmer capability to reach the free surface and form clusters
saturates.

DOI: 10.1103/PhysRevFluids.4.124304

I. INTRODUCTION

Motile microorganisms have developed different ways of adapting to aquatic flows. Some
organisms, like raphidophytes and dinoflagellates phytoplankton species, are able to migrate
upward toward well-lit surface waters during the day (to activate photosynthesis, absorb CO2,
and produce oxygen), and downward toward nutrient-rich deeper layers at night [1]. This ability
is deemed to be an important cause of the succession between motile and nonmotile species when
conditions are turbulent [2]. It is now well-known that vertical migration is favored by the capability
of swimmers to change the direction of propulsion in response to different physicochemical
biases, e.g., chemotaxis, gyrotaxis, and phototaxis (see Refs. [3–6] and references therein for a
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detailed discussion of the interactions that swimmers have with such stimuli and on the resulting
bioconvection processes). Since responses to such external stimuli act across a wide spectrum of
timescales, the interplay between biased motility and the timescale of the perturbations originating
from the background carrier flow may lead to complex dynamics: When the flow is turbulent, in
particular, nontrivial collective behavior (like aggregation into fractal clusters [7,8] or thin shear
layers [9,10] and even morphological adaptations [1]) can be observed.

Among the most widely studied motile responses, one is gyrotaxis: Gyrotaxis originates from the
competition between a stabilising gravitational torque, due to an asymmetric mass distribution of
the swimmer that favors its orientation along the direction of gravity (gravitaxis), and a destabilizing
viscous torque, produced by the local shear acting on the swimmer [5,11,12]. The role of gyrotaxis
in determining the transport properties of self-propelled microorganisms has been investigated both
in laminar [13–15] and in turbulent flows [7,16–22]. Turbulence, in particular, leads to preferential
sampling of downwelling and upwelling regions in the bulk of the flow [7,21–23], small-scale
fractal patchiness [16,17,24], and shear-induced trapping that may hinder vertical migration [18,20].
All these processes are significantly influenced by the multiscale structure of the flow, which
encompasses large-scale advective motions generated by coherent structures as well as small-scale
motions associated with the local fluid velocity gradients. Recently, Borgnino et al. [22] have shown
that, for homogeneous isotropic turbulence, the large (integral) flow scales control the transition
from preferential sampling of downwelling regions to preferential sampling of upwelling regions
at sufficiently high Reynolds number, whereas the small scales control fractal clustering. Besides
these findings, however, we are not aware of further studies aiming to understand the relative
importance of the flow scales on swimmer dynamics (and on vertical migration, in particular). As a
consequence, a consistent cross-timescale framework connecting turbulence and swimming strategy
is still lacking. In this paper, we provide a first contribution to the development of such framework by
examining the surfacing of gyrotactic swimmers toward a free surface through a three-dimensional
nonhomogeneous turbulent flow. Specifically, we consider swimmers with different gyrotactic
bias and self-propelling speeds that are typical of the most common phytoplankton species, and
we track their motion in different flow realizations (namely, different Reynolds numbers) in an
open channel, which mimic a fluctuating heterogeneous environment characterized by a marked
separation between the forcing scale and the dissipation scale.

A convenient way to parametrize the relative importance of the flow scales on the swimmer
dynamics is provided by the stability number, �, defined as the inverse of the dimensionless time a
perturbed gravitactic swimmer takes to return to the vertical orientation in still fluid [11,25]: High
(respectively, low) stability number represents the case of a swimmer with small (respectively, large)
reorientation time, which can hardly (respectively, easily) be destabilized by the background flow.
Indicating with τK the dimensionless Kolmogorov timescale of the flow, three different physical
instances can be highlighted [18,20]: (i) �τK � 1, representing the case in which the timescale of
gravitaxis is large compared to the dissipative flow timescale, and swimmers dynamics are primarily
controlled by the external action of turbulence; (ii) �τK � 1, representing the case in which the
timescale of gravitaxis is small compared to the timescale of the smallest turbulent eddies, and
swimmers dynamics are controlled by their fast response to gravity; (iii) �τK ∼ O(1), representing
the situation in which the two timescales are comparable, and the motion of the swimmers results
from the competition between turbulence and gravitational bias.

We perform a systematic investigation of these cases, and we cover two orders of magnitude for
the stability number and one order of magnitude for the flow Reynolds number to highlight the role
of large-scale advection and small-scale turbulence under significantly different flow conditions.
More specifically, for the lower Reynolds number considered, the structure of the flow at the
free surface is strongly influenced by near-wall turbulence activity [26–28]. In this low Reynolds
number case, the thickness of the sublayer attached to the free surface is a significant fraction of the
integral length scale, and that the surface-influenced region overlaps the logarithmic layer induced
by the bottom shear, with the consequence that the turbulent field ‘seen’ by the surface is strongly
anisotropic. Conversely, for the highest Reynolds number, the near-surface turbulence has nearly
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FIG. 1. Sketch of the computational domain with boundary conditions for the fluid.

lost the memory of the bottom boundary layer within which it was generated, and the anisotropy of
the turbulence entering the surface region has decreased significantly [28]. Such difference in the
flow phenomenology is expected to influence the pace at which swimmers rise toward the surface
and their tendency to form highly-concentrated clusters.

The rest of the paper is organised as follows: The problem statement, the governing equations
and the numerical methodology used for the simulations are presented in Sec. II; Sec. III is devoted
to the analysis and discussion of large- and small-scale effects on swimmer surfacing and clustering
at varying scale separation. Finally, concluding remarks are drawn in Sec. IV.

II. PHYSICAL PROBLEM AND METHODOLOGY

To study swimmer surfacing and clustering, we performed direct numerical simulations of
turbulent open-channel flow with a nondeformable, flat free surface. The effect of imposing the flat
surface does not alter the turbulence in the bulk of flow, as it is constantly generated from the bottom
wall (source of shear). The choice of imposing a flat free surface has been discussed in Lovecchio
et al. [18] and is motivated by previous findings [24,29–31], which have shown that light particles
moving at the deformed free surface of a turbulent flow are subject to clustering mechanisms that
come from the horizontal divergence at the surface: These mechanisms induce a compressible effect
similar to the one observed over flat surfaces.

