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We propose a physically sound explanation for the drag reduction mechanism in a
lubricated channel, a flow configuration in which an interface separates a thin layer
of less-viscous fluid (viscosity η1) from a main layer of a more-viscous fluid (viscosity
η2). To single out the effect of surface tension, we focus initially on two fluids having
the same density and the same viscosity (λ= η1/η2 = 1), and we lower the viscosity
of the lubricating layer down to λ= η1/η2 = 0.25, which corresponds to a physically
realizable experimental set-up consisting of light oil and water. A database comprising
original direct numerical simulations of two-phase flow channel turbulence is used
to study the physical mechanisms driving drag reduction, which we report between
20 and 30 percent. The maximum drag reduction occurs when the two fluids have
the same viscosity (λ= 1), and corresponds to the relaminarization of the lubricating
layer. Decreasing the viscosity of the lubricating layer (λ < 1) induces a marginally
decreased drag reduction, but also helps sustaining strong turbulence in the lubricating
layer. This led us to infer two different mechanisms for the two drag-reduced systems,
each of which is ultimately controlled by the outcome of the competition between
viscous, inertial and surface tension forces.

Key words: drag reduction, multiphase flow

1. Introduction

The injection of a small amount of a low-viscosity fluid inside a pipeline used
for the transportation of a high-viscosity fluid induces a remarkable drag reduction
(DR). This effect is attributed to the natural tendency of the low-viscosity fluid to
migrate towards the high shear wall region, so to create a thin and stable layer which
lubricates the wall (Joseph et al. 1997). This DR mechanism, originally patented for
the industrially relevant case of water-lubricated oil transportation inside pipelines
(Isaac & Speed 1904; Looman 1916), was later carefully described and analysed
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in a series of influential scientific works (see Joseph, Renardy & Renardy 1984;
Oliemans & Ooms 1986; Joseph & Renardy 1993; Bai, Kelkar & Joseph 1996;
Bannwart 2001, among others). A comprehensive overview on the topic is provided
by Joseph et al. (1997) and by Ghosh, Mandal & Das (2009). According to the
global picture emerging from the available literature, the DR mechanism is purely
viscosity-driven, with the role of surface tension left unclear. With this work, we
want first to demonstrate the crucial role of surface tension in modifying momentum
transfer rates and the corresponding overall drag in the considered lubricated channel,
and second, to identify the different DR mechanisms, which ultimately depend on
the possibility to have a laminar or turbulent lubricating layer near the wall. Finally,
we underline the need to extend further the range of parameters to achieve a full
understanding of the investigated DR mechanisms. To do this, we start from a
simplified and yet relevant simulation setting: We consider a plane channel in which
a thin layer of a less-viscous fluid moves on top of a thicker layer of a more-viscous
transported fluid. To single out at best the role of surface tension, we also examine
the case of a lubricating layer of exactly the same viscosity of the transported fluid.
This case will be used as benchmark for the other cases. In this work, we consider
a lubricating layer, the thickness of which is 7.5 % of the entire channel height. We
use a finely resolved pseudospectral direct numerical simulation (DNS) of turbulence,
coupled with a phase field method (PFM) to describe the interactions between the
two liquid layers and to track the motion of the liquid–liquid interface. The novel
contribution of the present work is the original investigation on the effect of larger
viscosity contrast of the lubricating layer: in this way, we can examine two different
DR mechanisms, corresponding to flows in which the lubricating layer is laminar for
higher viscosity, and turbulent for lower viscosity. In our previous works (Ahmadi
et al. 2018a,b), we examined the effect of a fully relaminarized lubricating layer
on a marginally turbulent/transitional channel flow (Reτ = 100). To demonstrate that
DR can be found also in presence of a lubricating layer in turbulent flow, we run
original simulations at Reτ = 300. In order to sustain turbulence in the lubricating
layer, we reduce its viscosity down to η1 = 0.25η2. Our results show that when the
viscosity of the two fluids is the same, we can observe a strong DR (∼27 %), which
is due just to the presence of a localized elasticity element – the surface tension of
the interface. In this case, we also observe relaminarization of the thin lubricating
layer. When we decrease the viscosity of the lubricating layer, we report a DR of
∼24 %, just marginally smaller than the previous case, but we also observe a fully
turbulent lubricating layer. Clearly, DR mechanisms are different in the two cases
and must correspond to different outcomes in the interplay between viscous forces,
inertial forces and surface-generated capillary forces. Using quantitative statistics, and
qualitative insights into the relevant phenomena governing the turbulence regeneration
cycle, we are able to explain in detail this twofold DR mechanism, which, to the
best of our knowledge, has not been investigated before.

