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In this work, we propose and test the validity of a modified Phase Field Method (PFM), 
which is specifically developed for large scale simulations of turbulent flows with large 
and deformable surfactant-laden droplets. The time evolution of the phase field, φ, 
and of the surfactant concentration field, ψ , are obtained from two Cahn–Hilliard-like 
equations together with a two-order-parameter Time-Dependent Ginzburg–Landau (TDGL) 
free energy functional. The modifications introduced circumvent existing limitations of 
current approaches based on PFM and improve the well-posedness of the model. The 
effect of surfactant on surface tension is modeled via an Equation Of State (EOS), further 
improving the flexibility of the approach. This method can efficiently handle topological 
changes, i.e. breakup and coalescence, and describe adsorption/desorption of surfactant. 
The capabilities of the proposed approach are tested in this paper against previous 
experimental results on the effects of surfactant on the deformation of a single droplet 
and on the interactions between two droplets. Finally, to appreciate the performances of 
the model on a large scale complex simulation, a qualitative analysis of the behavior of 
surfactant-laden droplets in a turbulent channel flow is presented and discussed.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Surfactants (surface active agents) are compounds which can strongly affect the phenomena occurring in a multiphase 
flow. Surfactant molecules, composed of an hydrophobic tail and of a polar head, preferentially line up at the interface 
decreasing the surface tension of pure (clean) fluids.

The action of surfactants modifies the dynamics of the interface with important consequences on the overall behavior of 
the multiphase flow. For instance, they can strongly influence the number of droplets or bubbles which form in a mixture, 
the behavior of interface waves, atomization, coalescence and breakup phenomena. All these phenomena have an enormous 
impact on the outcome of a number of industrial and environmental applications [17,62,66]. The effect of surfactants is not 
limited to alter the value of the surface tension. They can also generate local streaming via the action of tangential stresses 
at the interface (so-called Marangoni stresses [58]), which arise whenever gradients of surface tension (i.e. gradients of 
surfactant concentration) are generated along the interfaces.

The efficient and accurate computational modeling of interfacial flows in the presence of surfactants is a challenging task, 
since surfactants affect the flow introducing non-uniform capillary and tangential stresses. In turn, the flow field advects 
the surfactant influencing its distribution and thus making the problem coupled. From a numerical point of view, a coupled 
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system of equations must be solved on an ever moving and deforming interface, which may undergo topological changes (in 
the considered case breakup and coalescence). This problem imposes further complexity to the already challenging problem 
of computing the flow of bubbles or drops. In the following, the literature on numerical methods used to describe bub-
ble/droplet laden flows [19], which is vast, and the one dealing with multiphase flows in presence of surfactant, which to 
the best of our knowledge is more limited, will be briefly reviewed. Numerical methods used to simulate interfacial flows 
can be roughly divided in two categories: interface tracking and interface capturing methods. Interface tracking methods 
use a separate grid or mesh to track the interface. The most popular are the Front-Tracking (FT) method [6,15,42,45,87], 
the Boundary Integral Method (BIM) [13,41,65] and the Immersed Boundary Method (IBM) [37,38]. These methods, initially 
developed for insoluble surfactants, have been then extended to soluble surfactants [44,87]. While these approaches offer 
a good accuracy, handling of topological changes requires complex algorithms, especially when dealing with coalescence or 
breakup in three dimensions. Interface-capturing methods are based on the use of an indicator function to represent im-
plicitly the interface on an Eulerian grid; this greatly simplifies the discretization and the handling of topological changes. 
Among the interface capturing methods, we can find the more commonly used Volume-Of-Fluid (VOF) [27,57] and Level-Set 
(LS) [46,59], and the relatively newer Phase Field Method (PFM) [52,55,56]. In the frame of VOF, approaches initially devel-
oped for insoluble surfactants [7,18,32,51] have been then extended to soluble surfactants and 3D flows [3]. In the frame 
of LS method, a possible approach has been proposed by Xu and Zhao [76] and then further improved to consider flow 
and contact line dynamics [74,75,78]. Recently, alternative approaches, which combine interface capturing/tracking meth-
ods or use different frameworks, have been developed. LS and FT have been used together [10] and techniques based on 
the so-called Arbitrary Lagrangian–Eulerian (ALE) were proposed [71,79,80]. Considering other frameworks, Smooth-Particle 
Hydrodynamics (SPH) [1] and color-gradient Lattice Boltzmann (LB) [21,25] approaches are available in literature.

In this paper a modified Phase Field Method [4,31] for the simulation of interfacial flows with soluble surfactants is 
proposed. The method, based on an interface capturing technique, represents the interface and the surfactant concentra-
tion using two order parameters, the phase field, φ, and the surfactant concentration, ψ . Their behavior is determined 
by two Cahn–Hilliard-like equations; the minimization of a two-order-parameter Ginzburg–Landau free energy functional 
[23,35,39,69] governs their diffusive component. The two order parameters, φ and ψ , are Eulerian variables and, thus, ef-
ficient and massively parallel numerical solvers can be used. In addition, the interface capturing approach allows for the 
implicit description of topological changes and of surfactant adsorption (from the bulk to the interface) and desorption 
(from the interface to the bulk) phenomena. Compared to previous formulations [35,69], the free energy functional has 
been modified in order to maintain a uniform thickness of the interfacial layer, thus reducing the grid requirements and 
improving the well-posedness of the model [20,86]. The phase field method is coupled with Direct Numerical Simulation 
(DNS) of the Navier–Stokes (NS) equations. Surface tension forces are computed using a geometrical approach, together with 
an Equation Of State (EOS) to describe the surfactant action. This modification further improves the flexibility of the method 
proposed. The solution of the system of coupled equations is obtained via a highly-parallel solver based on a pseudo-spectral 
discretization [34,49].

The paper is organized as follows: in the next section the governing equations are presented, in Section 3 the pseudo-
spectral method adopted is described and in Section 4 the simulation setup is introduced. The results of the numerical 
simulations are presented and discussed in Section 5 and conclusions are drawn in Section 6.

2. Governing equations

The dynamics of a multiphase flow with surfactant is modeled coupling direct numerical simulations of the Navier–Stokes 
equations with a phase field method to compute the interface dynamics and the surfactant concentration. The phase field 
method, which we previously used to study the dynamics of large and deformable droplets in turbulent flows [52,55], is 
here used in a two-order-parameter formulation to describe interfacial flows with surfactants. In the following, the governing 
equations of the two order parameters, phase field φ and surfactant concentration ψ , will be derived and then coupled with 
continuity and Navier–Stokes (NS) equations to describe the hydrodynamics of the system.

