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Solute convection in porous media at high Rayleigh-Darcy numbers has important
fundamental features and may also bear implications for geological CO2 seques-
tration processes. With the aid of direct numerical simulations, we examine the
role of anisotropic permeability on the distribution of solutal concentration in fluid
saturated porous medium. Our computational analyses span over few decades of
Rayleigh-Darcy number and confirm the linear scaling of Nusselt number that was
previously found in the literature. In addition, we find that anisotropic permeability
γ < 1, i.e., with vertical permeability smaller than horizontal permeability, effec-
tively increases the Nusselt number compared with isotropic conditions. We link
this seemingly counterintuitive effect with the occurring modifications to the flow
topology in the anisotropic conditions. Finally, we use our data computed for the
two-sided configuration (i.e., Dirichlet conditions on upper and lower boundaries) to
examine the time evolution of solutal dynamics in the one-sided configuration, and
we demonstrate that the finite-time (short-term) amount of CO2 that can be dissolved
in anisotropic sedimentary rocks is much larger than in isotropic rocks. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4947425]

I. INTRODUCTION

When a temperature difference is applied to a liquid filled porous layer, buoyancy driven
flows may arise. If we refer to a two-dimensional cartesian layer across which a small temperature
difference is applied, the arising gravity driven flow is dominated by diffusion. When temperature
increases, instabilities occur and the flow becomes unstable and chaotic, finally achieving a fully
convective regime. The temperature difference driving the flow within the layer is represented by a
suitable dimensionless number, called the Rayleigh-Darcy number Ra, which quantifies the relative
importance of advection compared to diffusion. Archival literature in this field is focused mainly
on the onset of instabilities, which occurs1,2 at Ra = 4π2. The flow transfer efficiency is measured
in terms of the Nusselt number (Nu), which supplies the value of the dimensionless heat flux trans-
ferred across the boundaries of the system. For the case of practical interest at large Rayleigh-Darcy
numbers (up to Ra = 4 × 104), it was shown by Hewitt et al.3 that Nu increases almost linearly with
Ra, in good agreement with previous numerical and experimental studies.4,5 The above-mentioned
problem maintains the same mathematical description when a solute difference is applied across
the layer. In this case, the driving parameter is a modified version of the Rayleigh-Darcy number
Ra based on the concentration difference and the flow of solute is parametrized by the Sherwood
number (Sh) or, more frequently, by a modified Nusselt number based on the concentration gradient.
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The literature on this problem is vast and old, dating back to the Darcy’s work for the derivation
of the governing equations. However, in recent years this problem has received renovated attention
for the implications it can bear in carbon dioxide (CO2) sequestration strategies.6,7 With reference to
this problem, sequestration of liquid CO2 via injection into brine-filled large geological formations
has been identified as one of the possible remedies.8–10 Essential aspects of CO2 capture mecha-
nisms are as follows: after injection, CO2 dissolves in the brine (3% in weight), forms a heavier
solute (CO2 + brine), and flows downward. An accurate evaluation of the solute downward flux
is crucial to determine the filling time of the available reservoir capacity (from 320 to 10 000 Gt
worldwide, see Xu et al.11), and consequently the optimal rate of CO2 injection beneath the earth
surface. However, the geological scale Ra numbers are of the order of 104–105, which makes precise
flow predictions hard to obtain.

According to current modelling approaches,3,4 the archetypal system to study solute convec-
tion into sedimentary rocks is the two-sided Rayleigh-Bénard configuration in which convective
transport occurs between a lighter layer (lower boundary) and a heavier layer (upper boundary). An
alternative approach, perhaps more related to the physics of the concentration driven CO2 dissolu-
tion process, is the so-called one-sided configuration.12,13 In the one-sided configuration, convective
transport occurs only away from the upper boundary and the dynamics of the system is a function
of time. After onset, heavy plumes fall vertically with possible minor sideway perturbations, which
in turn may produce plume interactions and branching before impingement on the lower boundary.
Due to the impermeable bottom boundary condition, the domain starts filling up with dense solute
and vertical convection is hindered (shutdown).

Even though sedimentary geological formations, which are composed of the subsequent depo-
sition of horizontal layers, are inherently anisotropic11 and are characterized by different values of
the vertical-to-horizontal permeability ratio (γ = Kv/Kh), estimates for the vertical flux of solute
(Nu) in the literature3,4,14 are almost entirely based on the assumption of isotropic media (γ = 1).
To date, there are only few works11,15,16 on solute convection in anisotropic porous media, which
however mainly focused on the study of instability inception, characterized by Ra lower than those
typical of geological CO2 sequestration. Our aim here is to explore the role of the anisotropic rock
permeability (different values of γ) and to extend previous analyses on solute convection at large
Rayleigh-Darcy numbers in anisotropic porous media.

The paper is built as follows. In Sec. II, we will describe the governing equations and the
boundary conditions adopted to run the present numerical simulations. We will consider first the
analysis of the two-sided configuration: since in this configuration the flow reaches a steady state
dynamic, time averages can be done and can help to identify the main convection mechanisms in
a more convincing way if compared with the one-sided configuration.7 Also important is that the
dissolution flux of solute in the one-sided cell can be directly computed from the two-sided model.12

In Sec. III, we will discuss the role of the anisotropic rock permeability on the vertical flux of solute.
In particular, we will show that, compared to the isotropic case, increasing the horizontal rock
permeability leads to a remarkably larger downward flux of solute. A physical explanation of this
result will be also given based on a detailed examination of the flow topology. In Sec. IV, we will
use our previous results on the two-sided configuration to introduce and discuss the dynamics of the
one-sided configuration. We generalize the shutdown model presented in the literature,12 accounting
for the influence of the anisotropic rock permeability on the overall amount of solute dissolved in
time. Finally, we will draw conclusions on possible implications of our results on long-term CO2

storage.