2. Methodology

We focus on a flow configuration consisting of two immiscible fluid layers that are
driven by an imposed pressure gradient in a horizontal channel. Channel dimensions
are Lx × Ly × Lz = 4πh × 2πh × 2h, with h the half-channel height and x, y, z the
streamwise, spanwise and wall-normal directions, respectively. A thin fluid layer
(layer 1), 0.15h thick, flows over a thicker fluid layer (layer 2), 1.85h thick. The two
layers have different viscosities, η1 and η2, but the same density, ρ1 = ρ2 = ρ. The
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deformable interface separating the two fluid layers is characterized by a constant
and uniform value of the surface tension σ . The flow physics, modelled by a PFM,
is described by the following set of dimensionless governing balance equations:

∇ · u= 0, (2.1a)
∂u
∂t
+ u · ∇u=−∇p+

1
Reτ
∇ · [η(φ, λ)(∇u+∇uT)] +

3
√

8

Ch
We
∇ · T c, (2.1b)

∂φ

∂t
+ u · ∇φ =

1
Pe
∇

2(φ3
− φ −Ch2

∇
2φ), (2.1c)

where u = (ux, uy, uz) is the velocity vector, ∇p is the pressure gradient (including
also the mean pressure gradient that drives the flow, see Soldati & Banerjee 1998),
φ is the order parameter which ranges from φ =−1, in one phase, to φ = 1, in the
other phase, and λ= η1/η2 is the viscosity ratio. Fluid velocity is made dimensionless
using the friction velocity

u? =

√
h
ρ

|dP|
dx
=

√
|τw,1| + |τw,2|

2ρ
(2.2)

as reference, with τw,1 and τw,2 the shear stress at the top and bottom walls,
respectively. Note that for the present flow configuration, the thin layer (which we
will also refer to as the lubricating layer) is characterized by a viscosity that is always
smaller than or equal to that of the thicker layer (which we will also refer to as the
main layer), such that λ6 1. The term η(φ, λ) in (2.1b) defines the non-dimensional
viscosity distribution inside the domain (Ding, Spelt & Shu 2007; Kim 2012), whereas
the term 3Ch/(

√
8We)∇ · T c represents the capillary force per unit mass due to surface

tension, with T c = |∇φ|
2I −∇φ ⊗∇φ. Equation (2.1c), usually called Cahn–Hilliard

(CH) equation, describes the transport of the order parameter φ. The term on the
right-hand side of (2.1c) is a diffusive flux that controls the interface behaviour
(Badalassi, Ceniceros & Banerjee 2003). Dimensionless numbers in (2.1c)–(2.1b) are
the following: the shear Reynolds number, Reτ = ρuτh/η2, which is the ratio between
inertial and viscous forces (computed using the viscosity η2 as reference); the Weber
number, We= ρu2

τh/σ , which is the ratio between inertial and surface tension forces;
the Péclet number, Pe = uτh/Mβ, which is a numerical parameter that controls
the interface relaxation time and is defined in terms of M, the Onsager coefficient
or mobility, and of β, a numerical factor used during the non-dimensionalization
of the CH equation; and finally the Cahn number, Ch = ξ/h, which represents the
dimensionless thickness of the liquid–liquid interface (whose dimensional value
is ξ ). The governing equations are discretized using a pseudospectral method
based on transforming the field variables into wavenumber space, through Fourier
representations for the periodic (homogeneous) directions x and y, and a Chebyshev
representation for the wall-normal (non-homogeneous) direction z. Periodicity along
x and y is assumed for both velocity u and order parameter φ, while no-slip (u) and
no-flux (φ) conditions are imposed at the two walls. Further details on the numerical
method can be found in Roccon et al. (2017) and Soligo, Roccon & Soldati (2019).

