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Abstract – We report on a numerical experiment performed to analyze fluctuations of the entropy
production in turbulent thermal convection, a physical configuration taken here as a prototype
of an out-of-equilibrium dissipative system. We estimate the entropy production from instan-
taneous measurements of the local temperature and velocity fields sampled along the trajectory
of a large number of pointwise Lagrangian tracers. The entropy production is characterized by
large fluctuations and becomes often negative. This represents a sort of “finite-time” violation of
the second principle of thermodynamics, since the direction of the energy flux is opposite to that
prescribed by the external gradient. We clearly show that the entropy production normalized by
a suitable small-scale energy verifies the Fluctuation Relation (FR), even though the system is
time-irreversible.

Copyright c⃝ EPLA, 2016

Introduction. – Fluctuations of physical systems
close to equilibrium are well described by the classical
linear-response theory [1,2] that leads to the fluctuation-
dissipation relation. The current knowledge of the dy-
namics of systems far away from equilibrium is instead
much more limited, because of the lack of unifying prin-
ciples. The introduction of the so-called Fluctuation Re-
lation (FR) [3–6] has therefore represented a remarkable
result in this area of physics. The FR for nonequilibrium
fluctuations reduces to the Green-Kubo and Onsager rela-
tions close to equilibrium [7–10] and represents one of the
few exact results for systems kept far from equilibrium.

We recall that the FR concerns the symmetry of a rep-
resentative observable, which is typically linked to the
work done on the system, and, through dissipation, to
irreversibility. For a Markov process, whose dynamics is
described by ẋ(t) = u(x(t), t), the representative observ-
able can be written as [11]

βWt =
1

t
log

Π({x(s)}t
0)

Π({Ix(s)}t
0)

, (1)

where {x(s)}t
0 and {Ix(s)}t

0 are the direct and the time-
reversed trajectories in the time interval [0, t], respectively,

while Π indicates probability and β is a suitable energy
scale of the system. When FR applies,

log
Π(βWt = p)

Π(βWt = −p)
= tp, (2)

and Wt is usually called entropy production rate. Despite
these results, a general response theory for nonequilib-
rium systems is still to be produced. This suggests that
new analyses are required to investigate the behavior of
nonequilibrium fluctuations, in particular for macroscopic
chaotic systems [12,13].

Turbulence represents the archetype of a macroscopic
dynamical system characterized by a large number of
degrees of freedom and by strong fluctuations. More-
over, for its intrinsic chaotic nature, turbulence appears
as a paradigmatic case to which FR applies, cum grano
salis [14]. If positively verified, this would strengthen
the link between turbulence and nonequilibrium statistical
mechanics. In particular, this would justify the hypothe-
sis that a general response theory can be applied also to
deterministic time-irreversible systems, at least with the
purpose of computing their statistical properties. Given
the theoretical and practical importance of these issues,
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FR in turbulent flows has been already investigated in the
past [15–22]. However, a satisfying statistical description
of entropy fluctuations in turbulence is still to be obtained,
essentially because of the technical problems associated to
the experimental measurement of fluctuations in chaotic
systems [23], and also for the difficulty in performing accu-
rate numerical simulations. Note that the choice of a rep-
resentative observable is the central issue while discussing
FR in macroscopic systems [13].

In this work we focus on turbulent Rayleigh-Bénard con-
vection to address the following issues: i) the choice of
a representative observable to compute entropy fluctua-
tions; ii) the presence of large deviations of this quantity
beyond the linear regime; iii) the applicability of the FR
to turbulent thermal convection. To do this, we run Di-
rect Numerical Simulations (DNS) of turbulent Rayleigh-
Bénard convection inside a vertically confined fluid layer
and we track the dynamics of pointwise tracers, which we
use here as probes to measure the local thermodynamic
quantities of the system. The fundamental idea of our
approach is that turbulence shares similarities with the
microscopic nature of heat flows, and turbulence fluctua-
tions correspond to thermal fluctuations [24]. With this in
mind, we have chosen a configuration similar to that stud-
ied in stochastic thermodynamics [25], which consists of a
system kept in contact with two thermostats at different
temperatures and characterized by a fluctuating energy
flow. A key ingredient in our study is the use of a La-
grangian point of view, which is specifically suited to study
the global transport properties of the flow [26]. We will
show that entropy production can be evaluated by looking
at the work done by buoyancy on moving fluid particles.
Provided that the correlations of the measured quantities
decay fast enough, we show that the finite-time entropy
production exhibits large fluctuations (being often nega-
tive) and fulfills FR. Our results complement recent works
on granular matter, a simpler but complete model used to
describe macroscopic irreversible systems. For granular
matter, theory and numerical simulations agree in verify-
ing FR, but only if the correct fluctuating entropy produc-
tion and temperature are defined [27–29].