II. METHODOLOGY

We consider a fluid-saturated porous medium in a two dimensional domain, assuming a uni-
form porosity φ and considering different values of the vertical (Kv) to horizontal (Kh) permeability
ratio 0.25 ≤ γ ≤ 1. The value of γ < 1 is chosen to be representative of real geological applica-
tions,16 i.e., γ < 1. The unstable density stratification (characterized by a top-to-bottom density
difference ∆ρ∗) drives the solute in a downward flow which is incompressible and governed by
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the Darcy’s law. In a two dimensional domain, being u∗ and w∗ the velocities along the horizontal
(x∗) and the vertical directions (z∗), respectively, and with p∗ and C∗ the pressure and solute
concentrations, the balance equations are

µ

Kh
u∗ = −∂p∗

∂x∗
,

µ

Kv
w∗ = −∂p∗

∂z∗
− ρ∗g, (1)

∂u∗

∂x∗
+
∂w∗

∂z∗
= 0, (2)

where µ is the fluid viscosity and g the acceleration due to gravity. The superscript ∗ denotes
dimensional variables. For the range of Rayleigh numbers considered in the present study, the
Oberbeck-Boussinesq hypothesis could be applied.17 As a consequence, we assume that the fluid
density ρ∗ is the only solute-dependent property, which can be evaluated in terms of the concentra-
tion of solute C∗ into the mixture using the linear equation of state,

ρ∗ = ρ∗s
�
1 − a(C∗s − C∗)�, (3)

where a is a positive constant coefficient while C∗s and ρ∗s are the concentration field and the density
value at the top boundary.

Neglecting the effects of dispersion, and indicating with D the solute diffusivity, the concentra-
tion fulfills the time-dependent advection-diffusion equation,

φ
∂C∗

∂t∗
+ u∗

∂C∗

∂x∗
+ w∗

∂C∗

∂z∗
= φD

(
∂2C∗

∂x∗2
+
∂2C∗

∂z∗2

)
. (4)

We assume impenetrable boundaries kept at a fixed solute concentration (mimicking the pres-
ence of a saturated solution near the top boundary and of pure fluid near the bottom boundary),

w∗ = 0, C∗ = 0 on z∗ = 0, (5)
w∗ = 0, C∗ = C∗s on z∗ = H∗, (6)

whereas periodicity is applied along the horizontal direction x∗.

A. Dimensionless equations

A relevant velocity scale for the flow is the free-fall buoyancy velocity, W ∗ = gKv∆ρ
∗/µ. To

account for the effect of anisotropy, we use different velocity/length scales in the vertical and
horizontal directions (through the introduction of the scaling factor

√
γ). In particular, we set:

x =
x∗

H/
√
γ
, z =

z∗

H
, u =

u∗

W ∗/
√
γ
, w =

w∗

W ∗ (7)

p =
p∗

µW ∗H∗/Kv
, C =

C∗ − C∗s
C∗s

, t =
t∗

φH∗/W ∗ . (8)

The governing parameter of the problem is the Rayleigh-Darcy number,

Ra = RaT · Da =
gH∗Kv∆ρ

∗

µφD
, (9)

defined based on the thermal Rayleigh number (RaT = g∆ρ∗H∗3/µD) and on the Darcy number
(Da = Kv/H∗2). The Rayleigh-Darcy number can also be seen as the ratio of diffusive and convec-
tive time scales (but also as an inverse diffusivity18 or as the dimensionless layer thickness13). In
dimensionless form, Eqs. (1), (2), and (4) become

u = −∂P
∂x

, w = −∂P
∂z
− C, (10)

∂u
∂x
+
∂w

∂z
= 0, (11)

∂C
∂t
+ u

∂C
∂x
+ w

∂C
∂z
=

1
Ra

(
γ
∂2C
∂x2 +

∂2C
∂z2

)
, (12)
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where P = p + z/(aC∗s) is the reduced pressure. The effect of anisotropy (γ) is explicit only in
Eq. (12) but it is also present in the other equations through the reference length/velocity scales
defined above. The dimensionless boundary conditions result as follows:

w = 0, C = −1 on z = 0, (13)
w = 0, C = 0 on z = 1. (14)

Equations (10)-(12) are solved by a Fourier-Chebyshev pseudo-spectral method. Further details on
the numerical approach can be found in the Appendix and in the work of Zonta and Soldati.19

In the present study, γ < 1 is obtained by increasing the horizontal permeability Kh while
keeping Kv constant (i.e., keeping the same Ra). By doing so, we can compare simulations at the
same Ra (i.e., same driving force or same domain height), but different γ (i.e., different porous
medium). We perform a systematic study of solutal convection in anisotropic porous media in the
Ra parameter space covering a broad range of Ra numbers (50 ≤ Ra ≤ 5 × 104), while assuming
0.25 ≤ γ ≤ 1.00.

III. RESULTS

In this section, we describe the results obtained from numerical simulations of the two-sided
configuration with anisotropic rock permeability γ ≤ 1. In fact, we start our analysis considering
the dynamics of the flow for γ = 1 (isotropic rock permeability). The dynamics of the present
system depends on the value of the Rayleigh-Darcy number. For Ra ≤ 4π2, diffusion dominates
and convection is prevented.1,2 For 4π2 < Ra < 1300, the flow exhibits large and steady non-linear
rolls, with the onset of a secondary instability as Ra approaches the value Ra ≃ 1300. This dy-
namics has been extensively analyzed in previous papers4,20 and will not be discussed further here.
For Ra > 1300, the system cannot sustain the stable quasi-periodic configuration and undergoes a
transition towards a chaotic state, characterized by the occurrence of unsteady motions.4

We describe the flow structure using contour maps of the concentration field C, since concen-
tration is transported by the velocity field and reproduces faithfully the underlying flow structure.
The basic fluid mechanics of such flow is depicted in Fig. 1.

We focus on the first row of Fig. 1, which shows contour maps of C in the x–z plane for
Ra = 8 × 103 (Fig. 1(a)), Ra = 16 × 103 (Fig. 1(b)) and Ra = 5 × 104 (Fig. 1(c)).