2.1. Simulation set-up
We considered four different cases. The benchmark single-phase flow case and
three different cases of viscosity-stratified two-phase flow, each characterized by a
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different value of the viscosity ratio λ. Specifically, we considered λ = 1, λ = 0.5
and λ = 0.25. All simulations are run at the given reference value of the shear
Reynolds number Reτ = 300 and Weber number We = 0.5. These values of the flow
parameters correspond to a physical situation (planned in our experimental lab) in
which water is used to lubricate a main layer of light oil (Exxon Mobil Solvesso 200
ND) characterized by density ρ2 = 980 kg m−3, viscosity η2 = 3.85× 10−3 Pa s and
surface tension σ ' 44× 10−3 N m−1. Assuming a channel with h= 6× 10−2 m, the
bulk velocity and the shear velocity become ub = 0.32 m s−1 and uτ = 0.0194 m s−1,
respectively. The grid resolution has been chosen so to fulfil requirements imposed by
DNS. When the fluid viscosity changes, spatial flow scales become smaller and the
computational grid must be refined accordingly (Zonta, Marchioli & Soldati 2012). For
the single-phase case and for the case λ= 1, we used Nx×Ny×Nz= 512× 256× 257;
for the case λ = 0.50 we used 512 × 512 × 513; for the case λ = 0.25 we used
1024× 1024× 513. The Cahn number is set to Ch= 0.02, while the Péclet number is
obtained according to the scaling Pe= 3/Ch (Jacqmin 1999). The initial condition for
the two-phase flow simulations is taken from a preliminary DNS of single-phase fully
developed turbulent channel flow at Reτ = 300, complemented by a proper definition
of the initial distribution of the order parameter φ so that the liquid–liquid interface
is initially flat and located at distance 0.15h from one wall.

3. Results

We characterize the flow both from qualitative and quantitative viewpoints, so to
gain physically grounded understanding of the competition between viscous forces,
inertial forces and surface-generated capillary forces in damping and sustaining the
turbulence structures in the lubricating layer.

3.1. Flow rates and mean velocity profiles
We computed the volumetric flow rate of each liquid layer, Q1 and Q2, and we
normalized it by the value of the volume flow rate of the single-phase flow Qsp.
We recall that Q1 is the flow rate of the lubricating layer, while Q2 is the flow rate
of the main transported fluid. Results are presented in table 1. Compared to the
single-phase case, we underline the increase of both Q1 and Q2 (and of the total flow
rate Qt =Q1+Q2 as well), which is the footprint of the DR induced by the injection
of the surface-tension-active lubricating layer. The increase of the volume flow rate
of the main fluid, Q2, is not monotonic with decreasing λ: The fractional increase
of Q2 (1Q2/QSP = (Q2 −QSP)/QSP) is maximum for λ= 1 and marginally lower for
λ = 0.5 and λ = 0.25. The flow rate of the lubricating layer, Q1, increases steadily
for decreasing λ.

In figure 1 we show, for the different examined cases, the profile of the mean
streamwise velocity 〈ux〉 expressed in wall units and averaged over time and
space (in the homogeneous directions, x and y). It is beyond the scope of the
present paper to fully characterize the interactions between interface deformation
and turbulence fluctuations. However, to sketch the dynamics of the interface, we
report in figure 1 the average position of the interface, and positive and negative
RMS values of interface displacement, which are the average height and depth of
crests and troughs of interfacial waves. It is important to observe that, due to wall
confinement, fluctuations towards the centre of the channel (wave troughs) are larger
than fluctuations towards the wall (wave crests). It is also interesting to observe
that reducing λ corresponds to an increase of the average interface deformation. For

863 R1-4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

U
 W

ie
n 

Bi
bl

io
th

ek
, o

n 
24

 Ja
n 

20
19

 a
t 1

1:
09

:0
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.8


Turbulent drag reduction by compliant lubricating layer

¬ = 1.00
¬ = 0.50
¬ = 0.25
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FIGURE 1. Mean fluid streamwise velocity, 〈ux〉, in the wall-normal direction for the
different cases considered in the present study. Comparison between the benchmark
single-phase case (SP, solid black line), and the lubricated channel with λ = 1.00 (solid
blue line), λ= 0.50 (solid red line) and λ= 0.25 (solid green line). The mean interface
position (z/h= 0.85) and the corresponding RMS values of the interface displacement are
indicated by dashed lines.