2.1. Modeling the interface and the action of surfactant

We consider a ternary system composed of a soluble surfactant and two immiscible phases. In the frame of the phase 
field method, the system is described using two order parameters. The first order parameter, φ, (phase field) is used to 
describe the interface. The phase field is uniform in the bulk of the two phases (φ = ±1) and changes smoothly across the 
interface. The second order parameter, ψ , is used to describe the surfactant concentration, which is uniform in the bulk of 
the phases and reaches a maximum at the interface, where surfactant molecules preferentially accumulate. The phase field 
and the surfactant concentration are governed by two Cahn–Hilliard-like equations (reported here and in the following in a 
dimensionless form, see Appendix A for further details):

∂φ

∂t
+ u · ∇φ = 1

Peφ

∇ · (Mφ(φ)∇μφ) ; (1)

∂ψ

∂t
+ u · ∇ψ = 1

Pe
∇ · (Mψ(ψ)∇μψ) . (2)
ψ
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where u = (u, v, w) is the velocity vector, μφ and μψ are the two chemical potentials, Mφ and Mψ are the two mobil-
ities (or Onsager coefficients) and Peφ and Peψ are the two Péclet numbers. The latter ones represent the ratio between 
convective and diffusive phenomena for the two order parameters.

The expression of the chemical potentials μφ and μψ is derived from a two-order-parameter Ginzburg–Landau free 
energy functional F [φ, ∇φ, ψ, ∇ψ]. The functional is modeled as the sum of five different contributions:

F[φ,∇φ,ψ,∇ψ] =
∫
�

( f0 + fmix + fψ + f1 + f Ex)d�, (3)

where � is the domain considered. The first term, f0, is the ideal part of the free energy and accounts for the tendency of 
the system to separate into two pure fluids; this phobic behavior is described by a double-well potential:

f0 = 1

4
(φ − 1)2(φ + 1)2 . (4)

The term f0 exhibits two minima corresponding to the two stable fluid phases, φ = ±1. The second term, fmix , is a non-local 
term (mixing energy) accounting for the energy stored in the interfacial layer (surface tension) defined as:

fmix = Ch2

2
|∇φ|2 . (5)

The Cahn number, Ch, determines the interfacial layer thickness. The contributions f0 and fmix are function only of the 
phase field φ; their mathematical expressions match those used when a clean system (absence of surfactant) is considered 
[52–54].

The presence of surfactant is modeled with three contributions to the energy functional: an entropy term, fψ , an ad-
sorption term, f1, and a bulk term, f Ex . The term fψ expresses the entropy decrease obtained when surfactant is uniformly 
distributed in all the domain and it is defined as:

fψ = P i [ψ logψ + (1 − ψ) log(1 − ψ)] . (6)

This contribution restricts the value assumed by ψ to the range between ψ = 0 (no surfactant) and ψ = 1 (saturation of 
surfactant). The temperature-dependent parameter P i determines the surfactant diffusivity. Increasing P i , diffusion increases 
and a uniform surfactant concentration in all the domain is favored. The term f1 favors the adsorption of the surfactant 
at the interface; thanks to their amphiphilic character (hydrophilic head and hydrophobic tail), surfactant molecules prefer-
entially gather at the interface exposing their heads towards the water phase and their tails towards the other phase. The 
original term (∝ |∇φ|2 [39,72]) has been modified and replaced by a polynomial expression [20]:

f1 = −1

2
ψ(1 − φ2)2 . (7)

This choice widens the range of parameters in which the problem is well-posed. The last contribution, f Ex , penalizes the 
presence of surfactant in the bulk of the two phases and is defined as:

f Ex = 1

2Ex
φ2ψ . (8)

This term has a relevant contribution in the bulk of the two phases (φ = ±1); by opposite, it vanishes at the interface 
(φ � 0). The parameter Ex sets the bulk surfactant solubility.

The expression of the chemical potentials is obtained by taking the variational derivative of the free energy functional 
with respect to φ and ψ :

μφ = δF
δφ

= φ3 − φ − Ch2∇2φ +

Cφψ︷ ︸︸ ︷
Ch2(ψ∇2φ + ∇ψ · ∇φ) + 1

Ex
φψ ; (9)

μψ = δF
δψ

= P i log

(
ψ

1 − ψ

)
− (1 − φ2)2

2
+ φ2

2Ex
. (10)

The interfacial layer thickness, controlled by μφ , is influenced also by the surfactant concentration via the term referred 
as Cφψ ; this term can induce an unphysical behavior of the interface [86]. To restore the correct interfacial behavior, we 
neglect Cφψ ; in addition, surface tension forces are computed using a geometrical approach (which relies on the phase 
field φ to compute the interface curvature) together with an equation of state to describe the surfactant effect on surface 
tension [86]. This approach (compared to the thermodynamical one [20,39]) improves the flexibility of the method since 
surfactant action on surface tension is completely customizable. Adopting these modifications, the equilibrium profiles of 
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Fig. 1. Equilibrium profile for the phase field φ (red line) and for the surfactant concentration ψ (blue line). The phase field φ is uniform in the bulk of the 
two phases and it undergoes a smooth transition across the interface. Likewise, the surfactant concentration ψ is uniform in the bulk of the two phases, 
where ψ = ψb , and it increases at the interface, where surfactant molecules accumulate. The surfactant concentration peak is found at φ = 0; its value 
depends on the parameters ψb , P i and Ex . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

the two order parameters can be analytically derived. For the phase field φ, the equilibrium profile is determined by the 
competition between f0 and fmix . At the equilibrium, μφ = μ

eq
φ in the entire domain and from Eq. (9) the following profile 

is obtained:

φ(x) = tanh

(
x√
2Ch

)
. (11)

The phase field equilibrium profile reaches the values φ = ±1 in the bulk of the phases (x → ±∞) and undergoes a smooth 
transition following a hyperbolic tangent profile across the interface, as reported in Fig. 1.

Likewise, the surfactant equilibrium profile can be deduced from Eq. (10): at the equilibrium the surfactant chemical 
potential is constant throughout the entire domain. The surfactant equilibrium profile thus results in:

ψ(x) = ψb

ψb + ψc(φ)(1 − ψb)
. (12)

The auxiliary variable ψc is a function of the phase field solely:

ψc(φ) = exp

[
−1 − φ2

2P i

(
1 − φ2 + 1

Ex

)]
. (13)

At the equilibrium, the surfactant concentration is equal to ψ = ψb in the bulk (φ = ±1) and reaches its maximum at 
the interface (φ = 0), Fig. 1. The maximum value of ψ is influenced by the surfactant bulk concentration, ψb , and by the 
parameters Ex and P i.

The governing equations for the two order parameters can be completed defining the mobilities Mφ and Mψ . For the 
phase field, Mφ is set constant [5], whereas for the surfactant is set to Mψ(ψ) = ψ(1 − ψ). The following two Cahn–
Hilliard-like equations are obtained:

∂φ

∂t
+ u · ∇φ = 1

Peφ

∇2(φ3 − φ − Ch2∇2φ) ; (14)

∂ψ

∂t
+ u · ∇ψ = P i

Peψ

∇2ψ + 1

Peψ

∇ ·
[
Mψ(ψ)∇

(
− (1 − φ2)2

2
+ φ2

2Ex

)]
. (15)

These two equations describe the time evolution of the phase field φ and of the surfactant concentration ψ .

