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a b s t r a c t 

In this work we use Direct Numerical Simulation (DNS) to study the turbulent Poiseuille flow of two im- 

miscible liquid layers inside a rectangular channel. A thin liquid layer (fluid 1) flows on top of a thick 

liquid layer (fluid 2), such that their thickness ratio is h 1 /h 2 = 1 / 9 . The two liquid layers have the same 

density but different viscosities (viscosity-stratified fluids). In particular, we consider three different val- 

ues of the viscosity ratio λ = ν1 /ν2 : λ = 1 , λ = 0 . 875 and λ = 0 . 75 . Numerical Simulations are based on 

a Phase Field method to describe the interaction between the two liquid layers. Although a small viscos- 

ity ratio is assumed, this physical setup aims at mimicking the situation where water (less viscous fluid) 

is used to favour the transport of oil (large viscous fluid) inside pipelines. Compared with the case of 

a single phase flow, the presence of a liquid-liquid interface produces a remarkable turbulence modula- 

tion inside the channel, since a significant proportion of the kinetic energy is subtracted from the mean 

flow and converted into work to deform the interface. This induces a strong turbulence reduction in the 

proximity of the interface and causes a substantial increase of the volume-flowrate. These effects become 

more pronounced with decreasing λ. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Confined flows of cocurrent immiscible fluids are often ob-

served in the process and petroleum industry. Important exam-

ples include oil-water separators and hydrocarbon transportation

pipelines. In these situations, two-immiscible phases (typically oil

and water) are driven inside pipelines/channels and interact mod-

ifying the overall mass, momentum and heat transfer properties

of the system. To optimize the design of these systems it is cru-

cial to determine whether the two phases remain separate (due

to density and viscosity stratification) or form emulsions (which

are difficult to process/separate). From a practical standpoint, the

stratified condition (or even the core annular flow condition) is

preferred for two main reasons: the required power to transfer the

oil/water flow is lower (due to the lower viscosity of water wetting

a wall compared to that of the oil) and oil can be easily separated

from water (whereas more complex oil/water separators must be

designed when water is dispersed within the oil phase). 

When a base state with separate phases (stratified flow) can be

defined, a rigorous linear stability analysis of the governing equa-
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0045-7930/© 2016 Elsevier Ltd. All rights reserved. 
ions [1,2] can be done to determine if the base state is stable.

ote that this linear analysis can only predict whether small dis-

urbances will grow and their nature. Nonlinear theories are in-

tead needed to determine if wave saturation of small-waveslope

aves occurs [3,4] . However, waves usually become large and form

ubharmonics that can interact so to produce triadic resonance. In

ll these cases, no theoretical prediction can be made, and exper-

ments or accurate numerical simulations are required to capture

he complex dynamics of liquid-liquid flows. 

Technical challenges to obtain detailed information on the

elocity/stress field in experiments of immiscible and stratified

iquid-liquid flows have hindered the identification of the domi-

ant mechanisms controlling the flow dynamics and have made

ifficult the development of robust physics-based wave generation

odels. Direct Numerical Simulation (DNS) is a useful tool for ex-

mining the detailed flow physics in such instances, in particular

n the proximity of the deformed interface. For this reason, it can

e used to provide important insights into the characterization of

he interfacial dynamics. 

In literature, there exists a number of studies focusing on the

ynamics of interfacial waves in air-water two phase flows (see

5,6] and references therein). However, much less is known about

http://dx.doi.org/10.1016/j.compfluid.2016.11.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
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Fig. 1. Sketch of the computational domain with details of the flow configuration. A 

thin liquid layer with smaller viscosity (fluid 1) flows on top of a thick liquid layer 

with larger viscosity (fluid 2). The thickness ratio between the two liquid layers is 

h 1 /h 2 = 1 / 9 . The distribution of Turbulent Kinetic Energy (TKE) and the deformed 

liquid-liquid interface are also shown for visualization purposes. 
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he dynamics of liquid-liquid interfaces (except for a series of stud-

es on the stability of oil-water flows, [7–11] ). 

In the present study, we want to use Direct Numerical Sim-

lations (DNS) to analyze the dynamics of a turbulent viscosity-

tratified liquid-liquid flow moving inside a flat channel. For the

rst time, a Phase Field approach (Cahn–Hilliard equation) is em-

loyed here to describe the liquid-liquid interaction in such con-

guration. The governing balance equations are solved through a

seudo-spectral method for a given value of the reference shear

eynolds number ( Re τ = 100 ) and for three different values of the

iscosity ratio λ between the two liquid-layers ( λ = 1 , λ = 0 . 875

nd λ = 0 . 75 ). 