Simulation Q1/Qsp Q2/Qsp Qt/Qsp

Single phase — — 1.0000
λ= 1.00 0.0436 1.2261 1.2698
λ= 0.50 0.0531 1.1756 1.2286
λ= 0.25 0.0593 1.1775 1.2368

TABLE 1. Volume flow rate of the lubricating layer (layer 1, Q1) and of the main layer
(layer 2, Q2) for the different values of the viscosity ratio λ considered in the present study.
The total volume flow rate (Qt = Q1 + Q2) is also evaluated. Results for the benchmark
single-phase case are included for comparison. All values are normalized by the volume
flow rate of the single-phase case, QSP.

the values of λ investigated, the presence of the thin lubricating layer produces a
skewed asymmetric velocity profile. Focusing first on the main layer (z/h< 0.85), we
observe that the maximum velocity increment corresponds to λ= 1. Decreasing λ to
0.5 corresponds to a more limited increase of the average velocity compared to the
single-phase case. Decreasing further λ to 0.25 induces only negligible modifications
to the velocity profile, which indeed remains very close to that of the case λ = 0.5.
Focusing now on the lubricating layer (z/h> 0.85), we observe a strong, monotonic,
increase of the velocity gradient for decreasing λ. The difference of the velocity
gradients at the wall indicates a flow behaviour in the lubricating layer that changes
with λ and that seems to suggest a different phenomenology for the DR mechanisms.
Considering the similarity of the velocity profiles for λ = 0.5 and λ = 0.25, and in
order to simplify the discussion, in the following we will focus only on the cases
λ= 1 and λ= 0.25.

In figure 2 we show the instantaneous streamwise velocity field in the channel cross-
section (y− z) for λ= 1 (figure 2a) and λ= 0.25 (figure 2b). The white line indicates
the instantaneous position of the interface. In figure 2(a), we notice the presence of
turbulence structures (Schoppa & Hussain 2002; Jiménez 2013) at the bottom wall
(z/h=−1), but we see no evidence of turbulence at the top wall (z/h= 1); this can
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0
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1

π
y/h
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Cross section (y-z plane) Close-up view

(a)

(b)

25

ux

0

25

ux

z/h

2π

FIGURE 2. Instantaneous streamwise velocity ux in a cross-section (y–z) of the channel.
Panel (a) refers to the case λ = 1 whereas panel (b) refers to the case λ = 0.25. The
position of the interface is explicitly indicated by a thin white line. For both values of λ,
a close-up view of a rectangular region near the top wall is also offered to appreciate the
different flow structure (complete turbulence suppression for λ=1 and sustained turbulence
for λ= 0.25).

be appreciated better in the corresponding close-up view. Turning to figure 2(b), we
observe turbulence structures at both walls. In particular, from the close-up view, we
appreciate that typical turbulence structures still populate the flow region near the top
wall. It is then clear that the DR observed for the case λ = 1 can be attributed to
the relaminarization of the lubricating layer, in which turbulence is totally damped.
The clear existence of turbulence in the case λ = 0.25 (figure 2b) demonstrates that
the velocity gradients of figure 1 are steeper due to the persistence of the turbulence
near the wall, but calls for a different DR mechanism. On a qualitative basis, we
also observe that turbulence structures in the low-viscosity lubricating layer (case λ=
0.25) appear smaller than those at the bottom wall. A detailed characterization of the
turbulence scales at the two walls will be the object of a future analysis.