Small fingers of light fluid raise from the bottom boundary moving upward, while correspond-
ing fingers of heavy fluid move downward from the top boundary. These fingers, named proto-
plumes in the work of Hewitt et al.,3 come close each other and form larger plumes (megaplumes)
that penetrate across the domain and reach the opposite boundary. Large plumes, whose velocity is
initially low, are vigorously accelerated by buoyancy and reach the opposite boundary, where they
are deflected horizontally. These horizontal branches push closer the newly forming fingers so to
produce a new descending (or ascending) large plume in a cyclic fashion.

To further clarify the dynamics of merging plumes, in Figs. 1(d)–1(i), we show the time
evolution of the concentration field C measured along an horizontal slice at two different vertical
positions. The horizontal slice is located at a distance z = 102/Ra from the lower boundary (just
outside of the boundary layer) in Figs. 1(d)–1(f), and at z = 1/2 (cell centerline) in Figs. 1(g)–1(i).
The position of the two cutting planes is explicitly shown in Figs. 1(a)–1(c) and is indicated as zA,
zB. Near the wall (Figs. 1(d)–1(f)), the emerging picture indicates the presence of a characteristic
structure, consisting of protoplumes (small ribs) that coalesce to form megaplumes (long and persis-
tent roots). Adjacent megaplumes can merge or form branches, as indicated by the meandering
concentration pattern. From a comparative analysis of Figs. 1(d)–1(f) it is apparent that the number
and the strength of protoplumes near the boundary increases with increasing Ra. Farther from the
wall (Figs. 1(g)–1(i)), megaplumes increase persistence and stability for increasing Ra. This is re-
vealed by the regular streaky pattern at Ra = 5 × 104 (Fig. 1(i)) in comparison with those at smaller
Ra (Figs. 1(g) and 1(h)).

The dynamics of protoplumes and megaplumes qualitatively described above for γ = 1 re-
mains substantially unchanged also for γ , 1, though the assumption of a anisotropic rock perme-
ability produces quantitative effects. To quantify these effects, we consider the behaviour of the
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FIG. 1. (a)–(c): contour maps of the concentration fieldC of the solute for Ra= 8×103 (a), Ra= 16×103 (b), and Ra= 5×104

(c). (d)–(i): space-time measurements of C along two horizontal slices located at 102/Ra from the lower layer (zA) (d)–(f),
i.e., just outside of the boundary layer whose extension is 15/Ra, as suggested by Otero et al.,4 and at the centerline of the cell
(zB) (d)–(f). The location of the “cutting planes” zA and zB is explicitly shown in (a)–(c). The value of Ra for the space-time
measurements corresponds to that of the contour maps in the above panels (Ra= 8×103, Ra= 16×103 and Ra= 5×104 from
left to right).

mean concentration profile ⟨C⟩ along the vertical direction z. Results are shown in Fig. 2. In
particular, in Fig. 2(a) we present the reference results obtained assuming γ = 1 and varying Ra
(Ra = 8 × 103, Ra = 16 × 103 and Ra = 5 × 104). In Fig. 2(b) we show the results obtained for a
given Ra (Ra = 8 × 103) and different γ (γ = 1.00, γ = 0.50 and γ = 0.25). Note that brackets ⟨·⟩
indicate average in time and in space over the horizontal direction x. A close up view of the mean
concentration profiles near the boundary (up to z = 1/20) is shown in the inset of each panel. We
analyze first the effect of Ra on the mean concentration profile (Fig. 2(a)). The jump of ⟨C⟩ to the
centerline value ⟨C⟩ = −1/2 is observed across a thin boundary layer, the thickness of which can be
computed as δ = ∆C/2[∂⟨C⟩/∂z]z=0 = 1/2[∂⟨C⟩/∂z]z=0, with ∆C being the overall top-to-bottom
concentration difference and equal to 1 due to the concentration scale used. A similar behaviour is
also observed for varying γ (Fig. 2(b)). Note that the significant reduction of δ for decreasing γ is a
strong indication for the enhanced vertical flux of solute.21
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FIG. 2. (a): profiles of the average concentration ⟨C⟩ computed along the vertical direction z for different Ra numbers with
γ = 1. (b): profiles of the average concentration ⟨C⟩ computed along the vertical direction z at Ra= 8×103 and different
values of γ. The insets in each panel show a close-up view of the region near the boundary.

We briefly discuss here the behaviour of the root mean square (rms) of the solute concentration
fluctuations Crms as a function of the vertical coordinate z. Results are shown in Fig. 3. We consider
first the effect of Ra on Crms for an isotropic porous medium (Fig. 3(a)). We clearly observe that
for increasing Ra the peak of Crms moves toward the boundary while remaining almost constant in
amplitude. This is a further indication of the reduction of the boundary layer thickness discussed
above. A similar trend is observed for varying γ (Fig. 3(b)). A close up view of the behaviour
of Crms near the boundary (up to z = 1/20) is provided in the inset of both Figs. 3(a) and 3(b) to

FIG. 3. (a): profiles of the root mean square of the concentration fluctuations, Crms, computed along the vertical direction z

for different Ra (Ra= 8×103, Ra= 16×103, Ra= 5×104) and γ = 1. (b): profiles of the root mean square of the concentration
fluctuations computed along the vertical direction z at Ra= 8×103 and different values of γ (γ = 1, γ = 0.50 and γ = 0.25).
The inset in each panel shows a close up view of the region near the boundary.
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FIG. 4. Maximum value of the temporally and spatially averaged root mean square of the concentration fluctuations (Crms),
vertical velocity (wrms) and horizontal velocity (urms) as a function of Ra and for two values of γ (γ = 1 and γ = 0.25).

properly visualize the shape of the Crms profile. The behaviour of the maximum value of solute
fluctuations, max(rms), as a function of Ra and γ is shown in Fig. 4. These results clearly indicate
that the maximum value of Crms (as well as of wrms) remains almost constant for increasing Ra. Yet,
max(Crms) and max(wrms) increase remarkably for decreasing γ.