Compared with the case of a single phase flow driven by the

ame pressure gradient, the viscosity stratified liquid-liquid flow is

haracterized by a larger volume flowrate, as a direct consequence

f the conversion of mean kinetic energy into work to deform the

iquid-liquid interface. These effects become stronger with increas-

ng the viscosity difference between the two liquid layers. 

. Methodology 

We consider the case of two immiscible fluid layers flowing in-

ide a rectangular channel, with the upper part of the channel oc-

upied by fluid 1 and the lower part of the channel occupied by

uid 2 (as sketched in Fig. 1 ). The interface between the two fluid

s located in the upper part of the channel, and the film thick-

ess ratio is h 1 /h 2 = 1 / 9 . The two fluids have the same density

 ρ1 = ρ2 = ρ, i.e gravity is negligible), but different viscosities ( ν1 

 ν2 ). As a consequence, a viscosity ratio λ = ν1 /ν2 can be defined.

o model the mixture of two immiscible, incompressible and new-

onian fluids we use a Phase Field approach. The fluid dynamics

f the system is described by the following set of dimensionless

quations [12–15] : 

 · u = 0 (1) 

∂u 

∂t 
+ u · ∇u = −∇ ̃

 p + 

1 

Re τ
∇ 

2 u + ∇ ·
[
k ( φ, λ) 

(∇u + ∇u 

T 
)]

+ 

3 √ 

8 

1 

WeCh 

μ∇φ (2) 

∂φ

∂t 
= −u · ∇ φ + 

1 

P e 
∇ 

2 μ (3)

(φ) = f 0 (φ) + 

1 

2 

Ch 

2 |∇φ| 2 = 

1 

4 

(φ − 1) 2 (φ + 1) 2 + 

1 

2 

Ch 

2 |∇φ| 2 
(4) 

= 

δF 

δφ
= φ3 − φ − Ch 

2 ∇ 

2 φ (5) 
qs. (1) and (2) describe the conservation of mass (continuity)

nd momentum (Navier-Stokes) of the system, with u = (u x , u y , u z )

eing the velocity field and ˜ p the corrected pressure field [16] .

q. (3) is the Cahn-Hilliard equation that describes the transport

f the order parameter φ used to model the binary mixture: φ
s constant in the bulk fluid regions (where φ = ±1 ) and changes

moothly across the fluid-fluid interface. The free energy functional

(φ) of the system ( Eq. (4) ), is the sum of two different contri-

ution: a double-well potential f 0 ( φ) that accounts for the phobic

ehavior of the phases and a non-local term that accounts for the

ffect of surface tension ( ∝ | ∇φ| 2 ). The variation of the free energy

unctional is called chemical potential μ and controls the behav-

or of the interfacial layer ( Eq. (5) ). Note that Eqs. (2) and (3) are

oupled through the capillary term 

3 √ 

8 

1 
WeCh 

μ∇φ that describes the

omentum exchange between the two phases across the interface.

The term k ( φ, λ) in Eq. (2) is introduced to account for the non-

niform viscosity of the system. Viscosity can be written as a linear

unction of the order parameter φ [17,18] 

(φ) = ν1 
1 + φ

2 

+ ν2 
1 − φ

2 

. (6) 

ntroducing the viscosity ratio λ, the viscosity field can be written

s the sum of a uniform and a non-uniform part as [19,20] : 

(φ, λ) = ν2 + ν2 (λ − 1) 
(φ + 1) 

2 

. (7)

n dimensionless units, the non uniform part of the viscosity field

ecomes 

 (φ, λ) = 

1 

Re τ
(λ − 1) 

(φ + 1) 