3.2. Stress behaviour
In this subsection, we aim at studying in detail the role of the interface and its
implications on the overall stress distribution in the wall-normal direction. The
average of the total stress as a function of the wall-normal coordinate reads

τtot =
〈η(z)〉
Reτ

∂〈ux〉

∂z︸ ︷︷ ︸
τv

− 〈u′xu
′

z〉︸ ︷︷ ︸
τt

+
3
√

8

Ch
We

〈
∂φ

∂x
∂φ

∂z

〉
︸ ︷︷ ︸

τc

. (3.1)

In the case under examination, the total stress τtot comprises the viscous shear stress,
τv, the turbulent shear stress, τt, and the capillary stress, τc. For an easier examination,
we plot these three contributions, as well as their sum, in figure 3. In figure 3(a), we
plot the profiles of the viscous shear stress, highlighting in the insets their zoomed-out
behaviour near the walls. We underline here that the pressure gradient driving the flow
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-1.0 -0.9
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0.9
0.50

-0.3

-0.2

-0.1

0

0.75 1.00
1.0

-1.0

0

-0.5

†√

-1.0 -0.5 0
z/h

0.5 1.0

1.5

1.0

0.5

0

-0.5

†i

†c

-1.0

¬ = 1.00
¬ = 0.25

Single phase

FIGURE 3. (a) Wall-normal behaviour of the viscous shear stress, τv , for the two cases
λ = 1 (blue line) and λ = 0.25 (green line). The viscous shear stress for the reference
single-phase case (black thin line) is also shown for comparison. A close-up view of τv in
the near-wall regions is also given in the insets. The average interface position (z/h=0.85)
is explicitly indicated by a vertical dashed line. (b) Wall-normal behaviour of the turbulent
shear stress, τt, and of the total shear stress τtot (linear profile drawn using dashed lines)
for the single-phase case and for λ= 1 and λ= 0.25. The behaviour of the capillary stress
τc in the region near the interface is given in the inset. Lines as in (a).

is equivalent to the sum of the values of the viscous shear stress at the two walls
(this sum is equal to 2 in our dimensionless notation). The pressure gradient driving
the flow, and consequently this sum, are kept constant for all our simulations. The
viscous shear stress near the bottom wall (z/h<−0.9 in figure 3a, and inset on the
left) has the shape typical of near-wall turbulence for all examined cases, although the
value of the wall shear stress is clearly different, being τv = 1 (black thin line) for the
single-phase case, τv = 1.47 for λ = 1 (blue line) and τv = 1.34 for λ = 0.25 (green
line). The behaviour of the viscous shear stress near the top wall (z/h = > 0.9 in
figure 3a, and inset on the right), however, shows some important differences. While
for λ= 0.25 the behaviour is similar, but shifted downwards (in magnitude), compared
to the single-phase case, the behaviour for λ= 1 displays a quasi-linear profile typical
of a relaminarized layer. It is also important to observe that the viscous shear stress
crossing the nominal position of the interface has a non-trivial behaviour characterized
by a local minimum (in magnitude) which, as from (3.1), must be balanced by a
corresponding behaviour of the other two terms. In figure 3(b), we show the behaviour
of the turbulent stress, and, in the inset, the behaviour of the capillary stress, τc: the
region plotted in this inset is the only region where the capillary stress is different
from zero. The turbulent shear stress shows a clear asymmetry, which corresponds
closely to that of the mean velocity observed in figure 1, but also to that visible in the
viscous shear stress figure 3(a). In the main layer (z/h< 0.85), the turbulent stresses
for examined cases have the typical shape of wall-bounded turbulence, with only the
profiles amplitude differing among each other. In the interface region, we observe local
minima for both cases. For λ= 1 (blue line), the turbulent stress is nearly zero, and
the observed local minimum in the viscous shear stress (figure 3a) is almost fully
balanced by the capillary stress, shown by the blue line in the inset. For λ = 0.25
(green line), the turbulent stress reaches a local minimum, larger than zero (in absolute
value), which, due to the corresponding negligible value of the viscous shear stress
in this region (figure 3a), is almost fully balanced by the capillary stress (green line
in the inset of figure 3). In both cases, the capillary stress is the crucial element in
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the DR process. In the λ = 1 case, the capillary stress decouples the dynamics of
the main fluid layer from that of the lubricating layer, which eventually relaminarizes.
In the λ = 0.25 case, the capillary stress also decouples the dynamics of the main
fluid layer from that of the lubricating layer, but a residual turbulent stress flux is
maintained through the interface, which now separates two layers both characterized
by turbulent flow. Reportedly (Jiménez & Moin 1991), turbulence in channel flow
can be sustained if the shear Reynolds number is above ∼90. We have seen from
figure 3 that the interface, via the action of the capillary stress, is a strong separation
element between the main layer and the lubricating layer. Although the interface is
compliant, it is capable of exerting some stress, and therefore we can idealize the
flow in the lubricating layer as a separate channel flow characterized by a nominal
height of h+l . We remark here that wall scales are changed by the change of viscosity,
and their new values can be determined using the steady-state value of the wall shear
stress. So, even if the thickness of the lubricating layer is constant in outer units, it
changes if expressed in wall units according to the local value of the shear stress
which establishes at the top wall. In this situation, the dimensionless thickness of the
lubricating layer can be obtained via a semi-local scaling (using reference quantities
computed at the top wall only, see Pecnik & Patel 2017) as