2.2. Hydrodynamics

The hydrodynamics behavior of the system is described coupling the two Cahn–Hilliard-like equations with continuity 
and Navier–Stokes (NS) equations. This leads to a computational model able to accurately describe interfacial flows with 
surfactant. In the most general case this approach can handle non-matched properties [16,52]; density and viscosity are 
defined as a function of the phase field φ. In this work we want to focus on the effect of surfactant solely, so we considered 
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Fig. 2. Langmuir equation of state for different elasticity numbers βs , from βs = 0.25 (weak surfactant) to βs = 1.00 (strong surfactant). The Langmuir 
EOS gives an accurate description of the effect of surfactant down to fσ � 0.5; below this threshold, according to experimental observations [11], surface 
tension does not decrease anymore (as the Langmuir EOS would predict) but it keeps constant. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

two phases with matched density (ρ = ρ1 = ρ2) and viscosity (η = η1 = η2). For the matched-property case, continuity and 
Navier–Stokes equations can be written as follows:

∇ · u = 0 ; (16)

∂u

∂t
+ u · ∇u = −∇p + 1

Reτ
∇2u + 3√

8

Ch

W e
∇ · [τ c fσ (ψ)] , (17)

where u is the velocity field, p is pressure and the last term of the right hand side is the interfacial term, which represents 
the surface tension forces [50]. These forces are calculated using a geometrical approach; in particular, the interface cur-
vature is calculated from the phase field via the Korteweg stress tensor, τ c = |∇φ|2I − ∇φ ⊗ ∇φ [36], while the surfactant 
action on surface tension is described with the equation of state fσ (ψ), described in Sec. 2.3. The interfacial term implicitly 
accounts for both the normal (capillary) and the tangential (Marangoni) components of surface tension forces and, indeed, 
it can be recasted as:

∇ · [τ c fσ (ψ)] = fσ (ψ)∇ · τc + ∇ fσ (ψ) · τc , (18)

where the terms on the right hand side are respectively the normal and tangential components of surface tension forces. The 
latter one (tangential) vanishes when surface tension is uniform (surfactant is absent or uniformly distributed, ∇ fσ (ψ) = 0). 
In the Navier–Stokes equations, two dimensionless groups are present: the shear Reynolds number, Reτ , ratio between 
inertial and viscous forces and the Weber number, W e, ratio between inertial and surface tension forces. In the definition 
of W e, the surface tension of a clean interface (referred in the following as σ0) has been used as a reference value.

2.3. Equation of state

The surfactant action on surface tension is here described using an Equation Of State (EOS). Experimental observations 
[11] show that, increasing the surfactant concentration, surface tension decreases until it approximately reaches half of its 
clean value, σ(ψ) � σ0/2; further increasing the surfactant concentration, surface tension keeps constant. To describe this 
behavior, different EOSs have been proposed [7,48]; in this work we adopt a Langmuir EOS (Szyszkowski equation), valid in 
the limit of moderate surfactant concentrations. The dimensionless Langmuir EOS is:

fσ (ψ) = σ(ψ)

σ0
= 1 + βs log (1 − ψ) , (19)

where βs is the elasticity number, quantifying the strength of the surfactant. In Fig. 2, the surface tension behavior predicted 
by the Langmuir EOS is shown for different elasticity numbers, βs . The equation of state predicts the correct surface tension 
decrease up to fσ = 0.5 (solid line); below this value the equation of state predicts a non-physical surface tension reduction 
(dashed line). In all the cases presented in this work, surface tension never reduced below the validity threshold of the 
surface tension EOS (the maximum local surfactant concentration was below ∼ 0.4). For a fixed concentration, the higher is 
βs , the stronger is the surface tension reduction.
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3. Numerical method

The governing equations (14)–(15)–(16) and (17) are solved in a closed channel geometry using a pseudo-spectral 
method [9,30,49]. In particular, the equations are discretized using Fourier series in the streamwise and spanwise direc-
tions (x and y) and Chebyshev polynomials along the wall-normal direction (z). All the unknowns, velocity u, phase field 
φ and surfactant concentration ψ , and their respective governing equations are Eulerian and have been solved on the same 
Cartesian grid; thus the coupling is straightforward and does not require any interpolation operation. The governing equa-
tions have been recasted in a more compact form, collecting all the non-linear terms in the quantities S, Sφ and Sψ .

∇ · u = 0 (20)
∂u

∂t
= S − ∇p + 1

Reτ
∇2u (21)

∂φ

∂t
= Sφ + s

Peφ

∇2φ − Ch2

Peφ

∇4φ (22)

∂ψ

∂t
= Sψ + P i

Peψ

∇2ψ (23)

The terms S, Sφ and Sψ are defined as follows:

S = −u · ∇u + 3√
8

Ch

W e
∇ · [τ c fσ (ψ)] ; (24)

Sφ = −u · ∇φ + 1

Peφ

[
∇2φ3 − (1 + s)∇2φ

]
; (25)

Sψ = −u · ∇ψ + 1

Peψ

∇ ·
[
ψ(1 − ψ)∇

(
− (1 − φ2)2

2
+ φ2

2Ex

)]
. (26)

The parameter s, equations (22) and (25), is a numerical coefficient used to perform the splitting of the Laplace operator. 
This technique improves the stability of the scheme [5,81]; the coefficient s is defined as:

s =
√

4PeφCh2

�t
. (27)

The governing equations are advanced in time using an IMplicit–EXplicit (IMEX) scheme. The linear diffusive term of the 
equations is integrated using an implicit scheme, whereas the non-linear term is integrated using an explicit scheme. For 
the Navier–Stokes equations, an Adams–Bashforth scheme is used for the non-linear terms while a Crank–Nicolson scheme 
is used for the linear term. For the two Cahn–Hilliard-like equations, the non-linear terms are time-discretized using an 
Adams–Bashforth algorithm, while the linear terms are discretized using an implicit Euler algorithm. The adoption of an 
implicit Euler method allows for the damping of unphysical high frequency oscillations that could arise from the steep 
gradients in the Cahn–Hilliard equations [5,81]. At the first time step an explicit Euler method is used for the non-linear 
terms of all the equations. At the generic time step n the system of equations is discretized in time as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂un+1

∂x
+ ∂vn+1

∂ y
+ ∂ wn+1

∂z
= 0

un+1 − un

�t
= 3Sn+1 − Sn

2
− ∇p + 1

Reτ

∇2un+1 + ∇2un

2

φn+1 − φn

�t
= 3Sn+1

φ − Sn+1
φ

2
+ s

Peφ

∇2φn+1 − Ch2

Peφ

∇4φn+1

ψn+1 − φn

�t
= 3Sn+1

ψ − Sn
ψ

2
+ P i

Peψ

∇2ψn+1

. (28)