2 

. (8)

he following dimensionless groups appear in Eqs. (1) –(5) : 

e τ = 

u τ h 

ν2 

P e = 

u τ h 

M 

W e = 

ρu 

2 
τ h 

σ
Ch = 

ξ

h 

, (9)

here σ is the surface tension of the liquid-liquid interface, M
s the mobility, and ξ the thickness of the liquid-liquid interface

ithin the PF method. The reference length of the problem is the

alf channel height h , whereas the reference velocity is the shear

elocity u τ = 

√ 

τw 

/ρ, with τw 

the shear stress at the wall defined

n terms of the viscosity of the thicker liquid layer ν2 . The phys-

cal meaning of the dimensionless groups is the following. The

eynolds number ( Re τ ) is the ratio between the inertial and the

iscous forces (defined based on the viscosity ν2 ). The Weber num-

er ( We ) is the ratio between the inertial and the surface tension

orces. Small values of We represent a rigid interface, whereas large

alues of We represent an highly deformable interface. The Peclet

umber ( Pe ) is the ratio between the convective and the diffusive

ime-scale, and it quantifies the relaxation time of the interface.

he larger is Pe , the larger is the time required by the interface to

dapt to the external forcing. Finally, the Cahn number ( Ch ) is the

imensionless thickness of the interface. 

. Numerical simulations 

Governing equations ( Eqs. (1) –(3) ) are solved using a pseudo-

pectral method based on transforming the field variables into

avenumber space through Fourier series in the homogeneous di-

ections ( x and y ) and Chebyshev polynomials in the wall-normal

irection ( z ). Integration in time is achieved using an implicit

rank-Nicolson scheme for the uniform part of the diffusive terms,

nd using an explicit Adams-Bashforth scheme for both the non-

niform part of the diffusive terms (in Eq. (2) ) and the nonlin-

ar terms. In particular, the nonlinear terms are first computed

n the physical space and then transformed in the wavenumber

pace using a de-aliasing procedure based on the 2/3 rule; deriva-

ives are evaluated directly in the wavenumber space to main-

ain spectral accuracy. The dimensionless value of the time step
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Fig. 2. Time evolution of the volume flowrate Q , normalized by the reference vol- 

ume flowrate for the single phase flow Q SP , for the viscosity stratified liquid-liquid 

flow at Re τ = 100 and different viscosity ratios λ: λ = 1 , λ = 0 . 875 and λ = 0 . 75 . 

The arrow points in the direction of decreasing λ (i.e. increasing of the viscosity 

difference between the two fluid layers). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Measurements of the shear stress at the bottom 

wall τ w , 2 and the top wall τ w , 1 for the dif- 

ferent flow configurations ( λ = 1 , λ = 0 . 875 and 

λ = 0 . 75 ). Results from the single phase simula- 

tion (SP) are also shown. The value of the dimen- 

sionless volume flowrate Q / Q SP corresponding to 

each specific simulation is also shown. 

Simulations τ w , 2 τ w , 1 Q / Q SP 

SP (Single Phase) 1 1 1 

λ = 1 1 .267 0 .763 1 .035 

λ = 0 . 875 1 .281 0 .722 1 .062 

λ = 0 . 75 1 .314 0 .683 1 .093 

Fig. 3. Mean fluid streamwise velocity 〈 u x 〉 for the viscosity stratified liquid-liquid 

flow at Re τ = 100 . Comparison between simulations at different viscosity ratios λ: 

λ = 1 ( − 
 −), λ = 0 . 875 ( −�−) and λ = 0 . 75 ( − � −). Results from simulation of 

single phase flow at the same reference shear Reynolds number (SP, - ) are also 

included for comparison. 
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is dt = 1 × 10 −4 . Further details on the numerical method can be

found in [15,19,20] . 

The computational domain used in our simulations has dimen-

sions 4 πh × 2 πh × 2 h along the streamwise ( x ), spanwise ( y ) and

wall-normal (z) directions, and is discretized using 512 × 256 ×
257 grid nodes. Periodicity is applied along x and y for both u

and φ. In the wall normal direction ( z ), no slip conditions are en-

forced for u , whereas a normal contact angle (and a zero-flux of

the chemical potential) is used for φ. 

Simulations are run at a reference Reynolds number Re τ =
100 (defined based on the physical properties of fluid 2, i.e. the

thicker fluid layer), and at Weber number W e = 0 . 1 . Assuming that

ρu 2 τ = 2 and that h = 0 . 02 m, the corresponding value of the sur-

face tension is σ = 0 . 2 N/m. Although this value of σ is substan-

tially larger than that of actual crude oil ( σ � 0.05 N/m), we be-

lieve that present results can still be of help to understand the

dynamics of the liquid-liquid mixture. [16] . Three different values

of the viscosity ratio are chosen: λ = 1 , λ = 0 . 875 and λ = 0 . 75 .

This means that the viscosity of the thin fluid layer (fluid 1) is

lower than the reference viscosity of the thick fluid layer (fluid 2).