The reference geometry, shown in Fig. 1, consists of two horizontal (infinite) flat parallel
boundaries, one being the bottom wall and the other the free surface, with the x, y, and z axes of the
coordinate system pointing in the streamwise, spanwise, and wall-normal directions, respectively.
Indicating with h the channel height, the size of the channel is 2πh × πh × h in x, y, and z,
respectively.

The flow field is calculated by integrating the three-dimensional incompressible continuity and
Navier-Stokes equations. In dimensionless vector form, these equations read as

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = −∇p + δp + 1

Reτ

∇2u (2)

with u = (ux, uy, uz ) the fluid velocity, p the fluctuating kinematic pressure, δp = (1, 0, 0) the
mean pressure gradient that drives the flow in the streamwise direction, and Reτ = huτ /ν the
shear Reynolds number based on the shear velocity uτ = √

h| δp| /ρ, and on the kinematic fluid
viscosity, ν. Equations (1) and (2) are solved directly using a pseudospectral method that transforms
field variables into wave-number space, through Fourier representations for the streamwise and
spanwise directions (using kx and ky wave numbers, respectively) and a Chebyshev representation
for the wall-normal nonhomogeneous direction (using Tn coefficients). A two-level explicit Adams-
Bashforth scheme for the nonlinear terms and an implicit Crank-Nicolson method for the viscous
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FIG. 2. Gyrotactic microorganisms swim with velocity vs in the direction given by the orientation vector p,
set by a balance of torques: The torque due to cell asymmetry (bottom heaviness: Tgrav), which tends to align
the cell to its preferential orientation along the vertical direction k, and the torque due to the flow Tvisc.

terms are employed for time advancement. The convective nonlinear terms are first computed in the
physical space and then transformed in the wave-number space using a dealiasing procedure based
on the 2/3-rule; derivatives are evaluated directly in the wave-number space to maintain spectral
accuracy. Further details can be found in Lovecchio et al. [24]. For the fluid velocity, periodic
boundary conditions are applied in x and y, whereas no-slip boundary conditions are enforced at
the bottom wall (ux = uy = uz = 0). At the free surface, standard no-stress conditions (∂ux/∂z = 0,
∂uy/∂z = uz = 0, uz = 0) are used. A campaign of direct numerical simulations was performed
to investigate the motion of the swimmers at increasing turbulence intensity. Results presented in
this paper are relative to three values of the shear Reynolds number: ReL

τ = 170, ReI
τ = 510, and

ReH
τ = 1020 corresponding, respectively, to shear velocity uL

τ = 0.003 m s−1, uI
τ = 0.009 m s−1

and uH
τ = 0.018 m s−1 in a channel with h = 6 cm. The size of the computational domain in

wall units is L+
x × L+

y × L+
z = 2πReτ × πReτ × Reτ , discretized in physical space with Nx × Ny ×

Nz = 128 × 128 × 129 grid points at ReL
τ , with Nx × Ny × Nz = 256 × 256 × 257 grid points at

ReI
τ , and Nx × Ny × Nz = 512 × 512 × 513 grid points at ReH

τ . Spectral representation of flow
variables uses wave numbers kx = 2πI/Lx and ky = 2πJ /Ly (with −Nx/2 + 1 � I � +Nx/2,
and −Ny/2 + 1 � J � +Ny/2 before dealiasing), and coefficients Tn(Z ) = cos[n arccos(Z )] (with
n = 1, ..., Nz before dealiasing and −1 � Z � 1).

Swimmers are tracked using a Lagrangian approach. Each swimmer is modeled as a spherical
particle whose position xp evolves according to

dxp

dt
= u@p(xp, t ) + vsp, (3)

where vs is the (constant) swimming speed, u@p(xp, t ) the velocity of fluid at the swimmer location
and p is the unit vector that defines the spatial orientation of the swimmer. The orientation vector p
evolves in time according to the response of the swimmer to the biasing torques acting upon it: The
viscous torque on the swimmer body, caused by the local shear, and the gravitactic torque, arising
from bottom heaviness [11], as shown in Fig. 2. For spherical inertialess swimmers, the orientation
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rate is computed from the following equation [5,32]:

dp
dt

= 1

2B
[
k − (k · p)p

] + 1

2
ω@p ∧ p, (4)

where k = [0, 0, 1] is a unit vector pointing upward in the vertical direction, ω@p is the fluid
vorticity at the swimmer position and B is the characteristic time a perturbed swimmer takes
to restore its vertical orientation when ω@p = 0. Such reorientation time can be computed as
B = μα⊥/(2Hρg), where α⊥ is the dimensionless resistance coefficient for rotation about an axis
perpendicular to p and H is the center-of-mass offset relative to the center of buoyancy (located
at point B in Fig. 2). The first term on the right-hand side of Eq. (4) describes the tendency of a
swimmer to remain aligned along the vertical direction due to bottom-heaviness, while the second
term describes the tendency of fluid vorticity to overturn the swimmer by imposing a viscous
torque on it. A possible variation to Eq. (4) may stem from the inclusion of the effect of the
acceleration induced by the fluid along the cell trajectory [17,33]. This effect has been found to
generate multifractal plankton clustering in the high vorticity regions of the flow for the case of
homogeneous isotropic turbulence [17]. The relative importance of gravitational acceleration g
and fluid acceleration a on plankton dynamics depends on the ratio g/aRMS where aRMS is the
root-mean square (RMS) of a [17,33]. For flows at low or moderate Reynolds number, namely,
ReL

τ and ReI
τ in the present study, g/aRMS � 1 (especially at high stability numbers, as discussed

in Ref. [33]) and, therefore, the neglect of a in Eq. (4) appears fully justified. Some effect might
be expected at high Reτ upon consideration of the characteristic acceleration scales in the different
simulations: In outer units, the acceleration scale is U 2

max/h where Umax is the fluid velocity at the
free surface, whereas the acceleration scale in viscous units is u3