Physical problem and modeling. – We consider a
turbulent Rayleigh-Bénard convection, in which a hori-
zontal fluid layer is heated from below. Horizontal and
wall-normal coordinates are indicated by x1, x2 and x3, re-
spectively. Using the Boussinesq approximation, the sys-
tem is described by the following dimensionless balance
equations:

∂ui

∂xi
= 0, (3)

∂ui

∂t
+ uj

∂ui

∂xj
= −

∂P

∂xi
+ 4

√

Pr

Ra

∂2ui

∂x2
j

− δi,3θ, (4)

∂θ

∂t
+ uj

∂θ

∂xj
= +

4√
PrRa

∂2θ

∂x2
j

, (5)
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Fig. 1: (Colour online) (a) Two-dimensional contour maps of
the temperature distribution computed near the bottom wall
and on two vertical slices for Rayleigh-Bénard convection at
Ra = 109. The domain has dimensions Lx1

× Lx2
× Lx3

=
2πh × 2πh × 2h and is discretized using 512 × 512 × 513 grid
nodes. (b) Example of tracers trajectories for Ra = 109 colored
by the local velocity magnitude.

where ui is the i-th component of the velocity vector, P
is the pressure, θ = (T − T0)/∆T is the dimensionless
temperature, ∆T = TH − TC is the imposed tempera-
ture difference between the hot bottom wall (TH) and top
cold wall (TC), whereas δ1,3θ is the driving buoyancy force
(acting in the vertical direction x3 only). The reference
velocity is the free-fall velocity uref = (gα0h∆T/2)1/2,
with h = 0.15m the half domain height and g the ac-
celeration due to gravity. The fluid kinematic viscosity
ν0, thermal diffusivity κ0 and thermal expansion coeffi-
cient α0 are evaluated at the reference fluid temperature
T0 = (TH +TC)/2 ≃ 29 ◦C. The Prandtl and the Rayleigh
numbers in eqs. (4), (5) are defined as Pr = ν0/k0 and
Ra = (gα0∆T (2h)3)/(ν0k0). The size of the domain is
Lx1

×Lx2
×Lx3

= 2πh×2πh×2h. Periodicity is imposed
on velocity and temperature along the horizontal direc-
tions x1 and x2, whereas no slip conditions are enforced
for velocity at the top and bottom walls. In our simula-
tions, we keep the Prandtl number Pr = 4 and we vary the
Rayleigh number between Ra = 107 and Ra = 109. An
example of the temperature distribution inside our con-
vection cell is given in fig. 1(a). To measure the local
values of the field variables, we make use of a Lagrangian
approach. The dynamics of Np = 1.28 · 105 Lagrangian
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Table 1: Summary of the simulations performed with corre-
sponding details of the computation grids. Nx1

, Nx2
and Nx3

correspond to the number of nodes along x1, x2 and x3, whereas
∆x3,max

h and
∆x3,min

h correspond to the maximum and mini-
mum grid spacings of the (nonuniform) grid along x3. The
value of the Kolmogorov space/time scales (ηK , τK) is also
given.

Simulations

S1 S2 S3

Ra 107 108 109

Nx1
128 256 512

Nx2
128 256 512

Nx3
129 257 513

∆x1

h 4.9 · 10−2 2.4 · 10−2 1.2 · 10−2

∆x2

h 4.9 · 10−2 2.4 · 10−2 1.2 · 10−2

∆x3,max

h 2.4 · 10−2 1.2 · 10−2 6.1 · 10−3

∆x3,min

h 3 · 10−4 7.5 · 10−5 1.8 · 10−5

ηK 1.1 · 10−3 5.3 · 10−4 2.5 · 10−4

τK 11 2.4 0.5

tracers is computed as

ẋp = u (xp(t), t) θp = θ (xp(t), t) , (6)

with xp = (xp,1, xp,2, xp,3) the tracers position, ẋp =
(up,1, up,2, up,3) their velocity and θp their temperature.
A visualization of different particle trajectories is shown
in fig. 1(b), highlighting also the chaotic nature of the flow.