The solution of the Navier–Stokes equations with the pseudo-spectral method has been described previously [9]. How-
ever, since in the present case we solve a new set of equations, including several newly defined parameters, for the sake of 
clarity we report the details of the numerical scheme. In this scheme, the Navier–Stokes equations are not directly solved 
but are rewritten in the so-called velocity–vorticity formulation. Instead of three 2nd order equations for each component 
of the velocity, a 4th order equation for the wall normal component of the velocity w = u · k (being k the versor of the wall 
normal direction) and a 2nd order equation for the wall normal vorticity ωz = (∇ × u) · k are obtained. In modal space, the 
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full set of equations includes, in order: continuity, the definition of wall-normal vorticity, the wall-normal velocity transport, 
the wall-normal vorticity transport, the phase field transport and the surfactant concentration transport equations. A set of 
six independent equations for the six unknowns u = (u, v, w), ωz , φ and ψ has to be solved.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ιkx,iun+1 + ιky, j vn+1 + dTk

dz
wn+1 = 0

ωn+1
z = ιkx,i vn+1 − ιky, jun+1

∇2 wn+1 − ∇2 wn

�t
=3

2
(∇2Sn − ∇(∇ · Sn)) · k −

− 1

2
(∇2Sn−1 − ∇(∇ · Sn−1)) · k +

+ 1

2Reτ
(∇4un+1 + ∇4un) · k

ωn+1
z − ωn

z

�t
= 1

2
∇ × (

3Sn − Sn−1
) · k + 1

2Reτ
(∇2ωn+1 + ∇2ωn) · k

φn+1 − φn

�t
= 1

2
(3Sn

φ − Sn−1
φ ) + s

Peφ

∇2φn+1 − Ch2

Peφ

∇4φn+1

ψn+1 − ψn

�t
= 1

2
(3Sn

ψ − Sn−1
ψ ) + P i

Peψ

∇2ψn+1

(29)

Superscripts denote the time step, being n the current time step and n + 1 the following one. kx,i and ky, j are respectively 
the streamwise i-th and spanwise j-th wavenumbers; ι is the imaginary unit. Tk is the k-th Chebyshev polynomial. The 
equations are solved for each (i, j, k) in [1, Nx/2 + 1] × [1, N y] × [1, Nz]. The equations are solved separately: at first, the 
equations for the wall-normal velocity w and vorticity ωz are solved. Using the definition of vorticity and the continuity 
equation, the new flow field un+1 is obtained. Then, the equations for the two order parameters φ and ψ are solved. The 
system of equations (29) is the general formulation valid for a three dimensional case; when running 2D simulations the 
number of modes along one of the homogenous directions is limited to one (mean mode).

The numerical scheme presented above has been implemented in a Fortran 2003 proprietary code. The code is paral-
lelized using a 2D domain decomposition (pencil decomposition) strategy to divide the workload among the tasks, together 
with a pure-MPI paradigm to manage all the communications. Each task works on a fraction of the whole domain (pencil). 
When performing Fourier or Chebyshev transforms, all points in the transform direction are needed. Thus, to compute the 
transforms along the three different directions, the pencils have to be reorganized. This rearrangement is performed through 
MPI communications.

4. Numerical simulations

4.1. Simulation setup

All the simulations aimed to analyze and benchmark the method have been performed on a 2D domain to examine in 
detail the role of the different parameters. A fully 3D time-dependent simulation of drops in turbulent flow is also presented 
to highlight the capabilities of the method in dealing with large scale simulation of complex flows. The 2D computational 
domain has dimensions L y × Lz = 2π × 2 and has been discretized using N y × Nz = 512 × 513 collocation points along the 
streamwise and wall-normal direction. The accurate description of the steep gradients at the interface requires a minimum 
of 5 grid points across the interface. To meet this requirement the Cahn number, which determines the thickness of the thin 
interfacial layer, has been set to Ch = 0.02. Along the wall normal direction, where the grid is finer, up to 10 grid points are 
used. The phase field Péclet number, Peφ , has been set to Peφ = 150 following the scaling Peφ = 3/Ch [43,85] to achieve 
the sharp-interface limit. For the surfactant, the Péclet number, which controls the diffusion, has been set to Peψ = 100. 
The parameters P i and Ex have been set respectively to P i = 1.35 and Ex = 0.117, the same values used by Engblom et al. 
[20]; these two parameters influence the surfactant equilibrium profile, Eq. (12). In all the simulations, P i and Ex were kept 
fixed, while the amount of surfactant was changed acting on the surfactant bulk concentration ψb . We consider a shear flow 
configuration where the top and bottom walls move in opposite directions with velocity v = ±1. The shear Reynolds number 
is Reτ = 0.1 for the single droplet in shear flow and is increased to Reτ = 0.5 when the interaction between two droplets 
is considered. The initial flow field is a linear profile along the wall-normal direction for the streamwise component v; the 
other velocity components, u and w , are set to zero. The phase field, φ, and the surfactant concentration, ψ , are initialized 
with their equilibrium profile, equations (11) and (12).
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Fig. 3. Sketch of the numerical setup used to analyze the deformation of a single droplet in shear flow. A circular droplet (red circle) is released in the 
center of the channel (zc = 0 and yc = π ); the channel has dimensions L y × Lz = 2π × 2. The shear flow (linear velocity profile on the left) deforms the 
droplet until a new steady-state shape is obtained (dashed line). In this final configuration the droplet deformation parameter is computed.

4.2. Boundary conditions

A suitable set of boundary conditions has been imposed at the domain boundaries. Specifically, at the walls, no-slip is 
enforced for the flow and a no-flux condition is used for both the phase field, φ, and the surfactant concentration, ψ :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, y, z = ±1) = [0,±1,0]
∂φ

∂z
(x, y, z = ±1) = 0

∂3φ

∂z3
(x, y, z = ±1) = 0

∂ψ

∂z
(x, y, z = ±1) = 0

(30)

Along the streamwise and spanwise directions periodic boundary conditions are implicitly applied thanks to the Fourier 
discretization. The boundary conditions imposed on φ and ψ lead to a no-flux condition for the chemical potentials μφ and 
μψ and to the conservation of the two order parameters:

∂

∂t

∫
�

φd� = 0 ,
∂

∂t

∫
�

ψd� = 0 . (31)

As a consequence, the total mass of the two phases and of the surfactant is conserved. Despite this, mass conservation of 
each of the two phases, φ = +1 and φ = −1, is not guaranteed [63,84] and some small mass leakages between these phases 
can be present (at most � 1% in the simulations presented here).

5. Results

In this chapter, we will first benchmark our method performing the most commonly used tests, which include also a 
vis-a-vis comparison against previous experimental results [13,24,28,29,40,47,70,73]. Then we will examine on a qualitative 
basis the performances of the method on a fully turbulent, surfactant-laden multiphase flow.

5.1. Single droplet in shear flow

A circular droplet of diameter d = 0.8 (red circle in Fig. 3) is released in the center of the channel (zc = 0 and yc = π ). 
The shear flow deforms the droplet and advects surfactant along the interface. After an initial transient the droplet reaches 
a new steady-state shape (dashed line in Fig. 3). In this configuration, the major and minor axis L and B are measured and 
the deformation parameter D , defined as:

D = (L − B)

(L + B)
, (32)

is computed. We start by considering the clean cases (absence of surfactant). The final shape of the droplet is determined 
by the competition between viscous and surface tension forces; viscous forces try to elongate the droplet, while surface 
tension forces try to restore the circular shape. The ratio between these forces is expressed by the capillary number Ca:
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Fig. 4. Comparison of numerical and analytic results for the deformation parameter D; analytic results for a clean droplet are reported with a solid black 
line, whereas numerical results are identified by red circles. For ψb = 0.01, a double-dashed line identifies the analytic results and the numerical ones 
are identified by upward red triangles. Similarly, for ψb = 0.02, a dashed line identifies the theoretical results and the numerical ones are identified by 
downward red triangles.