τ /ν. Based on these definitions,
the dimensional values of the acceleration scale in outer units are 0.03, 0.4374, and 2.16 m s−2 for
ReL

τ , ReI
τ , and ReH

τ , respectively, while the values in viscous units are 0.027, 0.729, and 5.83 m s−2.
Comparison with g = 9.81 ms−2 indicates that the fluid acceleration term might be of importance
only for the ReH

τ case with low stability number. Even for this case, however, we decided to use
Eq. (4), considering that the condition g/aRMS � 1 is typical of most marine environments, where
cell distributions are weakly affected by fluid acceleration effects [17]. The choice is also motivated
by the fact that the gyrotactic swimmers considered in this study tend to avoid the bottom boundary
of the channel, where inhomogeneous flow conditions could generate high vorticity and drive
fluid-acceleration-induced clustering. Another simplification in Eq. (4) is the neglect of rotational
diffusivity, which is typically associated with Brownian motion or other cell-scale random motions.
Yet, the size of most algal cells (and of those considered in this study, in particular) is large enough
for Brownian motions to be deemed negligible [5].

Based on the above considerations, the position and swimming direction of each swimmer were
integrated in time using the nondimensional form of Eqs. (3) and (4):

dx+
p

dt+ = u+(x+
@p) + 
+p, (5)

dp
dt+ = �+[

k − (k · p)p
] + 1

2
ω+

@p ∧ p, (6)

where time, length, and velocity variables are made nondimensional using uτ and ν. The key
parameters in Eqs. (5) and (6) are the swimming number 
+ = vs/uτ and the stability number
�+ = 1

2B
ν
u2

τ
, which parametrizes the importance of vortical overturning with respect to directional

swimming. Time integration exploits a fourth-order Adams-Bashforth scheme, starting from a
three-dimensional random distribution (in both space and orientation) of the swimmers throughout
the channel. Swimmers are tracked using a point-particle approach, justified by the sub-Kolmogorov
size typical of aquatic microorganisms [5], and are injected into the flow at a concentration low
enough to neglect the effect of the swimmers on turbulence (one-way coupling) and the effect
of possible collisions between swimmers. Present results, therefore, apply only to dilute flow
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conditions. The fluid velocity and vorticity at the instantaneous location of the swimmer is obtained
through interpolation based on sixth-order Lagrange polynomials. Periodic boundary conditions are
imposed on swimmers moving outside the computational domain in the horizontal (homogeneous)
directions. In the wall-normal direction, the swimmers rebound elastically at both boundaries: For a
detailed discussion on the assumption of fully elastic rebound to describe swimmer interaction with
a free surface, the reader is referred to Mashayekpour et al. [20].

Samples of N = 106 swimmers with density ratio S = ρp/ρ f = 1 and diameter dp = 250 μm
(a value in the size range of large phytoplankton cells) [4,13] were considered. Since we focus on
inertialess swimmers, added mass effects can be safely disregarded [14–17,21–23]. The value of
N was chosen to ensure statistical convergence. The corresponding mass and volume fractions are

m = 
V = 2.28 × 10−3, low enough to justify the assumption of dilute flow in the bulk of the
flow.

For each sample, three different values of the stability number were considered: �+
L = 0.0113,

�+
I = 0.113, and �+

H = 1.13, corresponding to low, intermediate, and high gyrotaxis, respectively.
In dimensional units, these values correspond to reorientation times in the range 0.1 s < B < 10 s,
which is also typical of motile phytoplankton species [4,13] (in particular, we have B � 0.05,
0.5, 5.0 s at ReL

τ ). A fixed value of the swimming velocity 
+ = 0.048 is used, corresponding
to 144 μm/s at ReL

τ and 864 μm/s at ReH
τ : these values fall within the range 10 μm/s < vs <

1000 μm/s, also typical of motile phytoplankton [4,13], and yield a constant surfacing time, defined
as the time taken by a swimmer to cover the whole channel height, among the different simulations.
In summary, a total of 9 cases in the (Reτ , �+) parameter space was considered.

III. RESULTS AND DISCUSSION

In this section, we will first characterize the flow field in terms of velocity statistics and energy
spectra to show the separation of scales acting on the swimmers at the different Reynolds numbers.
Then, we will examine the free-surface clustering of the swimmers and the surfacing dynamics that
lead to cluster formation. The analysis will focus on flow scale effects for swimmers with different
gyrotaxis.

A. Flow field characterization

We start our analysis by considering the mean and root-mean square (RMS) fluid velocity profiles
for the three Reynolds numbers, shown in Fig. 3 as a function of the wall-normal coordinate z+/Reτ

(equal to zero at the bottom wall and equal to unity at the free surface). Brackets indicate time
and space average (over the homogeneous flow directions). The averaging procedure is the same
adopted in Lovecchio et al. [24,30]. Our results are in good agreement with those reported in
previous studies [26], for the two lower values of Reτ (comparison not shown for sake of brevity).
As expected when using wall units, velocity profiles shown in Fig. 3(a) overlap perfectly in the
near-wall region regardless of the Reynolds number. We observe also that the free surface does not
alter significantly the mean velocity, which follows the logarithmic profile throughout the outer flow
layer except in the fluid sublayer attached to the free surface. In such layer, the strong effect of the
surface is revealed by the nonvanishing streamwise and spanwise components of the RMS, shown
in Figs. 3(b)–3(d), which indicate the presence of an anisotropic velocity region [26,28]. Finally,
we note that, compared to the channel height, the thickness of the viscous sublayer attached to the
bottom wall reduces significantly as Reτ increases, indicating a marked separation with respect to
the upper surface-influenced region and weaker turbulence anisotropy.