The value of Ch and Pe numbers comes from a combined physical-

numerical consideration. For immiscible fluids, the interface thick-

ness is of the order of molecular length scales, hence Ch → 0.

This would require a numerical resolution that is far beyond cur-

rent computational possibilities. For this reason, we set Ch = 0 . 02 ,

which guarantees that the interface between the two fluids is de-

scribed using a minimum of 3 points in each direction. Then we

assumed Pe ∝ Ch −1 to obtain a correct evaluation of the interface

dynamics [without interface deterioration, see 16, and references

therein] . In the present case, we chose Pe = 150 , which minimizes

the mass leakage (always below 2%). 

4. Results 

Simulations are run starting from a single phase turbulent flow

at Re τ = 100 . The order parameter φ is initialized such that the in-

terface is initially flat and locate at h 1 /h 2 = 1 / 9 (close to the upper

boundary). The development of the two-phase flow at three dif-

ferent values of the viscosity ratio λ = 1 , λ = 0 . 875 and λ = 0 . 75

is studied. Turbulence adjusts to the new physical configuration

(transient behaviour) and finally reaches a new statistically steady

state condition, after which results are collected for a time window

long enough to ensure statistical convergence of the results. 

We start our analysis by looking at the time evolution of the

mean volume flowrate Q of the thicker fluid layer (fluid 2) across

the channel section. Results, which are shown in Fig. 2 , are nor-
alized by the reference volume flowrate for the single phase case

 Q SP ) at the same reference Re τ ( Re τ = 100 ). Here time is in wall

nits, t + = t ∗u 2 τ /ν2 (with t ∗ the physical time expressed in sec-

nds). We clearly observe that, even for λ = 1 , the presence of a

eformable interface (characterized by a specific surface tension)

eparating the two fluid layers induces an overall increase of the

olume flowrate (up to � 4%). This indicates that the wall normal

ransport of momentum is reduced, with a significant proportion

f the mean flow energy being lost into interface deformation. For

educing λ, the volume flowrate further increases (up to � 10% for

= 0 . 75 ). This is a direct consequence of the presence of a thin

iquid layer with lower viscosity that reduces the mean shear stress

t the upper wall. Since our simulations are run with an imposed

ressure gradient, reducing the wall stress produces an increase of

he mean volume flowrate. The explicit computation of the wall

hear stress for the different simulations (at both the bottom and

he top wall), as well as the corresponding value of the mean vol-

me flowrate Q / Q SP , is summarized in Table 1 . 

Linked to the observed changes of the volume flowrate, we ex-

ect large modification of the mean streamwise velocity. In Fig. 3

e explicitly show the wall-normal behavior of the mean stream-

ise velocity 〈 u x 〉 for the three different values of λ considered in

his study ( λ = 1 , λ = 0 . 875 , λ = 0 . 75 ). The wall-normal coordinate

s expressed in wall units, z + = z ∗u τ /ν (with z ∗ the physical posi-

ion expressed in meters). In the following, the superscript + will

e dropped for ease of notation. Angular brackets 〈·〉 denote av-

raging in time and over the homogeneous directions. Note that

he reference position of the interface is explicitly shown by the

hick vertical line. Statistics in this figure, as well as in the fol-

owing figures, are averaged over a time window of �t + = 20 0 0 ,

fter a steady state condition is reached (as visible in Fig. 2 for

 

+ > 30 0 0 ). Where explicitly shown, arrows inside figures point in
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Fig. 4. Curvature of the mean fluid streamwise velocity, ∂ 2 〈 u x 〉 / ∂z 2 for the viscosity 

stratified liquid-liquid flow at Re τ = 100 . Lines as in Fig. 3 . 
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Fig. 5. Root mean square of fluid velocity fluctuations, 〈 u ′ 
i,rms 

〉 , for the viscosity 

stratified liquid-liquid flow at Re τ = 100 : a) streamwise component, 〈 u ′ x,rms 〉 ; b) 

spanwise component, 〈 u ′ y,rms 〉 , c) wall-normal component, 〈 u ′ z,rms 〉 . Lines as in Fig. 3 . 
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he direction of decreasing λ (i.e. increasing the viscosity difference

etween the two fluid layers). 