Ca = W e

Reτ

d

2h
. (33)

The capillary number is defined using the droplet radius as length scale, thus a rescaling factor d/2h is introduced, where 
h is the channel half height. We consider four different Ca, from Ca = 0.0625 (highest surface tension) up to Ca = 0.250
(lowest surface tension).

In order to compare the results with the analytic relation [60,67] only low Ca have been considered. Indeed, Taylor 
analytic relation considers 3D droplets which undergo limited deformations (low Ca); however, it was shown that this 
analytic formula well predicts also the deformation of 2D droplets for sufficiently low capillary numbers [2,83]: at low Ca
the influence of the third dimension (normal to the velocity–velocity gradient plane) is negligible. As we restricted our 
simulations to low Ca cases, we do expect a good agreement between the analytic relation and our results.

In Fig. 4, we compare our results with the ones predicted by the analytic relation developed by Taylor [67] and corrected 
by Shapira and Haber [60] for confinement effects, which is the following:

D = 35

32
Ca

[
1 + C S H

3.5

2

(
d

4h

)3
]

, (34)

where C S H is a numerical coefficient equal to 5.6996 [60]. For all the cases considered, the numerical results (red circle 
markers) are in good agreement with the predictions of the analytic relation (black solid line). At the highest Ca, the 
analytic relation slightly over-predicts the numerical result; this could be addressed to the limitation of the analytic relation 
(valid for low deformations).

When surfactant is taken into account, the droplet shape is influenced by three new additional effects: (i) surfactant de-
creases the average surface tension; (ii) surfactant accumulates on the droplet tips producing non-uniform capillary forces; 
(iii) inhomogeneous surfactant distribution gives rise to tangential stresses at the interface. The resulting outcome has been 
investigated considering, for each Ca tested before, two further cases with surfactant bulk concentrations ψb = 0.01 and 
ψb = 0.02 and an elasticity number βs = 0.50. To compare the results obtained against the analytic relation [60], an ef-
fective capillary Cae = (σ0/σav)Ca is used to compute the theoretical value of the deformation, where σav is the average 
surface tension. The effective capillary accounts for the average surface tension reduction [64,65].

The results obtained from these new cases have been reported and compared against the analytic relation in Fig. 4. 
For both the surfactant bulk concentrations considered the analytic relation well predicts the results obtained from the 
simulations. At the highest Ca, the analytic relation slightly over-predicts the numerical result, as previously noticed for the 
clean case. Interestingly, the three surfactant-induced effects offset each other and, using Cae in Eq. (34), a good prediction 
of the droplet deformation is found. The numerical results obtained are in good agreement with the predictions of the 
analytic relation of Taylor [67] corrected by Shapira and Haber [60], also when the surfactant-laden cases are considered. 
In addition, our results show a common trend with previous numerical [8,21,22,33,68] and experimental works [28,29,70]. 
However, a direct comparison with these works is not possible since results are strongly affected by the surfactant type 
(soluble/insoluble), strength (equation of state and elasticity number) and loading (average concentration) employed.

5.2. Droplet-droplet interaction in shear flow

Surfactant effects on the interaction between two droplets have been analyzed considering two circular droplets of 
diameter d = 0.7 in shear flow. The droplets centers are located at yc = π ∓ �y/2 and zc = ±�z/2, Fig. 5. The shear flow 
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Fig. 5. Sketch of the simulation setup used to analyze the effect of the surfactant on the droplet-droplet interaction. The droplets have a diameter d = 0.7
and are separated by a distance �y = 1 and �z = 0.5. The centers of the droplets are located at yc = π ∓ 0.5 and zc = ±0.25; the channel size is 
L y × Lz = 2π × 2.

Fig. 6. Outcome of the droplet-droplet interaction for different surfactant bulk concentrations ψb and elasticity numbers βs . A filled dot identifies a coa-
lescence while an empty dot identifies a non-coalescence. The blue dot refers to the clean case (absence of surfactant). Coalescence can be prevented by 
increasing the surfactant bulk concentration ψb or the elasticity number βs . Simulations used as a reference in the following have been labelled (Clean, A, 
B, C, D). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

drives the droplets towards each other: droplet A has a positive mean velocity (moves from left to right), while droplet B 
has a negative mean velocity (moves from right to left). After the initial approaching stage, a thin liquid film forms between 
the droplets. If the liquid film thickness decreases below a critical threshold, the attractive van der Waals forces draw the 
interfaces even closer and the two droplets coalesce [12–14,26,40,77,82]. The presence of a surfactant can drastically affect 
the interaction: indeed, the increased deformability and the tangential stresses at the interface hamper the draining of 
the thin liquid film and alter the interaction outcome [13]. We analyze the effects of the surfactant considering different 
surfactant bulk concentrations, from ψb = 0.1 × 10−2 (lowest concentration) to ψb = 1.0 × 10−2 (highest concentration) and 
elasticity numbers, from βs = 0.125 (weak effect on surface tension) up to βs = 1.00 (strong effect on surface tension).

5.2.1. Outcome of the interaction
The most striking surfactant effect can be appreciated from the outcome of the droplet-droplet interaction: a map of the 

interaction outcomes for different combinations of the surfactant bulk concentration and of the elasticity number is reported 
in Fig. 6. A filled dot identifies a coalescence event, while an empty dot marks a non-coalescence. For the clean case (ψb = 0
and βs = 0, blue dot), the two droplets coalesce: the absence of tangential stresses at the interface and the low deformability 
allow for the draining of the thin liquid film and the subsequent merging. When surfactant is added, at the two lowest 
surfactant bulk concentrations coalescence occurs for each elasticity number considered: surfactant concentration is too low 
to have a noticeable effect. Increasing the surfactant bulk concentration, from ψb = 0.37 × 10−2 up to ψb = 0.62 × 10−2, 
surfactant alters the interaction outcome. For any elasticity number greater than βs = 0.25 coalescence is prevented, as 
for instance for the cases labelled as B and C. The minimum elasticity number that prevents coalescence further reduces 
increasing the surfactant bulk concentrations: in the range ψb ∈ [0.75 × 10−2, 1.00 × 10−2], coalescence occurs only for βs =
0.125. Overall, an increase of either the surfactant bulk concentration, either the elasticity number prevents coalescence.

To give a better insight of the droplet-droplet interaction, the time evolution of the system for the cases labelled in 
Fig. 6 as A (βs = 0.5, ψb = 0.25 × 10−2) and C (βs = 1.0, ψb = 0.5 × 10−2) is reported in Figs. 7, 8. In Fig. 7, to highlight 
the different stages of the interaction, the interface of the drops and the strain rate Sx = (∂v/∂z + ∂ w/∂ y)/2 have been 
reported. Likewise, in Fig. 8, the surfactant concentration at the interface (φ = 0) has been reported; surfactant concentration 
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Fig. 7. Time evolution of the two droplets during the interaction. The left column, panels (a)–(c)–(e)–(g), refers to simulation A (βs = 0.5 and ψb = 0.25 ×
10−2) while the right column, panels (b)–(d)–(f)–(h), refers to simulation C (βs = 1.0 and ψb = 0.5 × 10−2). The white solid line shows the instantaneous 
droplet interface, iso-contour φ = 0. Droplets coalescence occurs for simulation A; by opposite surfactant prevents the coalescence for case C. On the 
background, the strain rate Sx = (∂v/∂z + ∂w/∂ y)/2 is plotted. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

in the bulk is not represented since it has an uniform value equal to ψb (see Fig. 1). In both figures, the left column refers 
to case A while the right column to case C; time increases from the top to the bottom.