To evaluate explicitly the downward solute flux for different Ra, we computed the actual value
of the Nusselt number (see the Appendix). The behaviour of Nu as a function of Ra is shown in
Fig. 5. The inset refers to the behaviour of Nu over the entire range of Rayleigh numbers simulated
in the present work (50 < Ra < 5 × 104) for the isotropic porous medium (γ = 1, −⃝−). These

FIG. 5. Time and space averaged Nusselt number Nu as a function of the Rayleigh-Darcy number (Ra) for different values of
the permeability ratio γ =Kv/Kh (γ = 1, γ = 0.75, γ = 0.50, and γ = 0.25). Results are shown only for high Rayleigh-Darcy
numbers (Ra ≥ 2×103). Predictions from the simplified model Nu= β+αγnRa (with α = 0.006 88 and β = 2.75 proposed
by Hewitt et al.3 for the isotropic case, and n =−1/4 to account for anisotropic permeability) are shown (lines) together with
the numerical results (symbols). The inset shows the values of Nu (symbols) for γ = 1 and for all Ra considered in this study.
Results from Hewitt et al.3 (solid line) are also shown for comparison.
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results are shown together with those provided by Hewitt et al.3 (—) to confirm and extend previous
predictions on the asymptotic linear increase of Nu with Ra.3,4

The results shown in the main panel of Fig. 5 are one of the key messages of the present
paper. Symbols indicate the values of Nu obtained from simulations at Ra ≥ 2 × 103 for different
γ: γ = 1 (−▼−), γ = 0.75 (−N−), γ = 0.50 (−•−), and γ = 0.25 (−■−). A remarkable effect of γ
on Nu is easy to observe over the entire range of Ra, with increments of Nu up to about 40% for
γ = 0.25. This provides a clear indication of the enhanced downward flux of solute occurring when
increasing the horizontal permeability. We wish to remark here that our simulations for γ < 1 are
run by increasing Kh (horizontal permeability) while keeping Kv (vertical permeability) constant.
This choice was necessary to compare our results against previous works3,4 (we kept Ra constant
while varying γ). Current results can be predicted by the linear scaling,

Nu = β + αγnRa, (15)

with α = 0.006 88 and β = 2.75, which extends that proposed by Hewitt et al.3 for the isotropic
case γ = 1: our data show that it is possible to maintain the same scaling, though introducing the
permeability ratio γ to the power −1/4. Note that the precise value of n obtained from data fitting
is n = −0.2514 ± 0.0053. It was not possible to compare our data against previous experimental
or numerical results from the literature: we were able to find only few studies11,15,22 analysing
flow convection in a fluid saturated anisotropic porous medium. In the work of Xu et al.,11 the
authors studied by linear and global stability analysis the onset of convection (which occurs at
lower Ra than those considered here) and found indications that reducing γ leads to a faster so-
lute dissolution (increase of Nu). Later, Cheng et al.15 combined stability analysis and numerical
simulations (up to Ra = 6400) to show that solutal convection can be triggered earlier in anisotropic
porous media, leading the authors to the conclusions that a wider range of potential reservoirs
can be effectively exploited for CO2 sequestration. More recently, Green and Ennis-King22 found
that reducing γ could decrease Nu, which is only in apparent contradiction with our results. In
Green and Ennis-King,22 decreasing γ is obtained by decreasing Kv rather than by increasing Kh.
Note however that varying Kv leads to different Ra. Hence, it is difficult to compare results of
Nu for different γ (and also different Ra). To the best of our knowledge, these calculations have
never been performed in the high-Ra regime. In the following, we will also give sound phys-
ical reasons why reducing γ can lead to a seemingly counterintuitive increase of solute vertical
flux (Nu).

In the high-Ra regime, the flow is made of a sequence of falling plumes that drive the heavy
fluid (high concentration of solute) downward and by rising plumes that drive light fluid (low
concentration of solute) upward.23 In Fig. 6 we show a close up of a falling plume that is developing
near the top boundary over a length of one third of the domain. The thick black line identifies the
mid-value of the dimensionless concentration C = −1/2 and represents the contour of the plume.
The values of the vertical velocity gradient, ∂w/∂z, are indicated in Fig. 6(a) with the color range,
white being the maximum positive gradient and black being the maximum negative gradient. The
values of the vertical velocity, w, are indicated in Fig. 6(b) with the color range, white being the
maximum upward velocity and black being the maximum downward velocity. In both Figs. 6(a) and
6(b), flow streamlines are also plotted to show in detail the flow behaviour inside and outside the
plume. Focusing on the tiny region near the top boundary (i.e., z ≥ 0.95 in Fig. 6(a)), it is possible
to observe a number of small, concentrated bursts of positive vertical velocity gradient that control
the development of the plumes (identified by regions of large downward velocity in Fig. 6(b)).
Following the plume structure, we can see that farther from the top boundary (z ≃ 0.75) the vertical
velocity gradient is small (Fig. 6(a)), indicating that the vertical downward velocity of plumes is
maximum (Fig. 6(b)). Flow streamlines clearly mark the regions where the fluid is recirculating
due to the shear produced by the falling plume interacting with the neighbouring rising plumes. In
an effort to explain the importance of the permeability ratio γ in modifying the flow, we want to
focus specifically on the modification to w and ∂w/∂z. We compute the probability density function
(PDF) of w and ∂w/∂z in the region of the falling plumes, as identified in Fig. 6, for different values
of γ. We plot the PDF(∂w/∂z) in Fig. 7(a) and the PDF(w) in Fig. 7(b). All data are normalized
by the corresponding root mean square (rms) for γ = 1. We discuss first the PDF(∂w/∂z) in the
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FIG. 6. Sketch of a falling plume near the top boundary, identified by the isocontour C =−1/2 (thick line). (a): contour maps
of the vertical velocity gradient ∂w/∂z within the plume, normalized by the root mean square value ∂w/∂zrms. (b): contour
maps of the vertical velocity w within the plume, normalized by the root mean square value wrms.

isotropic case, corresponding to γ = 1 (−■−). The distribution is asymmetric, due to the sampling
on the falling plume, with the most probable value in zero. We also observe a wide positive tail,
indicating that a large proportion of the events correspond to a velocity increase while the fluid is
falling. When γ is decreased, the distribution broadens, demonstrating a more probable occurrence
of the positive, but also negative, extreme events. We remark here that while ∂w/∂z > 0 is an
indication of plume acceleration, ∂w/∂z < 0 is an indication of plume deceleration. A vis-a-vis
comparison of Figs. 6(a) and 7(a) suggests that the events ∂w/∂z > 5, for which we report an

FIG. 7. (a) Probability Density Function (PDF) of the vertical velocity gradient ∂w/∂z, normalized by the root mean square
value of ∂w/∂z for γ = 1, ∂w/∂z1,rms. (b) Probability Density Function (PDF) of fluid vertical velocity w, normalized by
the root mean square value of w for γ = 1, w1,rms. The PDF calculation is done considering only the fluid region of falling
plumes (i.e., C > −1/2, see Fig. 6). Results refer to the case of Ra= 8×103.