Compared to the reference case of a single phase flow ( - ), the

resence of two different fluid layers separated by a deformable

nterface alters the symmetry of the profile: larger values of the

elocity characterize the thick fluid layer (0 < z < 180), whereas

maller values of the velocity characterize the thin fluid layer (180

 z < 200). The lower is the viscosity of the thin layer in contact

ith the upper wall (i.e. the lower is λ), the larger are the values

f the mean streamwise velocity. This is consistent with the ob-

erved behavior of Q / Q SP ( Fig. 2 ) and indicates that the presence

f two different fluid layers separated by a deformable interface

uppresses the wall-normal transport of momentum compared to

he case of a single phase flow at the same Re τ . The suppression

f wall-normal momentum transport is the consequence of the

onversion of kinetic energy into work to deform the liquid-liquid

nterface (potential energy). Although all the simulations are run

ith the same driving pressure gradient (i.e. with the same ref-

rence shear Reynolds number Re τ ), the presence of a deformable

nterface separating the two liquid layers alters the slope of the

ean velocity at the wall (i.e. alters the viscous wall stress). The

resence of a viscosity difference between the two layers ( λ � = 1)

lters further the symmetry of the profile. The lower is λ, (i.e. the

ower the viscosity of the thin layer), the larger is the mean veloc-

ty, since the rate of change of 〈 u x 〉 with z is directly linked to the

ocal value of the viscosity. 

It is interesting to note that the mean streamwise velocity 〈 u x 〉
resents an inflection point at the location of the interface. This is

xplicitly demonstrated in Fig. 4 by looking at the curvature of the

ean streamwise velocity profile, ∂ 2 〈 u x 〉 / ∂z 2 . Differently from the

ase of a single phase flow where the curvature is always negative,

or the liquid-liquid flow the curvature of the profile is always neg-

tive but in a thin region close to the fluid-fluid interface (170 <

 < 180), where it becomes positive (i.e. change of curvature). This

ehavior is primarily due to the shear exerted by the layers at the

nterface and will be further analyzed below within the discussion

f turbulence fluctuations. 

To analyze the effect of the viscosity stratification on the behav-

or of turbulence, we compute the root mean square (rms) of the

treamwise, spanwise and wall-normal fluid velocity fluctuations

s a function of the wall normal coordinate z . Results are shown

n Fig. 5 . We will consider first the behavior of 〈 u ′ x,rms 〉 , panel a)

n Fig. 5 . Regardless of the value of λ, we clearly see that velocity

uctuations are only slightly modified (increased) near the lower

all ( 0 < z + < 100 ), where typical near wall-turbulence is main-

ained. 

The situation remarkably changes near the top wall ( 100 < z + <
00 ). A first comparison is made between results from the single

hase flow (solid line, - ) and results from the two-phase flow at
= 1 (symbols, −� −). Turbulence is substantially suppressed com-

ared to the case of a single phase flow, since in that region of

he channel the deformable interface converts the kinetic energy

f the mean flow into potential energy (interface deformation).

ote that a local minimum of 〈 u ′ x,rms 〉 is observed when approach-

ng the location of the interface ( z + � 180 ). The effect of decreas-

ng λ is particularly pronounced in the proximity of the interface

 140 < z + < 190 ) and is twofold: it decreases turbulence fluctua-

ions in the thin layer with lower viscosity ( 180 < z + < 190 ) while

ecreasing it in the thick layer with larger viscosity. A link can

e drawn between the behavior of the turbulent fluctuations in

he streamwise direction and the behavior of the mean flow strain

ate γxz = ∂ 〈 u x 〉 /∂ z, which is shown in Fig. 6 . As far as the mean

train rate γ xz is concerned, the behavior in the single phase flow

 - in Fig. 6 ) is well known: | γ xz | decreases sharply in the near

all regions while attaining an almost constant value | γ xz | � 0

n the core of the channel. Compared to the single phase flow,

or the case of the viscosity stratified liquid-liquid layer | γ xz | is

ncreased near the bottom wall ( z + = 0 ) and decreased near the

op wall ( z + = 200 ). From a vis-a-vis analysis of 〈 u ′ x,rms 〉 and γ xz 

e can infer the following: larger strain rates enhance the pro-

uction of turbulent kinetic energy through the increase of the

roduction term in the corresponding balance equation, whereas
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Fig. 6. Wall-normal behavior of the mean strain rate, γxz = ∂ 〈 u x 〉 /∂ z for the viscos- 

ity stratified liquid-liquid flow at Re τ = 100 . Lines as in Fig. 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Contour maps of the spanwise vorticity 〈 ω y 〉 for the viscosity stratified 

liquid-liquid flow at Re τ = 100 and different viscosity ratio λ. Panels: a) Single 