h+l = 0.15
Reτ
λ

√
2|τw,1|

|τw,1| + |τw,2|
. (3.2)

For λ = 1, we obtain h+l = 33: this value indicates that the lubricating layer is not
large enough to sustain turbulence (Jiménez & Moin 1991). For λ= 0.25, we obtain
h+l =145, which is definitely enough to sustain turbulence. The intermediate simulation
at λ=0.5 (not shown here) is characterized by a threshold value for the channel height
of approximately 73 wall units. Since the steady-state values of the shear stresses are
not known a priori, to design new simulations one can use the reference parameters
of the single-phase simulation and rescale the thickness of the lubricating layer with
the new viscosity values: in this way we obtain h+l = 45 for λ = 1, h+l = 45/λ = 90
for λ= 0.5 and h+l = 45/λ= 180 for λ= 0.25.

3.3. Probability density function (PDF) of the wall shear stress
Further evidence of the DR mechanisms can be obtained examining the distribution of
the wall shear stress τw at the two walls. We compute the probability density function
(PDF) of the wall shear stress fluctuations τ ′w, and we normalize it by the mean value
〈τw〉 of the shear stress at the corresponding wall, i.e. τ ′w = (τw − 〈τw〉)/〈τw〉. Results
are shown in figure 4(a) for the case λ= 1 and in figure 4(b) for the case λ= 0.25.
The thin solid line refers to the single-phase case, whereas the thick dashed line and
the thick solid line refer to the bottom and to the top wall, respectively.

We focus first on the single-phase case. Consistently with previous literature studies
(Hu, Morfey & Sandham 2006; Lenaers et al. 2012; Brücker 2015), we notice that
the PDF(τ ′w) has an asymmetric and positively skewed shape, which indicates that
positive fluctuations are larger in magnitude and occur more frequently than negative
fluctuations (the maximum value is τ ′w ' 3, while the minimum is τ ′w ' −1.5). Note
however that there is a non-negligible probability of observing events characterized by
τ ′w <−1 (shaded region in the picture): these events mark the appearance of localized
counter-flow regions in which the instantaneous shear stress changes sign compared
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FIGURE 4. Probability density function (PDF) of the normalized wall shear stress
fluctuation τ ′w = (τw − 〈τw〉)/〈τw〉 for λ= 1 (a) and λ= 0.25 (b). In each panel, the thick
solid line refers to the top wall, whereas the thick dashed line refers to the bottom wall.
The behaviour for the single-phase case is shown with a thin black line.

to its mean value, and in which the local flow velocity is reversed compared to the
mean velocity (localized flow reversal).