Equations (4), (5) are discretized using a pseudo-
spectral method based on transforming the field variables
into wave number space, through Fourier representations
for the periodic (homogeneous) directions x1 and x2,
and Chebychev representation for the wall-normal (non-
homogeneous) direction x3. Time advancement is done by
a combined Crank-Nicolson scheme for the viscous terms,
and an explicit Adams-Bashforth scheme for the nonlin-
ear convective terms. Further details on the numerical
method can be found in [30–33]. For the Lagrangian track-
ing, we have employed 6th-order Lagrangian polynomials
to interpolate the fluid velocity and temperature at the
tracers position. A 4th-order Runge-Kutta scheme is used
for time advancement of the tracers equations (6) [34]. A
brief validation of the method is provided in the appendix.
An overview of the simulations performed with the corre-
sponding details of the computational grid and the value
of the Kolmogorov space/time scales is given in table 1.

Results. – Entropy production for a Markov process
is usually defined based on the dynamical probability, a
quantity that is generally not accessible in complex sys-
tems. To find a representative observable for the system,
we start from the balance equation for the turbulent ki-
netic energy Et = 1/2⟨u′

iu
′
i⟩, where brackets ⟨ ⟩ indicate

statistical average and u′
i = ui−⟨ui⟩ velocity fluctuations.

For the present flow configuration, ⟨ui⟩ = 0. Since the

system is homogeneous along the x1 and x2 directions, we
obtain

∂Et

∂t
+

∂

∂x3
(⟨Etu

′
3⟩ + ⟨u′

3p
′⟩) = ⟨u′

3θ
′⟩ − ⟨ϵ⟩, (7)

where ⟨ϵ⟩ = 4
√

Pr
Ra

(

∂2⟨Et⟩
∂x2

3

+
〈

∂u′

i

∂xj

∂u′

i

∂xj

〉)

is the turbulent

dissipation and θ′ = θ − ⟨θ⟩ is the temperature fluctu-
ation. The volume-averaged steady-state solution gives
⟨u′

3θ
′⟩ = ⟨ϵ⟩. This provides also an estimate of the entropy

production, which from thermodynamics is ⟨ϵ⟩/⟨T ⟩ (with
⟨T ⟩ the average absolute temperature of the system). We
specifically focus on the term W = ρ0gα0θ′pu

′
3,p measured

along the path of the Lagrangian tracers (hence we have
u′

3,p and θ′p), which represents the power spent by buoy-
ancy to displace a fluid parcel. Note that W quantifies the
vertical flux of energy and is therefore also linked to the
vertical Nusselt number [33,35]. Warm fluctuations θ′p > 0
produce a positive energy flux when associated to posi-
tive vertical velocities up,3 > 0, whereas cold fluctuations
θ′p < 0 produce a positive energy flux when associated to
negative vertical velocity up,3 < 0.

We now consider the time-averaged (but fluctuating)
expression of the work (per unit volume and time) done
by buoyancy on the system,

Wτ =
1

τ

∫ τ

0
Fext(t) · u(t)dt =

1

τ

∫ τ

0
ρ0gα0θ

′
pu

′
p,3dt, (8)

where Fext is the external force field due to gravity. This
observable is similar to that proposed to analyze the local
FR [15]. By contrast, previous experimental studies on
macroscopic chaotic systems focused on the behavior of
the injected power [16,18,19], which is a measurable quan-
tity that however was found to depart from the predictions
given by the FR [27,36]. Although work and heat fluctu-
ations are generally different in stochastic systems [37],
we believe that Wτ can give a good estimate of entropy
production in turbulent convection.

In the following, we assume that time averages are
equivalent to ensemble averages (ergodicity). This as-
sumption is justified if the auto-correlation of W , RW =
⟨W (t)W (t + τ)⟩/⟨W 2⟩, computed after a statistically
steady state is reached, exhibits a fast decrease in
time [38]. To verify this, we explicitly compute RW (τ)
for each Ra as a function of the time lag τ . Results are
shown in fig. 2. We observe that RW is characterized by
an exponential decay exp(−t/Γ), whose decay rate 1/Γ
increases with increasing Ra. As a consequence, velocity
and temperature fluctuations decorrelate faster for large
Ra, due to the larger fluctuations observed for increas-
ing Ra. From the behavior of the correlation function
RW , we are able to compute the integral correlation time
τC =

∫ ∞
0 RW (τ)dτ . Upon rescaling of the time lag τ by

τC , the correlation functions RW computed at different Ra
collapse (inset of fig. 2). For τ/τC > 1 the value of the cor-
relation is already RW < 0.2, indicating that from τ ≃ τC

50011-p3



Francesco Zonta and Sergio Chibbaro

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

R
W

(τ
)