The statistical moments shown in Fig. 3 do not provide direct information about the turbulent
flow structures near the free surface [26,27,34–38], which are known to produce a flow with prop-
erties that differ from those typical of two-dimensional incompressible Navier-Stokes turbulence
[39,40]. Here, we examine these properties by discussing the energy spectra of the fluid velocity
fluctuations on the surface at statistically-steady state [26], shown in Fig. 4 for each Reynolds
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FIG. 3. Fluid velocity statistics. Panels: (a) mean velocity profiles for all Reynolds numbers; (b) fluid
velocity RMS at ReL

τ = 170; (b) fluid velocity RMS at ReI
τ = 510; (c) fluid velocity RMS at ReH

τ = 1020.

number. We remark here that, in the present flow configuration, the Reynolds number can be
interpreted as the dimensionless depth of the channel and, hence, as a scaling parameter for the
large eddies of the flow. To emphasize direction-related aspects of the energy spectra, results
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FIG. 4. One-dimensional (streamwise) energy spectra of the streamwise and spanwise surface-parallel
velocity fluctuations, Ex (kx ) (left-hand panels), and Ey(kx ) (right-hand panels), respectively. Panels:
(a), (b) ReL

τ = 170; (c), (d) ReI
τ = 510; (e), (f) ReH

τ = 1020.

for the surface-parallel velocities are examined in isolation: Figs. 4(a), 4(c) and 4(e) show the
one-dimensional streamwise spectra of the streamwise velocity Ex(kx ) computed at the free surface
(triangles) and at the channel center (located at z+ = 510 for ReH

τ , z+ = 255 for ReI
τ and z+ = 85

for ReL
τ , squares); Figs. 4(b), 4(d) and 4(f) show the spectra of the spanwise velocity Ey(kx ) in

the same two regions. Solid lines represent the slope of the spectrum within the inertial regimes
predicted by the Kraichnan-Leith-Batchelor (KLB) phenomenology of two-dimensional turbulence
[41,42]: k−5/3

x , representing inverse cascade of energy to large flow scales, and k−3
x , representing

direct cascade of enstrophy to small flow scales. A collective analysis of the spectra shown in
Fig. 4 reveals clear deviations from two-dimensionality. First, no evident −5/3 range is observed
except for few of the lowest wave numbers: This can be attributed to the intermittent nature of
turbulence associated with spatial fluctuations in the rate of energy dissipation. A relatively larger
range of high wave numbers can be identified over which spectra exhibit a −3 scaling: In the present
flow configuration, however, this corresponds to up-cascading of energy from large to small wave
numbers, namely, to merging of smaller flow structures into larger structures [29]. Such findings
cannot be reconciled with the KLB theory for 2D turbulence.

Examining Ex(kx ), we notice that the spectrum at the free surface is always below that in the
center of the channel, even if the gap between the profiles narrows as Reτ increases. Also, energy
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in the high-wave-number portion of the spectrum decays more rapidly, roughly as k−6 [26]: This
tendency is particularly evident at ReH

τ and indicates that only large-scale surface structures survive
to the detriment of small-scale ones.

Examining Ey(kx ), we observe that redistribution of energy from small to large scales in
proximity of the free surface determines a cross-over between spectra at low wave numbers, when
the spectrum at the free surface follows more closely the −5/3 scaling: This behavior, which
becomes more evident as Reτ increases, is in agreement with the fact that small-scale structures
become less and less important in determining turbulence properties in this region of the flow [24].

B. Reynolds number and stability number effects on surface clustering

The most evident macroscopic manifestation of floaters and motile particle dynamics in free-
surface turbulence is the formation of highly concentrated clusters near the surface [13,20,24,29].
These originate from the interaction between individual cells and surface flow structures. In this
section, we examine the clustering of the gyrotactic swimmers and we provide a first account of
Reynolds number effects.

Surface structures are generated and sustained by near-wall bursting that generates fluid motions
away from the bottom and then parallel to the free surface (upwellings) alternated to sinks associated
with fluid downdrafts from the surface to the bulk (downwellings). Through these sources, fluid
elements at the surface are replaced with fluid from the bulk, giving rise to the well-known surface-
renewal events [36]. To characterize the surface topology, we use the surface divergence:

∇2D = ∂ux

∂x
+ ∂uy

∂y
= −∂uz

∂z
. (7)

In open-channel flow, ∇2D does not vanish and swimmers located on the free surface live in a com-
pressible two-dimensional system [43], where upwellings generate regions of local flow expansion
(∇2D > 0) while downwellings generate regions of local compression (∇2D < 0). Figure 5 provides
a qualitative characterization of swimmer distribution in the upwelling and downwelling regions on
the free surface by correlating the instantaneous particle patterns with the colormap of ∇2D. The
snapshots are all taken at time t+ = 4 000 and refer to the same initial distribution of the swimmers.
Due to gyrotaxis, swimmers can not leave the free surface by simply following flow motions: They
can only leave velocity sources (red areas in Fig. 5) and collect into velocity sinks (blue areas in
Fig. 5), where they organize themselves in clusters. As shown by Lovecchio et al. [24], such clusters
are advected passively by the mean flow until a subsequent burst hits particles in the cluster causing
its reshaping within the free surface. Eventually sharp filamentary patches of high swimmer density
distribution are produced, which correlate very well with the rapidly-changing patches of ∇2D, as
shown by Fig. 5. Formation of filamentary clusters with fractal mass distribution has been observed
previously for the case of Lagrangian tracers in surface flow turbulence without mean shear [43,44],
with wind-induced shear [20], and for the case of floaters in free-surface turbulence [24].