At time, t = 1.0, Fig. 7(a)–(b), the droplets are moving towards the center of the channel. The shear flow stretches and 
deforms the droplets and surfactant shifts towards the droplets tips, Fig. 8(a)–(b). Later on, t = 2.0, the droplets get closer; 
a thin liquid film separates the two droplets. The high strain rate regions, Fig. 7(c)–(d), highlight the liquid film draining 
process: as the droplets get closer, the carrier fluid is squeezed out. Surfactant further accumulates at the droplets tips, 
increasing droplet deformation, Fig. 8(c)–(d). Up to this stage there is no appreciable difference between the two cases. At 
t = 3.0, Fig. 7(e)–(f), surfactant effects can be appreciated: for case C the liquid film is thicker and the draining rate is lower 
(lower Sx magnitude) with respect to case A. In Fig. 7(e), a region with strong negative strain can be observed in the middle 
of the gap: this region is characterized by a lower pressure which draws the interface towards coalescence. For case A the 
liquid film drains before t = 4.0 and the droplets coalesce, Fig. 7(g); after the coalescence, surface tension reshapes the new 
droplet and surfactant is redistributed over the interface, Fig. 8(g). Conversely, surfactant prevents coalescence in case C, 
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Fig. 8. Time evolution of the surfactant concentration at the droplet interface, iso-contour φ = 0, during the droplet-droplet interaction. The left column, 
panels (a)–(c)–(e)–(g), refers to simulation A (βs = 0.5 and ψb = 0.25 ×10−2) while the right column, panels (b)–(d)–(f)–(h), refers to simulation C (βs = 1.0
and ψb = 0.5 × 10−2). For case A, surfactant concentration is lower (lower ψb); by opposite for case C, surfactant concentration is higher (higher ψb). 
For both cases, surfactant accumulates at the droplets tips. For case A, after the coalescence, surface tension forces reshape the droplet, and surfactant 
redistributes. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

increasing the droplet deformability and generating tangential stresses at the interface; these two combined effects hinder 
the liquid film draining.

5.2.2. Deformation during the droplet-droplet interaction
To investigate the role played by the surfactant in the deformation, we compute the deformation parameter D of the two 

droplets. The time evolution of D during the interaction for the cases A–B–C–D and Clean (see Fig. 6) have been compared 
in Fig. 9(a). Since the two droplets evolve over time in the same way, only the deformation parameter of one of the droplets 
has been plotted. On the top of the figure, five mini-panels show the generic configuration of the system at different times. 
The droplets, initially circular (D = 0), start to deform and move according to the shear flow. After t = 1.5, the droplets 
are close enough and start to interact; the deformation parameter reaches a maximum, t = t1. Then, the presence of the 
neighboring droplet leads to a reduction of the deformation parameter D that reaches a minimum for t � t3. The minimum 
of D is smaller for the Clean case (blue solid line) and increases when ψb and/or βs are increased (from case A to case D). 
This stage of the interaction is crucial in determining its outcome: indeed, higher deformations slow down the draining of 
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Fig. 9. Deformation parameter D of the droplets during the interaction. Panel (a) compares the results obtained at Ca = 0.10 for different ψb and βs . As 
βs and ψb increase, higher values of the deformation parameter D can be observed. At t = 2.9, the two clean droplets coalesce (blue dot); likewise, for 
case A (red dot) at t = 3.5. For cases C–D–E, droplets do not coalesce and the generic positions of the droplets are reported in the mini-panels on top of 
the figure. In Panel (b), the case D (highest amount of surfactant) is compared against a simulation of two clean droplets with an equivalent deformability 
of case D, thus with an higher capillary number, Ca = 0.12 (same effective capillary, Cae of the surfactant-laden case). (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

the thin liquid film. After t � t3, for the Clean and the A cases, the droplets coalesce (blue/red dots) and D is not anymore 
computed. By opposite, for cases B–C–D, after t � t3, the two droplets separate; the deformation parameter D increases and 
reaches a new maximum at t � t5. After t � t5, D decreases and reaches an asymptotic value (t > 5, not reported here).

These results suggest that the surfactant can prevent the coalescence acting on the deformability. To prove this ob-
servation, case D has been compared with an additional case with an equivalent deformability but without surfactant, 
Fig. 9(b). The equivalent Ca has been computed from Eq. (34), given the steady-state deformation value for case D, obtain-
ing Ca = 0.12. In Fig. 9(b), the Clean case at Ca = 0.10 has been also reported as reference. Interestingly, we can notice that 
for this new case, Ca = 0.12, the droplets do not coalesce. Comparing the results, we can observe a similar behavior for 
case D and Ca = 0.12. However, some differences can be noticed: the time evolution of the case D is slightly delayed, this 
delay is probably due to the tangential stresses at the interface.

Overall, the results of Figs. 9(a)–(b), confirm the role played by the deformability in determining the interaction outcome. 
Surfactant, decreasing the surface tension, increases the deformation of the droplets and hinders the draining of the thin 
liquid film. Coalescence is favored when droplets are less deformed (Clean at Ca = 0.10 and case A) and is prevented when 
droplets are more deformed (cases B–C–D and Ca = 0.12). The behaviors of the deformation parameter D obtained are in 
good agreement with previous experiments [24] and numerical studies [6,61,77].

5.2.3. Effect of tangential stresses at the interface
To understand the effect of tangential stresses (generated by surface tension gradients) on the outcome of the interaction, 

case B has been recomputed considering only the non-uniform capillary stresses and neglecting the tangential ones. In 
particular, the second term on the right hand side of Eq. (18) has been neglected. This term identifies the tangential stresses 
generated by surface tension gradients (and thus by surfactant concentrations gradients) at the interface. When considering 
both capillary and tangential contributions of Eq. (18), the simulation (corresponding to case B) leads to a non-coalescence, 
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Fig. 10. Instantaneous position of the interface (iso-contour φ = 0) at t = 2.5 in panel (a), and t = 3.0 in panel (b) for the simulation B. The panels show a 
close-up view of the area highlighted by the black rectangle in the right column. The two cases are represented in black (tangential stresses considered) and 
red (tangential stresses neglected). When neglecting the tangential stresses the draining is faster and the two droplets are closer; this favors coalescence. 
By opposite, when tangential stresses are considered, the draining is slower and coalescence is hindered. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

Fig. 11. Contour map of the strain rate Sx for the simulation B. In panel (a) the simulation is performed considering the tangential stresses while in panel (b) 
these stresses are neglected. The interface, iso-contour φ = 0, is colored by the surfactant concentration (white-low and black-high). The tangential stresses 
hamper the draining of the thin liquid film and suppress the formation of high strain rate magnitude regions. When neglected, panel (b), the draining 
process is faster and regions with high magnitude of Sx are present (dark-red and blue areas). (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

Fig. 6. A complete different outcome (coalescence) is obtained when recomputing the same case but neglecting tangential 
stresses. To appreciate the different dynamics of the interaction, the instantaneous positions of the interface (φ = 0) when 
the stresses are considered (black) and neglected (red) have been compared in Fig. 10(a)–(b). At t = 2.5, Fig. 10(a), the 
difference between the position of the interfaces is small: the droplets are slightly closer when tangential stresses are 
neglected. Later on, t = 3.0, Fig. 10(b), the difference between the two interfaces is much larger. Neglecting tangential 
stresses allows the droplets to get closer, thanks to the higher liquid film draining rate. The draining rate determines 
whether the droplets will coalesce; a lower draining rate (hindered by tangential stresses) prevents coalescence.