τ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

R
W

(τ
)

τ/τCRa

Fig. 2: Lagrangian correlation RW as a function of the time
lag τ for the three different Rayleigh numbers. The collapse
of the correlation function upon rescaling of the time lag τ by
the integral time scale τC is explicitly shown in the inset. Note
that τC = 100 s for Ra = 107, τC = 25 s for Ra = 108 and
τC = 7 s for Ra = 109.
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Fig. 3: (Colour online) Time-averaged energy spectra of the
turbulent kinetic energy, computed at the center of the channel
(on the central plane explicitly shown in the inset) to avoid
anisotropy effects due to the nonhomogeneity along the vertical
direction. The representative energy scale of the system β−1 =
(kBT )turb = 1/2ρ

R

k>kR
E(k)dk, computed assuming kRη = 1,

gives β = 0.49 for Ra = 107, β = 0.33 for Ra = 108 and
β = 0.3 for Ra = 109.

the signal is only barely reminiscent of the initial condi-
tions. This means that τC is a representative time scale
of the system and suggests that FR can be conveniently
tested for τ/τC > 1.

As already discussed, one of the crucial aspects to com-
pute the FR is the choice of the representative energy scale
(β) of the system. This energy scale cannot be the thermal
energy kBT [22], with kB the Boltzmann constant and T
the absolute temperature. The main reason is that en-
tropy fluctuations in turbulence are determined by small
scale mixing rather than by molecular agitation. Therefore
an effective temperature must be introduced, as success-
fully shown for other systems [27,39]. In turbulent flows,
following the Kolmogorov cascade picture, we study the
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Fig. 4: (Colour online) Probability density function Π of the
normalized energy flux p = Wτ/⟨Wτ ⟩ for Ra = 109 and for dif-
ferent values of the averaging time window τ/τC . The behavior
of a Gaussian distribution is explicitly indicated by the solid
line. Results from simulations at Ra = 107 and Ra = 108 are
not shown here because they are qualitatively similar to those
at Ra = 109 and do not add much to the discussion.
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Fig. 5: Behavior of (β⟨Wτ ⟩)
−1τ−1 log (Π(p)/Π(−p)) as a func-

tion of p for 1 < τ/τC < 30, i.e. when the probability density
function is not Gaussian. Results are shown for each value of
the Rayleigh number Ra (as indicated by the arrow). The solid
line represents the theoretical prediction given by the FR, a lin-
ear function with slope equal to unity. In the inset, the collapse
of the rescaled probability distributions of Wτ at large times
onto the large-deviation function is shown (for 5 < τ < 25).

nature of entropy fluctuations assuming that β−1 is the
energy (per unit volume) of the dissipative scales [5,40,41]
β−1 = (kBT )turb = 1/2ρ

∫

k>kR
E(k)dk, with kR the wave

number characterizing dissipation (i.e. kRη ≃ 1, with η
the Kolmogorov length scale). Following this approach,
the value of β is obtained directly from the turbulent
kinetic-energy spectrum E(k) (with dimensions m2/s2),
as shown in fig. 3.

Starting from the Lagrangian measurements of W , we
compute the probability density function Π of the normal-
ized flux p = Wτ

⟨Wτ ⟩
, for different values of τ , as shown in

fig. 4. For τ/τC = 0, Π(p) is highly asymmetric, with the
most probable value occurring for p = 0 and with pos-
itive fluctuations being larger than negative ones. The
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asymmetry of Π(p) persists also for increasing τ/τC and
disappears only when the average is done on a large time
window (τ/τC ≥ 40). In particular, for τ/τC ≃ 40 the
distribution peaks around p ≃ 1 and recovers an almost
Gaussian distribution (explicitely shown by the solid line
in fig. 4). Note that at this stage (τ/τC ≥ 40), the
probability of negative events becomes essentially zero.
Altogether these observations suggest that, although the
imposed mean temperature difference between the walls
induces a net positive vertical energy flux (i.e. ⟨W ⟩ > 0),
W can often be negative. The occurrence of countegra-
dient fluxes of global transport properties (such as the
Nusselt number) is an extremely important phenomenon
that has been also observed in other situations [42]. From
a physical point of view, small positive and negative val-
ues of W are produced by turbulence, which is uncorre-
lated with the temperature field. These small positive
and negative values of W balance each others and do not
contribute to the average heat transport [22]. Only large
velocity and temperature fluctuations produced by ther-
mal plumes (rising hot plumes and falling cold plumes) are
correlated and contribute to the positive mean heat flux.