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:

128.130.169.22 On: Tue, 03 May 2016 07:37:04



056601-10 De Paoli, Zonta, and Soldati Phys. Fluids 28, 056601 (2016)

increase for decreasing γ, are those associated to the newly forming plumes. If we focus on the
negative tail, we can associate the increase of events ∂w/∂z < −5 with strong deceleration in the
vertical direction of the falling plume when approaching the bottom boundary (not shown in Fig. 6).
The decrease of γ has a similar effect also on the distribution of w (Fig. 7(b)): decreasing γ in-
creases the frequency of positive and negative extreme events (predominantly occurring in the core
of the plume, see Fig. 6(b)). We report also a decrease of the frequency of moderate events. Falling
plumes are large convective regions that entrain the fluid downward. However, falling plumes can
exhibit, due to the shearing action of the neighbouring rising plumes, also small areas characterized
by lumps of fluid going upward: this explains the positive values in Fig. 7(b). From the qualita-
tive behaviour of Fig. 6 and the quantitative results in Fig. 7, we can now explain why in Fig. 5
we observe an increase of Nu for a decrease of the permeability ratio γ. When we increase the
horizontal permeability Kh, we facilitate the horizontal motion of the fluid with a corresponding
increase of ∂u/∂x. To preserve the mass balance in the flow domain, continuity must prescribe a
corresponding increase of the magnitude of ∂w/∂z. This observation and the broadening of the tails
in the velocity distribution reported in Fig. 7(b) can lead us to the conclusion that a decrease of
the horizontal resistance induces an increase of the flow in the vertical direction, even though the
vertical permeability Kv is maintained constant.

A. Plume dynamics

As discussed above, solute convection in porous media is essentially driven by plumes. For this
reason, we wish to investigate further the characteristics of plumes for varying Ra and γ.

1. Plume detection

Plume identification is a longstanding problem in buoyancy-driven flows (see the work of
Paparella and von Hardenberg,24 Ching et al.,25 van der Poel et al.,26 and references therein). Plumes
are usually identified based on the value of the velocity-temperature (or concentration) correla-
tion or on the value of the temperature (or concentration) fluctuations. Although the definition of
plumes based on these markers leads to slightly different results for pure fluid thermal (or solutal)
convection, we checked that in the present case of solutal convection in porous media they all lead
essentially to the same results. Following the work of Otero et al.,4 Hewitt et al.,3 and Slim,13 in the
present work, we identify an ascending plume P as the set of points x = (x, z) (in the domain D),
where

P = {x ∈ D : C(x) ≥ −1/2}.
An example of plume detection is given in Fig. 8, where we show the contour maps of the concen-
tration field (Fig. 8(a)) and the corresponding shape of plumes detected with the present algorithm,
i.e., by detecting the contour line C(x) = − 1/2 (Fig. 8(b)).

FIG. 8. (a): contour maps of the concentration field C in the entire domain. Dark regions indicate small solute concentration
(light fluid) whereas bright regions indicates large solute concentration (heavy fluid). (b): corresponding shape of plumes
identified by the present plume-detection algorithm, i.e., by detecting the contour line C(x)=−1/2.
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FIG. 9. Plume statistics for the isotropic case (γ = 1) and for three different Ra number. (a)–(c): instantaneous distribution of
the concentration fields at Ra= 8×103,16×103 and 5×104. (d): number of plumes computed in time (along the half-channel
height) using the present plume detection algorithm. (e): power spectra of the concentration C for the three different
Rayleigh-Darcy number analyzed here as a function of the physical wavenumber k∗= 2πn/L∗.

2. Plume statistics

Upon identification of a plume, we are able to compute their number, width and extension
(surface area). Plume statistics computed at different Ra and for the isotropic case (γ = 1) are
given in Fig. 9: in the left column (Figs. 9(a)–9(c)), we show contour maps of solute concentration
in the entire domain (whose size is here expressed in dimensional units, [m]) for Ra = 8 × 103

(Fig. 9(a)), Ra = 16 × 103 (Fig. 9(b)) and Ra = 5 × 104 (Fig. 9(c)). The values of H∗ and L∗ have
been chosen to mimick a realistic physical situations. Hence, H∗ ranges between 9 and 58 m
whereas L∗ = 45 m. The time evolution of the number of megaplumes (detected along the center-
line of the channel, z∗ = H∗/2, using the plume detection algorithm presented above) for the three
different cases is presented in Fig. 9(d). Increasing Ra has a twofold effect on megaplumes: it
decreases their number while increasing their persistence. This is clearly visible from the variability
of the number of megaplumes in time, which is highly fluctuating for Ra = 8 × 103, whereas it is
almost constant for Ra = 5 × 104. Note also that, since the physical domain is kept constant for
varying Ra (L∗x = 45.562 m), a reduction in the number of plumes (at large Ra) reflects into an
increase in the average plume diameter. Results, not shown here for brevity, indicate that the average
plume diameter is 1.5 m for Ra = 8 × 103, 2.4 m for Ra = 16 × 103, and 2.8 m for Ra = 5 × 104.
A more quantitative estimate of the number of megaplumes can be obtained by looking at the
power spectra of the concentration field computed along the centerline of the channel, as shown
in Fig. 9(e). The wavenumber (k∗max) at which the power spectrum has a maximum is linked to the
number of megaplumes in the cell. In particular, we found that k∗max = 2.15 m−1 for Ra = 8 × 103,
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FIG. 10. Horizontally averaged wavenumbers k obtained from our numerical simulations at different Rayleigh-Darcy
numbers Ra and different permeability ratios γ (symbols). Results are normalized by Rar and γs. An analytical scaling
with r = 0.48 and s =−0.40 (straight line) is presented for comparison purposes.