To shed some light on this mechanism, the instantaneous strain rate Sx and the surfactant concentration at the interface 
are shown in Fig. 11. Tangential stresses drive fluid along the interface from a region with high surfactant concentration 
(point A) to a region with lower surfactant concentration inside the gap (point B), Fig. 11(a). This flow opposes to the liquid 
film draining, hampering it. The importance of tangential stresses can be appreciated comparing the two panels of Fig. 11, 
as they prevent the formation of high strain rate magnitude regions: in the liquid film the strain rate has a value closer to 
the mean strain rate (due to the shear flow), Sx = 0.5 (Fig. 11(a)). By opposite, high strain rate magnitude regions appear in 
the gap when Marangoni stresses are neglected, Fig. 11(b), indicating a stronger gap draining phenomenon.
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Fig. 12. Swarm of clean, panel (a), and surfactant-laden droplets, panel (b), released in a turbulent channel flow (Reτ = 590). The droplets interfaces 
are identified by the iso-contour φ = 0. For the surfactant-laden case, panel (b), the interface is colored by the surfactant concentration ψ (red-low and 
yellow-high). The turbulent structures are highlighted using the iso-surface of the streamwise velocity fluctuations u′ = 1.0 and colored by the distance 
from the wall (dark: bottom wall, white: center). For visualization purposes, only part of the domain is reported. In particular, only the bottom part (from 
z = −1 up to z = 0) and half of the streamwise length (from x = 0 to x = 2π ) is reported. Both the snapshots refer to t = 0.5. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

Summarizing, surfactant helps in preventing coalescence with two mechanisms: (i) an increase of the droplet deforma-
bility (lower surface tension) increases the thickness of the thin liquid film (ii) tangential stresses at the interface drive fluid 
inside the liquid film. Both mechanisms act in the same direction, hindering the liquid film draining and, thus, droplets co-
alescence. The results obtained are in agreement with experimental [13,24,40,47,73] and numerical [77] results for head-on 
and offset collision of droplets.

5.3. Swarm of surfactant-laden droplets in a turbulent channel flow

The capabilities of the computational model to handle turbulent flows and large grids have been tested by simulating 
the dynamics of 256 droplets in a turbulent channel flow; a clean and a surfactant-laden case have been considered. The 
computational domain has dimensions Lx × L y × Lz = 4π × 2π × 2 and has been discretized using Nx × N y × Nz = 1024 ×
512 × 513 collocation points along the streamwise, spanwise and wall-normal directions. The spherical droplets, diameter 
d = 0.4, are released in a turbulent flow field at a shear Reynolds number Reτ = 590. The initial flow field was obtained 
from a direct numerical simulation of a single phase flow at Reτ = 590 in a closed channel geometry. Once a statistical 
steady-state is reached, the flow field is saved and used as an initial condition for the droplet-laden turbulent flow. An 
array of 256 spherical droplets is initialized in the channel; the phase field equilibrium profile, Eq. (11), is imposed at 
the interface of the droplets. For the surfactant-laden case, the surfactant concentration field ψ is also initialized with its 
equilibrium profile, Eq. (12); a surfactant bulk concentration ψb = 1.00 ×10−2 and an elasticity number βs = 1.00 have been 
used. For both the cases, the Weber number (based on the surface tension of a clean interface, σ0) is set to W e = 1.50.

After the release, each of the droplets interacts with the surrounding flow and with the other droplets. Two qualitative 
views of the system, one for the clean and one for the surfactant-laden case have been reported in Fig. 12(a)–(b). Panel (a) 
refers to the clean case (absence of surfactant), whereas panel (b) to the surfactant-laden one. In both panels, only a part 
of the domain is reported, specifically the bottom part of the channel (from z = −1 to z = 0) and half of the streamwise 
length (from x = 0 to x = 2π ). The droplets are identified by the iso-contour φ = 0 and colored in red (clean) and by the 
local surfactant concentration (surfactant-laden, red-low and yellow-high). To highlight the droplet-turbulence interactions, 
the iso-contour of the streamwise fluctuations u′ = 1.0 is also reported. The structures are colored by their distance from 
the bottom wall (dark: bottom wall, white: center). From these qualitative pictures we can appreciate the complexity of the 
flow; in addition it can be noticed how the surfactant distribution, panel (b), is not only influenced by the local curvature 
but also droplet motion and turbulence affect its distribution at the interface.

To give a more quantitative indication of the surfactant effect when a turbulent flow is considered, the number of co-
alescence events occurred in these first stages of the simulation is reported in Fig. 13. Specifically, we report the number 
of coalescence events occurred in a small time window �t = 0.1 over time, in blue for the clean case and red for the 
surfactant-laden one. The results show a reduction of the number of coalescence events when surfactant is taken into ac-
count. These observations are in agreement with previous findings; surfactant, increasing the deformability and introducing 
tangential stresses, can prevent the coalescence even in a turbulent flow field.

Lastly, we would like to remark that these results are reported only to highlight the capabilities of the method; further 
analysis are out of the scope of this work.

6. Conclusions

In this work a modified phase field method for the simulation of surfactant-laden turbulent flows has been presented. 
The modifications introduced, together with the numerical scheme adopted, improve the well-posedness and the flexibility 
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Fig. 13. Number of coalescence events occurring in a small time window (10% of the channel turnover time, T ) over time for the droplet-laden turbulent 
flow. The blue squares refer to the clean case (absence of surfactant) whereas the red diamonds refer to the surfactant-laden case. Surfactant seems to be 
effective even when a turbulent flow is considered, reducing the number of coalescence events with respect to the clean case.

of the method, making it well-suitable for the simulation of surfactant-laden turbulent flows. In particular, compared to 
previous works, the unphysical behavior of the interfacial layer has been circumvented by removing the surfactant contribu-
tion in the phase field chemical potential. This contribution could change the thickness of the interfacial layer; removing it 
restores the correct behavior of the interfacial layer and relaxes the grid requirements [86]. The surface tension forces in the 
Navier–Stokes equation are now computed using a geometrical approach (instead of the commonly adopted thermodynamic 
one [20,39,69]), together with an equation of state that accounts for the surfactant effect. This latter modification improves 
the flexibility of the method (arbitrary choice of the equation of state) and allows us to distinguish among the different ef-
fects introduced by surfactant (average surface tension decrease, non-uniform capillary forces and tangential stresses at the 
interface [65]). In addition, the pseudo-spectral discretization and the parallelization scheme adopted lead to an approach 
that can handle large-scale simulations (billion of grid points) and runs efficiently on a large number of processes (tested 
up to 65k tasks).