Based on these observations, it is reasonable to expect
that the fluctuations of p are governed by a large deviation
law Π(p) ∼ eτζ(p), with ζ concave. Then, from the behav-
ior of Π(p), we measure the quantity

ζ(p) − ζ(−p) = σ(p) =
1

τ
log

Π(p)

Π(−p)
(9)

for different averaging time τ/τC taken in the range 1 <
τ/τC < 30. The resulting behavior, given in fig. 5, nicely
shows that σ(p) is a linear function of p,

σ(p) = γp. (10)

In particular, we observe that the slope γ of the curve
increases with increasing Ra and tends (for Ra = 109)
to γ = β⟨Wτ ⟩. This indicates that the FR introduced in
eq. (2) is verified at large times, within numerical and sta-
tistical errors. We finally show (inset of fig. 5) the collapse
of ζ(p) ∼ log Π(Wτ )/τ onto the large-deviation function
for 5 < τ < 25. The Cramér function ζ(p), rescaled using
its standard deviation στ and its slope Cτ as suggested
by [43], collapses for the different values of the averaging
time τ shown here (for 5 < τ < 25).

Conclusion. – In this letter, we have analyzed the
behavior of entropy fluctuations in turbulent thermal con-
vection, taken here as a paradigmatic case of a complex
out-of-equilibrium system. We have performed Direct Nu-
merical Simulations of a turbulent Rayleigh-Bénard flow
inside a vertically confined fluid layer and we have fol-
lowed the dynamics of pointwise Lagrangian tracers to
measure the local quantities of the flow. We have shown
that entropy production can be evaluated by looking at the
work done by buoyancy on fluid particles, Wτ ∝ θ′pu

′
3,p.

We have found that Wτ is often negative, and is char-
acterized by fluctuations that follow the FR beyond the
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Fig. 6: Grid convergence analysis: wall-normal behavior of the
root mean square ⟨θ′2⟩1/2 (panel (a)) and of the skewness factor
⟨θ′3⟩/⟨θ′2⟩1/2 (panel (b)) of temperature fluctuations. Results
are obtained from simulations at Rayleigh number Ra = 107

and using three different grids : grid ∆1 has 64×64×65 nodes;
grid ∆2 has 128×128×129 nodes; grid ∆3 has 256×256×257
nodes in the streamwise (x1), spanwise (x2) and wall-normal
(x3) direction, respectively.

linear regime, provided that a representative effective
temperature is employed. Here we defined the effective
temperature as the kinetic energy of the small scales,
which can be taken as a sort of temperature. However,
this is a crucial point that deserves further investigation,
since other physical quantities (for instance the energy dis-
sipation rate ϵ) can be used for this scope as well [44].

Present results shed new light on turbulence, allowing
an a priori estimate of the behavior of fluctuations of en-
ergy flux or entropy production and giving access to the
Cramér function. New simulations in different configura-
tions and at higher Reynolds/Rayleigh numbers are fore-
seen to assess the robustness of present results.
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Appendix

For validation purposes, in fig. 6 we show the wall-
normal behavior (as a function of x3/h) of the root
mean square ⟨θ′2⟩1/2 (fig. 6(a)) and of the skewness fac-
tor ⟨θ′3⟩/⟨θ′2⟩1/2 (fig. 6(b)) of temperature fluctuations
for Ra = 107. Results are compared using three differ-
ent grid resolutions ∆1 (64 × 64 × 65 nodes), ∆2 (128 ×
128 × 129 nodes) and ∆3 (256 × 256 × 257 nodes). Note
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that the computational grids have a nonuniform spacing
(with near-wall refinement) along the wall-normal coordi-
nate x3, due to the adoption of Chebychev polynomials
(Tn3

(x3) = cos(n3 cos−1(x3/h)) is the Chebychev polyno-
mial of order n3 along x3). Results in fig. 6(a), (b) indi-
cate that the computational grid ∆2 is accurate enough to
properly resolve all the flow scales at Ra = 107, and fur-
ther grid refinement is not required (the difference with a
finer grid, ∆3, is always below 3% for both second- and
third-order moments). Increasing Ra, temperature and
velocity flow structures become smaller and the computa-
tional grid must be refined accordingly (see table 1). The
grid resolutions employed here are consistent with those
found in the literature [45].
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[18] Falcon E., Aumàıtre S., Falcón C., Laroche C. and
Fauve S., Phys. Rev. Lett., 100 (2008) 064503.

[19] Cadot O., Boudaoud A. and Touzé C., Eur. Phys. J.
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