A natural way to characterize surface clusters is to compute their fractal dimension, also referred
to as correlation dimension [45,46], which provides a quantitative measure of cluster topology. This
observable was examined experimentally by Larkin et al. [44,45] and numerically by Lovecchio
et al. [24] to determine the fractal dimension of the clusters formed by passive buoyant floaters
in free-surface turbulence. In its three-dimensional formulation, required to study anisotropic
wall-bounded flows, the correlation dimension can be computed by choosing one base particle and
counting the fraction np(r) of particles within a sphere of radius r centered on the base particle.
The correlation dimension D2 is defined as the slope of np(r) as a function of r in a log-log plot.
The probability distribution of the distance between the neighboring particles and the base particle
is obtained by repeating this count for all possible values of r, thus removing any dependence
on the length scale used. To compute results that are significant from a statistical point of view,
in this study we repeated the procedure for many randomly-chosen base particles, averaging the
results. In general, np(r) scales with rD2 such that smaller values of D2 indicate stronger preferential
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FIG. 5. Top view of gyrotactic microswimmers distribution on the free surface of a turbulent open-channel
flow. Flow is from left to right. Panels: (a), (b) ReL

τ = 170; (c), (d) ReI
τ = 510; (e), (f) ReH

τ = 1020. Left-hand
panels: Low gyrotaxis, �+

L ; right-hand panels: High gyrotaxis, �+
H .

concentration and segregation. In particular, if particles are uniformly distributed in the volume
surrounding the base particle, then np(r) scales with r3, namely, with the volume of the sphere
centered on the base particle, and D2 = 3; If particles are uniformly distributed over a surface
surrounding the base particle, then np(r) scales with r2, namely, with the area of the circle centered
on the base particle, and D2 = 2; conversely, if particles are distributed along a line centered on the
base particle, then np(r) scales with r and D2 = 1.

In Fig. 6, we show the time behavior of the correlation dimension, D2(t ), for all Reynolds
numbers and stability numbers considered in the study. It can be seen that all profiles start from
D2(t = 0) � 3 because of the random swimmer injection throughout the whole flow domain
imposed as initial condition. As time progresses and surfacing takes place, the value of D2 decreases
significantly for the simulations with intermediate and high gyrotaxis, reaching a value slightly
below unity. This trend is observed regardless of the flow Reynolds number and indicates that
long-term clusters are formed at the surface (rather than in the bulk of the flow) by swimmers that
are distributed along a line. More precisely, the value slightly below unity indicates that swimmers
within each filament are not uniformly distributed, but rather partially overlapping (a condition
possible as we neglect inter-particle collisions in the present one-way coupled simulations). We can
also observe that, for the cases �+

I and �+
H , D2(t ) decays at nearly the same exponential rate, with a

decay time of several surface eddy turnover times (defined as the typical time for the largest eddies
to significantly distort in a turbulent flow). These considerations confirm the findings of Lovecchio
et al. [24], who observed that surface clusters are characterized by long-time persistence, however
they do not apply to the swimmers with low gyrotaxis. The weak vertical stability of such swimmers
hinders surfacing and prevents the formation of densely populated one-dimensional clusters. Indeed,
the value of D2(t ) for �+

L is affected by the large proportion of swimmers that remain uniformly
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FIG. 6. Time evolution of the swimmers’ correlation dimension at varying gyrotaxis and for different
Reynolds numbers: (a) ReL

τ = 170; (b) ReI
τ = 510; (c) ReH

τ = 1020. Note that superscript + in the stability
number has been dropped for ease of notation.

distributed, being still located in the bulk of the flow, where gyrotaxis alone is not able to induce
significant preferential concentration in the absence of inertia.

The results just discussed highlight already the presence of significant Reynolds number effects
on the swimmer dynamics, and hint to possible saturation effects on vertical migration efficiency
above a certain level of vertical stability. These aspects of the problem are further analyzed in the
next section, with specific reference to the rising of the swimmers toward the free surface.

C. Influence of turbulent flow scales and gyrotaxis on surfacing

One feature of swimmer dynamics that is clearly highlighted by Fig. 5, is the different number
of cells that have reached the surface at the time instant of the visualizations. Swimmers with low
gyrotaxis (low stability number �+

L , left-hand panels), are out-numbered by swimmers with high
gyrotaxis (high stability number �+

H , right-hand panels). To quantify this qualitative observation,
in panels (a) of Figs. 7–9 we show the wall-normal concentration profiles, C/C0, computed at the
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FIG. 7. Surfacing and accumulation of gyrotactic microswimmers (ReL
τ = 170). Panels: (a) Wall-normal

concentration at varying gyrotaxis in log-linear scale; (b), (c), (d) Evolution of the number of swimmers
that have reached the subsurface layer 1 < (Reτ − z+)/d+

p < 5 for low, intermediate, and high gyrotaxis.
The relative contributions due to swimmers in downwellings (∇2D < 0, dash-dotted lines) and upwellings
(∇2D > 0, dashed lines) are also shown. In panel (a), the stability numbers are indicated without superscript +
for ease of notation. In panels (b)–(d), the gray line represents the evolution of n/N for the case of swimmers
rising in still fluid.

same time of Fig. 5, comparing results at varying gyrotaxis, each figure pertaining to a different
Reynolds number. Note that the concentration, C, represents the instantaneous number density
of swimmers per unit volume (normalised by its initial value C0 = C(t = 0), such that C/C0 > 1
indicates preferential concentration and C/C0 < 1 indicates depletion) and is shown as a function
of the wall-normal coordinate z+ normalised by the Reynolds number of the simulation. In panels
(b–d) of these figures, we show the time evolution of the number n of swimmers that have reached
the subsurface layer 1 < (Reτ − z+)/d+

p < 5 for low, intermediate and high gyrotaxis, respectively
(solid lines in each panel). The location and thickness of the layer was chosen to remove the thin
fluid slab within which swimmers interact with the free surface, thus minimizing the effect of the
rebound condition on the statistical observable, and to ensure a sufficiently long residence time for
the swimmers. The value of n is normalised by the total number N of swimmers tracked in each
simulation and its variation over time can also be interpreted as the mass flux of swimmers reaching
the surface. In addition, the dashed and dotted curves in panels (b–d) represent the fraction of
swimmers located in regions of the monitor subsurface layer characterized by negative and positive
values of the surface divergence, respectively. Finally, the straight gray lines represent the fraction of
swimmers that would have reached the free surface in the case of still fluid, namely, when u@p = 0
in Eqs. (5) and (6).