The proposed PFM has been extensively tested comparing the results obtained with experimental and analytic data. 
Specifically, the method has been first validated considering the deformation of a single droplet in shear flow and then used 
to study the influence of surfactant on the interaction of two droplets in shear flow. For the latter case, results show that 
surfactant, increasing the deformability and introducing tangential stresses at the interface, can hinder coalescence. Lastly, 
the capabilities of the method in handling large-scale simulation and complex phenomena have been tested considering a 
3D simulation of a swarm of surfactant-laden droplets in turbulence. Preliminary results show that, even when a turbulent 
flow is considered, surfactant is able to prevent coalescence (reduced number of coalescence events).

Overall, the proposed modified phase field method aims to overcome most of the limitations of the current approaches 
and is well-suitable for large-scale simulations of turbulent multiphase flows. From a computational point of view, the 
approach has an optimal scalability and, in terms of computational cost (assumed to be approximately proportional to 
the number of fast Fourier transforms per time step), the simulation of a surfactant-laden flow is about four times more 
demanding than that of a single phase flow on the same grid.
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Appendix A. Non-dimensionalization

In this section the non-dimensionalizing procedure will be presented, together with the dimensionless numbers intro-
duced. Dimensional variables will be denoted here as θ̃ , while the dimensionless ones as θ , being θ a generic variable. The 
dimensional free energy functional is:

F̃ =
∫
�

(
f̃0 + f̃mix + f̃ψ + f̃1 + f̃ Ex

)
d� (A.1)

The dimensional phase field variable is defined as: φ̃ = √
β/αφ. The dimensional phase field free energy is (α, β and κ are 

the parameters of the Cahn–Hilliard model [31]):
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4

(
φ̃ −

√
β

α

)2 (
φ̃ −

√
β

α

)2

+ k

2
|∇φ̃|2 =

= β2

α

[
1

4
(φ − 1)2 (φ + 1)2 + Ch2

2
|∇φ|2

] (A.2)

Here we have exploited the relationships ε = √
κ/β and Ch = ε/h. ε is the length scale of the interface thickness.

For the entropy decrease term, we have:

f̃ψ = κT [ψ logψ + (1 − ψ) log(1 − ψ)] =

= β2

α
P i [ψ log ψ + (1 − ψ) log(1 − ψ)]

(A.3)

The coefficient P i is defined as P i = κTα/β2; T is the absolute temperature, while α, β and κ are the same parameters 
defined for the phase field free energy. The surfactant volume fraction is already a dimensionless quantity from its definition. 
The dimensional surfactant adsorption contribution is:

f̃1 = −κ

2
ψ |∇φ̃|2 = −β2

α

Ch2

2
ψ |∇φ|2 (A.4)

Using Model-3 from [20] we have instead:

f̃1 = −α

2
ψ

(
β

α
− φ̃2

)2

= −β2

α

1

2
ψ(1 − φ2)2 (A.5)

Finally, the dimensional surfactant bulk part is:

f̃ Ex = w

2
ψφ̃2 = β2

α

1

2Ex
ψφ2 (A.6)

The dimensionless parameter Ex is defined as β/w .
The dimensionless free energy functional is defined as: F = F̃α/β2, thus resulting in:

F =
∫
�

(
1

4
(φ − 1)2 (φ + 1)2 + Ch2

2
|∇φ|2 +

+ P i [ψ logψ + (1 − ψ) log(1 − ψ)] − Ch2

2
ψ |∇φ|2 + 1

2Ex
ψφ2

)
d�

(A.7)

If we use Model-3 from Engblom et al. we get:

F =
∫
�

(
1

4
(φ − 1)2 (φ + 1)2 + Ch2

2
|∇φ|2 +

+ P i [ψ logψ + (1 − ψ) log(1 − ψ)] − 1

2
ψ(1 − φ2)2 + 1

2Ex
ψφ2

)
d�

(A.8)

The dimensional transport equation for the phase field variable is:

∂φ̃

∂̃t
+ ũ · ∇φ̃ = ∇ · (M̃φ∇μ̃φ) (A.9)

From the non-dimensionalization of the free energy functional we get that the dimensionless chemical potential for the 
phase variable is defined as: μφ = √

α/β3μ̃φ . The length scale of the problem is the channel half height h and the velocity 
scale is the shear velocity uτ ; from these two scales we can define the time scale h/uτ . The Péclet number for the phase 
variable Peφ is defined as:

Peφ = uτ h

βM̃φ

(A.10)

The dimensionless transport equation for the phase variable thus reads:

∂φ

∂t
+ u · ∇φ = 1

Pe
∇2μφ (A.11)
φ
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The dimensional equation for the surfactant volume fraction transport is:

∂ψ̃

∂̃t
+ ũ · ∇ψ̃ = ∇ · (M̃ψ∇μ̃ψ) (A.12)

Here the dimensional mobility M̃ψ can be rewritten as a reference constant dimensional mobility m̃ψ and a dimensionless 
variable part Mψ = ψ(1 − ψ):

M̃ψ = m̃ψψ(1 − ψ) = m̃ψMψ (A.13)

We now define the Péclet number for the surfactant phase Peψ :

Peψ = uτ hα

m̃ψβ2
(A.14)

The dimensionless transport equation for the surfactant volume fraction thus results in:

∂ψ

∂t
+ u · ∇ψ = 1

Peψ

∇2μψ (A.15)

Assuming two phases with matched density (ρ = ρ1 = ρ2) and viscosity (η = η1 = η2), the dimensional Navier–Stokes 
equation is:

ρ

(
∂ũ

∂̃t
+ ũ · ∇ũ

)
= −∇ p̃ + η∇2ũ + ∇ · [̃τ cκσ0 fσ (ψ)

]
(A.16)

The velocity scale is the shear velocity uτ and the length scale the channel half height; the time scale can be obtained 
by the length and velocity scales. The dimensionless term fσ (ψ) accounts for the surface tension reduction due to the 
presence of surfactant; it corresponds to the dimensionless Langmuir EOS for the surface tension. The dimensional pressure 
is defined as p̃ = ρu2

τ p; the Korteweg stress tensor is made dimensionless by:

τ̃ c = β

αh2
τ c

Two dimensionless groups can be identified: the shear Reynolds number Reτ and the Weber number W e.

Reτ = ρuτ h

η
(A.17)

W e = ρu2
τ h

σ0
(A.18)

The surface tension is defined as the integral of the specific energy stored in the interface [81] and it results in:

σ̃ = σ0 fσ (ψ) =
√

8

3

k
1
2 β

3
2

α
fσ (ψ) (A.19)

The dimensionless surface force term is:

h

ρu2
τ

κ

h

β

αh2
∇ · (τ c fσ (ψ))

where the first part comes from the non-dimensionalization of the left hand side of the Navier–Stokes equations. From its 
coefficient we have:

h

ρu2
τ

κ

h

β

αh2
=

√
κ
β

h

√
β3κ

α

1

hρu2
τ

= Ch
3√
8
σ0

1

hρu2
τ

= 3√
8

Ch

W e

We can now write the dimensionless Navier–Stokes equations:

∂u

∂t
+ u · ∇u = −∇p + 1

Reτ
∇2u + 3√

8

Ch

W e
∇ · (τ c fσ (ψ)) (A.20)
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