We now focus on the case λ= 1 (figure 4a). At the bottom wall (dashed blue line),
the shape of PDF(τ ′w) is similar to that of the single-phase case described above, but
it becomes slightly wider, indicating that positive (τ ′w > 0.5) and negative (τ ′w < 0.5)
fluctuations occur more frequently. This effect is known (Lenaers et al. 2012) and can
be attributed to the local increase of the Reynolds number, which, with arguments
similar to those used to derive (3.2), lead to an estimate of Reτ ' 350. At the top wall
(blue solid line) the situation changes completely. The PDF(τ ′w) becomes taller and
almost symmetric, narrowing around the most probable value τ ′w = 0. This indicates
that shear stress fluctuations are strongly reduced in magnitude and in frequency. The
narrowing of the curve around τ ′w = 0 (collapse of the curve onto τ ′w = 0) indicates
that the local shear stress is approximately equal to the mean shear stress, a further
confirmation and a clear signature of the local flow laminarization process in the
lubricating layer. Finally, we focus on the case λ = 0.25 (figure 4b). The shape of
the PDF(τ ′w) for both the top (green solid line) and bottom wall (green dashed line)
recovers the non-symmetric and positively skewed profile valid for the single-phase
case (black thin line), which is a further indication that turbulence is active when the
viscosity of the lubricating layer is sufficiently small (λ= 0.25). We notice that large
positive (τ ′w > 1) and negative (τ ′w < 1) events occur more frequently in the two-phase
case compared to the single-phase case, at both the bottom and the top wall. While
the behaviour at the bottom wall is due to the increased local shear Reynolds number
(pretty much like in the case λ = 1 discussed above, figure 4a), the behaviour at
the top wall has a different origin, being ultimately driven by the flow modulation
induced by the liquid–liquid interface (Ahmadi et al. 2018a). The deformed interface
is characterized by crests, which push fluid towards the wall (upwashes), and troughs,
which draw fluid away from the wall (downwashes). These upward and downward
fluid motions induce wall shear stress fluctuations, whose strength and frequency of
occurrence is clearly increased consistently, as apparent from the shape of the PDF.
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4. Conclusions

In this work, we have confirmed that a lubricating compliant layer can strongly
reduce drag in a turbulent channel flow. We have also demonstrated that DR can be
driven by surface tension effects alone, or also by a combination of surface tension
and viscosity effects if the viscosity of the lubricating layer is smaller than that of
the main flow. We studied this problem starting from viscosity-matched fluids and
decreasing the viscosity of the lubricating layer. When the two fluids have the same
viscosity, the thin lubricating layer relaminarizes due to the lack of the minimal
conditions to sustain the near-wall turbulence cycle, and a strong DR is observed.
When the viscosity of the lubricating layer is reduced, turbulence in the layer can be
sustained, but the overall system drag can still be substantially reduced.

In particular, we have characterized the phenomenology of DR in the present flow
configuration by performing DNS at the given shear Reynolds number Reτ = 300, and
at three different values of the viscosity ratio λ= η1/η2 between the two fluids (with
η1 the viscosity of the fluid in the lubricating layer). We started by focusing on the
case λ= 1, which we used as reference case to isolate the effect of surface tension
on the DR mechanisms, then we lowered the viscosity ratio to λ= 0.5 and λ= 0.25,
to analyse the complex interplay between viscous forces, inertial forces and surface-
generated capillary forces on the overall DR.

Reduction of drag is as high as DR ∼ 27 % for λ = 1, and, counter to intuition,
slightly decreases for decreasing λ (DR ∼ 24 % for λ = 0.25). Based on the current
results, we were able to identify two different routes to DR in the present system.
When λ= 1, DR is due to the surface tension of the interface, which is the elasticity
element that decouples wall-normal momentum transfer mechanisms between the main
and lubricating layers, leading to a complete relaminarization of the lubricating layer
(surface-tension-driven DR), leading to a complete relaminarization of the lubricating
layer (surface-tension-driven DR). However, when the viscosity contrast is changed to
λ= 0.25, and turbulence can still be sustained in the lubricating layer, we can observe
a new DR mechanism. In this case, DR is attributed to the effect of lower viscosity of
the lubricating layer, which decreases the corresponding value of the wall shear stress
(viscosity-driven DR).

In the present study, to minimize the influence of the flow parameters on the
results, but at the same time to represent an experimentally and physically realizable
situation, we have fixed (among the different simulations) the reference thickness of
the lubricating layer (hl = 0.15h) and the surface tension (σ = 44 × 10−3 N m−1) of
the liquid–liquid interface. Further investigations are therefore required to study the
role of hl and σ on the proposed turbulence suppression and regeneration mechanisms
that determine the overall DR in the present system.
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