As far as concentration is concerned, we observe a buildup of concentration right at the surface
for all values of Reτ . The peak of concentration increases monotonically with gyrotaxis, indicating
a stronger migration toward the free surface. Interestingly, the peak value of C/C0 is nearly the
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FIG. 8. Surfacing and accumulation of gyrotactic microswimmers (ReI
τ = 510). Panels: (a) Wall-normal

concentration at varying gyrotaxis in log-linear scale; (b), (c), (d) Evolution of the number of swimmers
that have reached the subsurface layer 1 < (Reτ − z+)/d+

p < 5 for low, intermediate and high gyrotaxis.
The relative contributions due to swimmers in downwellings (∇2D < 0, dash-dotted lines) and upwellings
(∇2D > 0, dashed lines) are also shown. In panel (a), the stability numbers are indicated without superscript +
for ease of notation. In panels (b)–(d), the gray line represents the evolution of n/N for the case of swimmers
rising in still fluid.

same for the cases �+
I and �+

H , confirming that the ability of the swimmers to rise upwards
saturates above a certain threshold of vertical stability. In the bulk of the flow, the distribution of
the swimmers nearly remains uniform, indicating absence of accumulation in horizontal layers,
whereas the bottom wall is depleted of cells: This is attributed to the tendency of swimmers to
preferentially concentrate in the upwelling regions of the flow when rising toward the surface and
in the downwelling regions when leaving the surface, in agreement with [14,16,21]. To provide a
qualitative rendering of the time evolution of the concentration at the free surface in the (Reτ , �+)
space, in Fig. 10, we report the peak values of C/C0 at two different times: t+ = 2000 [Fig. 10(a)]
and t+ = 4000 [Fig. 10(b)]. Linear interpolation of these values produces the gray surfaces shown
in the figure, which provide a visual rendering of the concentration peaks that could be expected for
values of Reτ and �+ not covered by the present study. Figure 10 shows clearly that the peak of
concentration is a decreasing function of Reτ and an increasing function of �+.

We remark here that only the concentration profiles of the �+
L swimmers at the two lowest

Reynolds numbers have reached the steady state within the simulated time window. This is clearly
visible from the evolution of n/N , which eventually oscillates around a mean value only in
Figs. 7(b) and 8(b) while increasing steadily in all other cases. More specifically, less than 10% of
the �+

L swimmers are able to reach the surface at Reτ = 170, this percentage being halved at Reτ =
510 and Reτ = 1020. For the cases of intermediate and high gyrotaxis, n/N reaches much higher
values (up to roughly 80% at Reτ = 170 and 40% at Reτ = 1020 for the �+

H swimmers). These
percentage values are always lower than those characterizing swimmers in still fluid (represented

124304-13



C. MARCHIOLI et al.

FIG. 9. Surfacing and accumulation of gyrotactic microswimmers (ReH
τ = 1020). Panels: (a) Wall-normal

concentration at varying gyrotaxis in log-linear scale; (b), (c), (d) Evolution of the number of swimmers
that have reached the subsurface layer 1 < (Reτ − z+)/d+

p < 5 for low, intermediate and high gyrotaxis.
The relative contributions due to swimmers in downwellings (∇2D < 0, dash-dotted lines) and upwellings
(∇2D > 0, dashed lines) are also shown. In panel (a), the stability numbers are indicated without superscript +
for ease of notation. In panels (b)–(d), the gray line represents the evolution of n/N for the case of swimmers
rising in still fluid.

by the gray line in each panel of Figs. 7– 9). In this latter case, swimmers would rise steadily with
velocity vs and reach the surface within a maximum time T + = h+/
+ = Reτ /


+, with n/N = 1
at t+ = T + (T + � 3.5 × 103 for h+ = ReL

τ ; T + � 10.5 × 103 for h+ = ReI
τ and T + � 21 × 103

FIG. 10. Peak values of swimmer concentration C/C0 at the free surface in the (Reτ , �+) parameter space.
Two time steps are considered: t+ = 2000 (a) and t+ = 4000 (b). The gray surfaces provide a qualitative
rendering of the expected peak value of C/C0 for values of Reτ and �+ within the range considered in this
study (as provided by linear interpolation of present concentration data).
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FIG. 11. Kolmogorov-based stability number, �+
K , in the (Reτ , �+) parameter space. The gray surface

provides a qualitative rendering of the expected value of �+
K for values of Reτ and �+ within the range

considered in this study (as provided by linear interpolation of the Kolmogorov length scales computed in
this study).

for h+ = ReH
τ ), yet Fig. 7(c), for instance, demonstrates that only half of the high-gyrotaxis

swimmers have reached the surface at t+ = 3.5 × 103 in the ReL
τ simulation. It is thus clear that

turbulence and shear act to reduce the actual rise velocity of the swimmers with respect to the rise
velocity in still fluid.

Figures 7–9 also indicate that the weaker turbulence anisotropy generated in the monitor layer
at the two higher Reynolds numbers has a twofold effect: It smooths the n/N curves, and most
importantly reduces by a significant amount the proportion of swimmers that reach the surface. This
latter effect is a direct consequence of the decreased efficiency of near-wall bursting phenomena
in bringing bulk fluid to the interface, combined with turbulence-induced destabilization of the
swimmers. Finally, we note that, in agreement with the qualitative observations drawn from Fig. 5,
the fraction of n/N that corresponds to swimmers sampling ∇2D < 0 regions is always much higher
than that corresponding to swimmers sampling ∇2D > 0 regions. This confirms the tendency of the
swimmers to accumulate continuously into downwellings when trapped near the surface.