k∗max = 1.29 m−1 for Ra = 16 × 103 and k∗max = 1.10 m−1 for Ra = 5 × 104. From the wavenumber
definition k∗max = 2πn/L∗, we can therefore evaluate n, here identifying the number of megaplumes,
for the three different cases. We obtain n ≃ 15 for Ra = 8 × 103, n ≃ 9 for Ra = 16 × 103, and n ≃ 8
for Ra = 5 × 104, in agreement with the value of n inferred from the qualitative plume detection (see
Fig. 9(d)). From the knowledge of the concentration power spectrum C(k), we can compute, at each
time instant t j, the average horizontal wavenumber k j as

k j =


kC(k)dk
C(k)dk

. (16)

The instantaneous values of the wavenumber k j are then averaged also in time to give the dimen-
sionless average wavenumber k. We perform this calculation for both isotropic (γ = 1) and non-
isotropic permeability (γ < 1). From our numerical measurements (Fig. 10), we found

k = 0.342Ra0.48γ−0.40, (17)

which is in fair agreement with the predictions given for the isotropic case3 k = 0.48Ra0.4. The
slight discrepancy between the results could be possibly due to a difference in the cell dimension
(see the Appendix).

IV. RELATIONSHIP BETWEEN THE TWO-SIDED AND THE ONE-SIDED CELL

To analyze the physics of concentration-driven CO2 dissolution in geological reservoirs, the adop-
tion of the so-called one-sided cell is perhaps more indicated compared to the two-sided cell discussed
above. Differently from the two-sided cell, in the one-sided cell, convection occurs only from the upper
boundary whereas the lower boundary is an impenetrable and no-flux boundary. Details on the different
boundary conditions characterizing the two-sided and the one-sided cell are given in Fig. 11.

In the literature, the transient solute dynamics in the one-sided cell has been recently analyzed
experimentally27 and numerically12,13,28 for isotropic porous media. The characteristic dynamics
of the one-sided cell is the following. After injection of solute from the upper boundary, diffu-
sion dominates until fingers become strong enough to trigger vertical convective motions. Fingers
become stronger and stronger in time and merge into large and columnar plumes (megaplumes)
that extend vertically over the entire domain. Once megaplumes reach the bottom boundary, the
domain starts filling with dense solute. This is the final (and longer) stage of the entire process of
solute convection, and is usually called the “shutdown regime.” As already discussed for the case of
isotropic porous media,12,23 during the shutdown regime a precise connection between the two-sided
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FIG. 11. Sketch of the computational domain in the two-sided (left panel) and in the one-sided (right panel) cell. The
two-sided cell (left) has physical boundaries, characterized by an imposed value of the solute concentration, in the vertical
direction (upper and lower horizontal solid lines), whereas it has periodic boundaries in the horizontal direction (left and
right vertical dashed lines). The one-sided cell (right) is instead characterized by a zero-flux boundary condition at the lower
boundary (impenetrable and no-flux condition).

and the one-sided cell can be established. In the following, we will try to extend this link also in case
of anisotropic porous media.

The one-sided cell corresponds to one half of the two-sided cell. In particular, it is characterized
by a cell height and by a density difference both of which is one-half of the corresponding value of
the two-sided cell. As a consequence, indicating with Ra1 and Ra2 the Rayleigh-Darcy numbers of
the one-sided cell and of the two-sided cell respectively, we have Ra2 = 4Ra1.

We start from the theoretical box model proposed by Hewitt et al.12 and we try to extend it to
the case of anisotropic porous media. The solute flux in the one-sided cell is conveniently defined as

F(t) = 1
L

 L

0

∂C(x, t)
∂z

����z=1
dx, (18)

while the mean concentration at time t and at the vertical position z is

C(z, t) = 1
L

 L

0
C(z, t)dx. (19)

Following the work of Hewitt et al.,12 we assume the following: (i) far from the walls, the averaged
concentration profile is uniform over the domain height C(z, t) ≈ C(t) = ϑ(t); (ii) during the shut-
down regime, the fundamental flow structures are those that characterize the steady-state two-sided
system (protoplumes and megaplumes); and (iii) the Rayleigh-Darcy number in the one-sided
domain, defined as Ra = gH∗Kv∆ρ

∗/(µφD), depends on the actual density difference ∆ρ∗ existing
between the top of the domain and a generic point outside the boundary layer. Under the above
hypotheses, it is possible to define a time-dependent Rayleigh-Darcy number, Ra(t) = Ra0|ϑ(t)|,
where Ra0 is computed based on the initial density difference.

We consider the time-dependent three dimensional advection-diffusion equation

∂C
∂t
+ u · ∇C =

1
Ra0


γ
(
∂2C
∂x2 +

∂2C
∂ y2

)
+
∂2C
∂z2


(20)

and we integrate it over the whole domain. Imposing the boundary conditions

w = 0,
∂C
∂z
= 0 on z = 0, (21)

w = 0, C = 0 on z = 1 (22)

and using the Stokes theorem and definition (19), we obtain

∂

∂t

 1

0
C(z, t) dz =

1
Ra0

1
L

 L

0

∂C
∂z

����z=1
dx. (23)

Assuming that the averaged concentration profile is uniform over the vertical direction z, we have
C(z, t) ≈ ϑ(t). As a result, the left-hand side of Eq. (23) reduces to
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∂

∂t

 1

0
C(z, t) dz ≈ ∂

∂t

 1

0
ϑ(t) dz =

∂ϑ(t)
∂t

. (24)

Note that the same result can be obtained also considering two lateral impermeable walls (in the x
direction) instead of two periodic boundaries. According to the Nusselt number definition adopted
for the one-sided domain (see the Appendix), we finally obtain the evolution in time of the solute
concentration,

dϑ(t)
dt
=

Nu(t)
Ra0

|ϑ(t)|. (25)

To resolve Eq. (25) we need an estimate for Nu(t) in case of anisotropic porous media. This is
accomplished here using our previous predictions (correlation (15)) with the modified Rayleigh
number Ra = 4Ra0 (to switch from the one-sided to the two-sided cell).