Phase flow; b) liquid-liquid flow at λ = 1 ; c) liquid-liquid flow at λ = 0 . 875 ; d) 

liquid-liquid flow at λ = 0 . 75 . The location of the interface is explicitly indicated 

(thin black line) for clarity. 
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smaller strain rates reduce it. With similar arguments, we can also

explain the behavior of 〈 u ′ x,rms 〉 for different λ. In the thin liquid

layer, for decreasing λ we observe an increase of | ∂ 〈 u x 〉 / ∂ z |, which

is in turn associated to an increase of turbulence fluctuations. By

contrast, when crossing the interface into liquid layer 2, | ∂ 〈 u x 〉 / ∂ z |
decreases for decreasing λ, which corresponds to a decrease of tur-

bulent fluctuations. 

For completeness, we also compute the behavior of spanwise

( 〈 u ′ y,rms 〉 , Fig. 5 b) and wall normal velocity fluctuations ( 〈 u ′ z,rms 〉 ,
Fig. 5 c). A decrease of turbulence intensities is observed for both

〈 u ′ y,rms 〉 and 〈 u ′ z,rms 〉 in the liquid-liquid interface region (near the

upper wall, for z > 120). This finding agrees with the observation

that the presence of the interface reduces the transport of mo-

mentum (in particular in the wall-normal direction) by converting

the kinetic energy of the flow into potential energy (interface de-

formation). In the meantime, turbulence intensities are increased

near the bottom wall, as a consequence of the increased shear rate

therein (see Fig. 6 and related comments). Note that the shape of

the 〈 u ′ y,rms 〉 and 〈 u ′ z,rms 〉 profiles for different λ is qualitatively simi-

lar, although a clear increase of turbulence fluctuations is observed

near the lower wall for decreasing λ (as explicitly shown in Fig. 5 ).

We conclude our analysis on turbulence modulation in viscos-

ity stratified liquid-liquid flow by computing the spanwise vorticity

ω y = ∂ u z /∂ x − ∂ u x /∂ z, whose behavior is intimately linked to that

of γ xz just described. Instantaneous maps of ω y for the different

cases considered in this work are shown in Fig. 7 . For the single

phase flow (panel a), the vorticity distribution is almost symmet-

ric and is characterized by long streaky structures emitted from

both the bottom and top walls and reaching the core of the chan-

nel. In the case of viscosity stratified liquid-liquid layers with equal

( λ = 1 , Fig. 7 b) or different viscosity ( λ � = 1, Fig. 7 c–d), the flow

symmetry is lost. In particular, turbulence is promoted far from the

interface (near the bottom wall in Fig. 7 ), while it is reduced close

to the interface (near the top wall in Fig. 7 ). Interestingly, we note

the production of counterotating rolls induced by the shear at the

liquid-liquid interface (black patches attached at the liquid-liquid

interface). Their size and strength depends primarily on the sur-

face tension at the interface and on the value of λ, with the inten-

sity of the rolls decreasing with decreasing λ due to the reduced

interfacial friction. 

5. Conclusions 

In this work, we used Direct Numerical Simulation to analyze

the turbulent Poiseuille flow of two immiscible liquid layers in-

side a flat channel. The two fluid layers were characterized by

the same density but different viscosity. In particular, a thin layer

with smaller viscosity (fluid 1) moved on top of a thick layer with

larger viscosity (fluid 2). The thickness ratio between the two liq-
id layers was h 1 /h 2 = 1 / 9 . Simulations, based on a Phase Field

PF) method to describe the interaction between the two liquid

ayers, were run at a reference shear Reynolds number Re τ = 100 .

hree different values of the viscosity ratio λ = ν1 /ν2 between the

wo liquid layers were considered: λ = 1 , λ = 0 . 875 and λ = 0 . 75 . 

Compared to the single phase flow, the presence of a liquid-

iquid interface altered significantly the overall fluid dynamics of

he system. Regardless of the value of λ, the volume flowrate

cross the channel section increased, indicating a significant turbu-

ence reduction due to the conversion of the mean kinetic energy

nto potential energy at the deformed liquid-liquid interface (work

s spent to deform the interface). These effects increased for de-

reasing λ. Future developments include the extension of presents

esults to a larger range of viscosity ratio. 
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