The time evolution of n/N also highlights the different role played by the small and large scales
of the flow in determining the pace at which swimmers can rise vertically. To discuss this role, we
consider the Kolmogorov-based stability number �+

K = 1
2B τK = �+τ+

K . Dimensionless values of
�+

K for the nine cases examined in the present study are reported in Fig. 11. Note that values refer
to the maximum value of the Kolmogorov timescale in wall units, τ+

K,max, which characterizes the
dissipative flow scales at the free surface [24]: More specifically, the values are τ+

K,max = 13.5, 28,
and 38 at ReL

τ , ReI
τ , and ReH

τ , respectively. Linear interpolation of �+
K values produces the gray

surface shown in the figure, which provides a visual rendering of the values that could be expected
for values of Reτ and �+ not covered by the present study. For each Reynolds number, �+

K is
smaller than one for �+ = �+

L and becomes larger than unity for �+ � �+
I . The case �+

K < 1
corresponds to the situation in which the timescale of gyrotaxis is large compared to the timescale
of small flow structures (especially those close to the dissipative range): Swimmers respond slowly
to gravity and, therefore, cannot overcome the destabilizing influence of these small-scale structures
on vertical migration. As a result, the ability of the swimmers to reach the surface through the
large-scale advective structures of the flow is reduced, resulting in small values of n/N at the end
of the simulations [see panels (a) of Figs. 7, 8, and 9].

The case �+
K > 1 corresponds to the opposite situation in which the timescale of gyrotaxis is

small compared to the timescale of the small flow structures: Swimmers’ response to gravity is
quick enough to counteract small-scale destabilizations on vertical migration and exploit optimally
large-scale advection. This way, much higher values of n/N can be achieved, as shown by panels
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FIG. 12. Joint probability density function (jPDF) of the instantaneous vertical velocity of the swimmers,
w+

p , versus surface divergence, ∇2D|p, conditionally sampled at the swimmer positions for all three Reynolds
number. Only swimmers in the region 2 < z+ < 8 below the free surface are considered. Top-to-bottom panels:
(a), (b), (c) ReL

τ = 170; (d), (e), (f) ReI
τ = 510; (g), (h), (i) ReH

τ = 1020. Left-to-right panels: (a), (d), (g)
low gyrotaxis, �+

L ; (b), (e), (h) intermediate gyrotaxis, �+
I ; (c), (f), (i) high gyrotaxis, �+

H . White and black
isocontours in each panel correspond to 50% and 10% of the maximum jPDF value.

(b) and (c) of Figs. 7, 8, and 9. Interestingly, the time behavior of n/N does not depend significantly
on �+

K as long as �+
K > 1: This means that to ensure an efficient migration to the surface, swimmers

only need the “right” amount of vertical stability to disrupt the overturning imposed by the
small-scale flow structures. Based on the present results, the Kolmogorov-based stability number
appears to be a suitable parameter to establish a threshold beyond which the capability of the
swimmers to reach the free surface and form clusters saturates.

To conclude the analysis of surfacing dynamics, we examine in Fig. 12 the correlation between
the vertical velocity of the swimmers, w+

p , and the surface divergence sampled at the swimmer
location, ∇2D|p. The correlation is evaluated by means of the joint probability density function
(jPDF) of w+

p and ∇2D|p, computed within a fluid slab 2 < z+ < 8 below the surface (where the
value of ∇2D|p can be used to identify upwelling and downwelling regions) over a time window
of about 500 t+. The gray-scale map shows high values of the jPDF in black (the maximum being
indicated as jPDFmax in the right bottom corner of each panel) and low values of the jPDF in white.
In each row of the figure, the Reynolds number of the flow is kept constant, and the jPDF is shown
at varying gyrotaxis. To highlight the effect of increasing gyrotaxis, the colormap used in panels
belonging to the same row is scaled with respect to the value of jPDFmax calculated at �+

L , and
isocontours correspond to 50% and 10% of such value.
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FIG. 13. Mean swimmer orientation, 〈pi〉, along the wall-normal direction (left-hand panels) and along the
streamwise direction (right-hand panels) at varying gyrotaxis (�+

L : dotted line; �+
I : dashed line; �+

H : solid
line). The free surface is located at z+/Reτ = 1. Top panels: ReL

τ = 170; middle panels: ReI
τ = 510; bottom

panels: ReH
τ = 1020.

A global inspection of Fig. 12 shows that the shape of the jPDF is similar among the cases we
simulated, indicating that most of the swimmers in the selected subsurface layer either rise within
upwelling regions (I quadrant events) or sink within downwelling regions (III quadrant events).

At low Reynolds number [Figs. 12(a)–12(c)], III quadrant events are characterized by the highest
probability (represented by the dark gray/black areas), and the increase of vertical stability is
found to favor I and III quadrant events, which are promoted by the large-scale advective motions
of the flow): As � increases, tend to rise in upwellings and sink in downwellings. Conversely,
II and IV quadrant events, corresponding to swimmers rising in downwellings and swimmers
sinking in upwellings, respectively, become more rare. The same trend is observed at interme-
diate Reynolds number [Figs. 12(d)–12(f)] as well as high Reynolds number further increases
[Figs. 12(g)–12(i)], even if the spreading of values around the peak becomes increasingly narrower
and limited within smaller values of ∇2D|p and w+

p . This may be attributed to the decorrelation
between the near-surface turbulence and the bottom boundary layer, which is known to occur at
high enough Reynolds number and results in lower anisotropy of the turbulence entering the surface
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region and weaker surface renewal events. In agreement with previous results in this section, the
most significant modifications to the jPDF occur between the �+

L case (when �+
K < 1) and the �+

I
case (when �+

K > 1).