By imposing the initial condition ϑ(t0 = 0) = −1, we obtain the time behaviour of the mean
concentration profile,

ϑ(t) = β

4Ra0γnα


1 −
(
1 +

β

4Ra0γnα

)
exp
(

β

Ra0
t
)−1

. (26)

Upon definition of ε = β/(4Ra0γ
nα), we have

ϑ(t) = ε

1 −

�
1 + ε

�
exp

�
4αγnεt

�−1
. (27)

In the limit of large Ra, ε → 0 and we finally get the following expression for the time behaviour of
the mean concentration profile and of the vertical flux as a function of the permeability ratio γ:

ϑ(γ, t) ≈ −1
1 + 4αγnt

, (28)

F(γ, t) ≈ 4αγnRa0
1 + 4αγnt

2 . (29)

Note that, for Ra = 104, the difference between the prediction given by Eq. (27) and by Eq. (28) is
always below 1% of the maximum value of ϑ(t), which makes the approximation ε → 0 reasonable
for solute convection in real-scale reservoirs.

The behaviour of F(γ, t) for the different values of γ considered in this study is shown in
Fig. 12(a). At the beginning, F(γ, t) is larger for smaller γ, indicating that the vertical flux of solute
increases for decreasing γ. At later stages, we observe a crossover between the different curves
occurring at t = t̃. By matching the value of F(γ, t) for two different values of γ (here indicated by
γ1 and γ2), we obtain the value of the crossover time t̃ = (γ1γ2)−n/2/4α, which falls in the range
t̃ = [30; 35] and is only slightly sensitive to the value of γ.

From the knowledge of the instantaneous solute flux F(γ, t) we can explicitly compute, for
a given γ, the total amount of solute F (γ, t) dissolved in the entire domain during the shutdown
regime,

F (γ, t) = 4αγnt
1 + 4αγnt

Ra0. (30)

In particular, we consider the time behaviour of the normalized difference (F (γ, t)−F (1, t))/(F (1, t))
between the solute dissolved for γ , 1 and that dissolved for γ = 1. Results, which are shown in
Fig. 12(b), indicate that during the initial transient, the quantity of solute dissolved for γ = 0.25 can
be 40% larger than that for γ = 1. This suggests that, for finite times, the amount of solute that can be
efficiently dissolved in real reservoirs (γ , 1) is considerably larger compared to the uniform perme-
ability case (γ = 1). As expected, in the long-term limit we have F (t → +∞) → Ra0, which means
that for extremely long times the amount of dissolved solute depends only on the available volume
(Ra0) but not on γ. Note however that this result is not in contrast with the previous observation that
for finite times (t∗ < 102 yr) γ has a strong impact on the amount of dissolved solute.
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FIG. 12. (a): time behaviour of the vertical solute flux (F(γ, t)/Ra0, see also Eq. (29)) computed for a one-sided domain for
different values of γ. (b): time behaviour of the normalized amount of solute (30) for different values of γ.

V. CONCLUSIONS AND FUTURE DEVELOPMENTS

Solute convection in porous media at high Rayleigh-Darcy number Ra is characterized by
complex macroscopic phenomena (viscous fingering, megaplumes) that are difficult to model and
to predict. Further complications arise when the porous medium is non-isotropic. This is the
case of realistic sedimentary rock reservoirs, which can be modelled as porous media with a
vertical-to-horizontal permeability ratio γ = Kv/Kh smaller than unity.

In this paper we focused exactly on the effect of γ (with γ < 1) on the solute convection
in a two-dimensional saturated porous medium. We started considering the case of the so-called
two-sided domain, in which convective transport occurs between a lighter layer (lower boundary)
and a heavier layer (upper boundary). We performed simulations for a range of Rayleigh-Darcy
numbers Ra ranging from 50 to 5 × 104. We have characterized the flow dynamics in terms
of protoplumes (small plumes emerging from the boundary) and megaplumes (generated by
the coalescence of protoplumes). Flow field statistics obtained for different Ra and different
γ have been compared to discuss the role of the different parameters on the overall transport
efficiency of the solute. We have shown that, for γ < 1, the vertical convective flux of solute
increases significantly (up to 40%, for the range of γ examined here). We have also linked this
phenomenon to the modification of the flow topology: increasing Kh (i.e., decreasing γ) increases
the horizontal velocity gradient of the saturated fluid and in turn enhances the solute vertical
transport.

We finally used our results on the two-sided configuration to introduce and discuss the
solute dynamics in the so-called one-sided configuration (where convection occurs only away
from the upper boundary). This configuration is perhaps more related to the physics of the
concentration driven CO2 dissolution process. We found that, for realistic CO2 dumping times
(t∗ < 102 yr), the amount of CO2 that can be efficiently dissolved in sedimentary rock reservoirs
characterized by γ < 1 is larger than that dissolved in case of γ = 1 (isotropic porous medium).
This result opens new intriguing perspectives on the efficiency of long-term geological CO2

storage.
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A. Implication for CO2 sequestration

In the following, we will try to put the results presented above in the context of CO2 seques-
tration in real reservoirs. We consider the case of Sleipner site, in the North Sea. We assume23,29 a
porous medium with uniform porosity φ = 0.3, vertical permeability Kv = 3 × 10−12 m2 and a layer
depth H∗ = 20 m. The thermophysical properties of the fluid are those of CO2 + brine at a depth
of 1 km (typical reservoir location). In particular, Pau et al.30 suggested a top-to-bottom density
difference ∆ρ∗ = 10.45 kg/m3, viscosity µ = 595 × 10−6 Pa × s and diffusivity D = 2 × 10−9 m2/s.
The resulting Rayleigh-Darcy number is Ra ≈ 17 × 103. The free-fall buoyancy velocity and the
convective time scale are W ∗ ≈ 16.3 m/yr and t̂ = φH∗/W ∗ ≈ 0.37 yr, respectively.