D. Reynolds number and vertical stability number effects on directional swimming

The surfacing dynamics examined in the previous section are in direct connection with the
capability of the swimmers to orient themselves in the direction opposite to gravity. In Fig. 13
we examine the influence of Reτ and � on this capability by discussing the behavior of the
vertical and streamwise component of the orientation vector, indicated as 〈pz〉 and 〈px〉, respectively,
as function of the distance from the free surface. Angular brackets indicate averaging over the
horizontal flow directions and in time. The spanwise component of the orientation vector is not
shown since it is nearly zero throughout the channel height, indicating a uniform distribution of
orientations in this direction, as expected by symmetry considerations. Let us consider the low
Reynolds number case first (top-row panels). The increase of vertical stability allows swimmers to
reach an equilibrium orientation that leads to an increase of 〈pz〉 throughout the channel with the
exception of the near-wall region at the bottom: In this region, the mean shear acts to align swimmers
in the horizontal direction, as indicated by the peak of 〈px〉 for the �+

H swimmers in Fig. 13(b).
Interestingly, this effect vanishes for the swimmers with low vertical stability, which appear to

be more uniformly oriented in the flow domain. The different behavior characterizing the different
sets of swimmers can be explained again in terms of small and large flow scale effects: At low
gyrotaxis, the condition �+

K < 1 is met and swimmers are destabilized “isotropically” by small-
scale turbulence, which acts to disrupt directional motility; at intermediate and high gyrotaxis, the
condition �+

K > 1 is met and swimmers tend to interact preferentially with the large-scale structures
of the flow, thus filtering small-scale motions. The trends just described are remarkably persistent
and independent of the Reynolds number: The main Reτ effects that can be noted from Figs. 13(c)–
13(f) are a general increase of 〈pz〉 and hence a decrease of 〈px〉 for all levels of gyrotaxis. We note
that the peak value reached by 〈px〉, roughly equal to 0.7, and the wall distance at which this peak
occurs, roughly equal to 10 wall units, are unaffected by Reτ .

It is worth remarking here that, in all the simulations presented, the effective rise velocity
producing lower migration rates observed in Figs. 6– 8, is due to the randomisation of the swimmer
orientation due to turbulence. In the context of nonactive, buoyant plankton research, there is
experimental evidence that turbulence acts to increase the effective rise velocity [19]. This effect
was attributed to the role of fluid inertia (added mass) [47], which is not included in the present
study because it focuses on active, neutrally-buoyant organisms.

IV. CONCLUSION

In this study, we used direct numerical simulation and Lagrangian tracking to investigate the
influence of the flow Reynolds number and of the vertical stability of gyrotactic swimmers in
free-surface turbulent channel flow. In this flow configuration, the flow is driven by a constant
pressure gradient and is characterized by turbulent bursting phenomena at the bottom wall that
then reach up to the free surface. An extensive campaign of simulations was performed for shear
Reynolds number Reτ = 170, 510, and 1020 to consider situations in which surface renewal
mechanisms change significantly depending on the capability of near-wall bursting phenomena
to bring bulk fluid to the interface. In addition, we also considered swimmers with different
reorientation times, corresponding to stability number �+

L = 0.0113, �+
I = 0.113, and �+

H = 1.13,
which are representative of common motile phytoplankton species and indicate different quickness
in responding to external fluctuations: Specifically, swimmers with �+

L = 0.0113 swimmers realign
in the direction opposite to gravity with a characteristic time that is longer than the Kolmogorov
timescale, whereas �+

I = 0.113 and �+
H = 1.13 swimmers are able to reorient themselves within a

fraction of the Kolmogorov timescale.
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For all gyrotactic reorientation times, swimmers are observed to move toward the free surface.
However, surfacing occurs at a rate that depends on the bottom-heaviness of the swimmers: Our
results indicate that vertical migration is favored when the motion of the swimmers is controlled by
large-scale advection whereas small-scale turbulence hampers the ability of the swimmers to rise
upwards. This opposite influence can be parameterized by means of the Kolmogorov-based stability
number �+

K = 1
2B τK , with τK the Kolmogorov timescale. When the value of τK is chosen equal to

the value that characterizes the dissipative flow scales at the free surface, we find that the large-scale
flow structures dominate when �+

K > 1, a condition that is met when swimmers’ response to gravity
is quick enough to counteract the destabilizing influence of small-scale flow structures on vertical
migration; conversely, small-scale turbulence plays a role when �+

K < 1, a condition that is met
when the timescale of gyrotaxis is large compared to the local Kolmogorov timescale. At low
Reynolds number, transport of swimmers by large-scale advection is favored by the fact that fluid
upwellings produced by near-wall bursts maintain their spatial coherence all the way to the free
surface, thus allowing efficient migration already at relatively low swimming velocities (of the
order of 100 μm/s in the present simulations). At high Reynolds number, near-surface turbulence
is less influenced by the bottom boundary layer within which it was generated and therefore higher
swimming velocities (of the order of 1000 μm/s in the present simulations) are required to exploit
large-scale advection. Once at the surface, swimmers aggregate into persistent fractal-like clusters
that are controlled by the surface divergence of the flow field at small times, but then slowly evolve
into highly-concentrated filaments in case of fast reorientation time (namely, �+ > �+

L in the
present study). Such evolution appears to be marginally influenced by the Reynolds number, at
least within the range investigated here. These scaling argument based on �+

K may assist in the
development of more accurate models for motile microorganisms in real turbulent environments,
as well as more reliable simulation tools based on large-eddy simulation (LES). LES can only
resolve the largest turbulent overturns, but our findings hint to the importance of developing closure
models that can account for the influence of the subgrid scales on vertical migration and preferential
orientation [48] if accurate predictions of surfacing and clustering are sought.

Present results apply to the case of spherical, inertialess swimmers. Previous studies have shown
that even small deviations from the spherical shape [16,32,49,50] and effects of nonstationary forces
[19,47] may induce significant differences on clustering. Elongated swimmers, in particular, are
more sensitive to the local fluid shear, and tend to react more slowly to vorticity and gravity, with
consequences on their tendency to preferential clustering in turbulence [16]. In turn, this may have
potential consequences for the ecology of motile organisms that exploit directional swimming upon
changing shape and preferential orientation. A future development of the present work is therefore
to investigate the validity of the above-mentioned scaling arguments for the case of elongated
swimmers, which are more strongly dominated by the local shear and less by gravity compared
to spherical swimmers.

Another interesting extension of the present study is the inclusion of fluid acceleration effects
on swimmer surfacing in high-Reτ simulations. When such effects matter, swimmer tend to sample
high-vorticity regions [17,33] with possible consequences on their ability to rise in upwellings and
sink in downwellings.
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