From Eq. (29), we derive the dimensional value of the convective flux F∗, in terms of the
physical time t∗ and anisotropic permeability ratio γ,

F∗(γ, t∗) = 4αγnt̂

t̂ + 4αγnt∗

2 H∗φC∗s . (31)

The total amount of CO2 dissolved during the shutdown regime, see Eq. (30), is

F ∗(γ, t∗) = 4αγnt∗

t̂ + 4αγnt∗
H∗φC∗s . (32)

In Fig. 13 we report, for the present example, the convective fluxes and the dissolved CO2 for
the two extreme cases of γ = 1 (isotropic medium) and γ = 0.25. Results clearly show that, up to
the critical timet∗ ≈ 11.2 yr, the convective flux of CO2 (Fig. 13(a)) is definitely larger for γ = 0.25
than for γ = 1 (isotropic case). This reflects into a larger amount of dissolved CO2 for t∗ < 103

(Fig. 13(b)). Alternatively, we might say that, for a given amount of CO2 per unit area F ∗ to be
injected beneath the earth surface, the dissolution time for safety CO2 storage is definitely shorter
when γ < 1. To put some numbers, if F ∗ = 150 kg/m2, the dissolution times are t∗ = 10 yr for
γ = 0.25 and t∗ = 15 yr for γ = 1. Note also that, for extremely long times (t∗ → ∞), the amount
of dissolved CO2, is independent of γ, and is roughly 3 × 102 kg/m2. This represents indeed a
theoretical estimate of the overall storage capability of the reservoir.

FIG. 13. CO2 convective flux (a) and total CO2 dissolved (b) in time. Dashed line represents the maximum amount of CO2
dissoluble per unit area.
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APPENDIX: COMPUTATIONAL DETAILS

In this section, we report some details on the numerical methodology employed in the present
study.

1. Details on the numerical approach

We used a pseudo-spectral method, which transforms field variables in the wavenumber space
through a Discrete Fourier Transform in the horizontal direction and a Chebyshev expansion in the
wall-normal direction.31 Equations (10)-(12) are rewritten in vectorial form as

u = −∇P + kC, (A1)
∇ · u = 0, (A2)

DC
Dt
=

1
Ra

(
γ∇2

HC +
∂2C
∂z2

)
, (A3)

with k the unit vector in the vertical direction and ∇2
H =

∂2

∂x2 +
∂2

∂y2 . Taking twice the curl of (A1)
and using (A2), it is possible to compute the wall-normal velocity ŵ by solving a second order
Helmholtz equation in the wavenumber space (kx, ky),


∂2

∂z2 −
�
k2
x + k2

y

�
ŵ = −

�
k2
x + k2

y

�
C. (A4)

Once ŵ is available, û and v̂ can be determined as

û = i
kx

k2
x + k2

y

∂ŵ

∂z
, (A5)

v̂ = i
ky

k2
x + k2

y

∂ŵ

∂z
. (A6)

Equation (A3) is then discretized in time using an Adams-Bashforth explicit method for the
non-linear term S = u · ∇C and a Crank-Nicholson implicit method for the diffusive term,

Ĉn+1 − Ĉn

∆t
=

3
2

Ŝn − 1
2

Ŝn−1 +
1

2Ra

(
γ∇2

H +
∂2

∂z2

)
(Ĉn+1 − Ĉn). (A7)

The computational time step ∆t has been chosen to fulfill the CFL condition and ranges between
∆t = 2 × 10−3 (Ra = 2 × 103 and γ = 1) and ∆t = 5 × 10−5 (Ra = 5 × 104 and γ = 0.25).

Transforming (A7) in the wavenumber space, the concentration Ĉ can be obtained by solving
the second order Helmholtz equation,(

∂2

∂z2 −
1 + γδ(k2

x + k2
y)

δ

)
Ĉn+1 = − Ĥ

δ
, (A8)

where δ = ∆t
2Ra and

Ĥ = δ
(
∂2

∂z2 −
1 + γδ(k2

x + k2
y)

δ

)
Ĉn + δRa

�
3Ŝn − Ŝn−1�. (A9)

The initial condition of the present simulations consists of a perturbed linear concentration
profile,

C0(z) = C(0) + �C(1) − C(0)�z + ξ (A10)
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where C(0) and C(1) are the values of the concentration at the bottom and top walls whereas ξ is a
random number with amplitude |ξ | < 2 × 10−3|C(1) − C(0)|.

Following the work of Wen et al.,32 and considering that the horizontal scales become thinner
in high-Ra convection in porous media, we ran simulations on a domain whose aspect ratio
Γ = L/H was reduced from 2π to π/4 for increasing Ra. The resulting domain was discretized in
space using up to 8192 × 1025 nodes in the x and z directions for Ra = 5 × 104. We finally checked
that the steady state solution was independent of the spatial resolution (grid independence) and of
the aspect ratio Γ.

2. Details on the Nusselt number calculation

The Nusselt number Nu, which represents the non-dimensional flux of heat or solute through
the boundaries of a two-sided domain, is computed as

Nu(t) = 1
2L

 L

0

(
∂C(x, t)

∂z
����z=0
+
∂C(x, t)

∂z
����z=1

)
dx. (A11)

Note that the Nusselt number, averaged in space over the horizontal direction x, is a function of
time. However, after an initial transient ti, the simulation reaches a steady state condition (whose
final instant is t f ), where the Nusselt number fluctuates around an asymptotic value ⟨Nu⟩ evaluated
as

⟨Nu⟩ = 1
t f − ti

 t f

ti

Nu(t) dt . (A12)

Throughout the paper, ⟨Nu⟩ is indicated as Nu for ease of reading. Statistics are averaged over a time
window of 150 × t̂, where t̂ is the convective time scale t̂ = φH∗/W ∗ (with φ the porosity, H∗ the
domain height and W ∗ the freefall buoyancy velocity). Note that for the one-sided configuration, we
defined the time-dependent Nusselt number Nu(t) following Hewitt et al.12 as

Nu(t) = F(t)
|ϑ(t)| , (A13)

where F(t) is the solute flux and ϑ(t) is the concentration difference.
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