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a b s t r a c t

Dispersion of large deformable droplets in turbulent channel flow is investigated: the fluids are considered
of same density and viscosity for a broad range of plausible values of surface tension. Droplets much
larger than the Kolmogorov length scale are released in a channel flow; the turbulent flow is computed
with pseudo-spectral Direct Numerical Simulations (DNS), while phase interactions are described with
a Phase Field Model (PFM). It is shown that droplets segregation toward the center of the channel is
promoted by deformability in particular, for the considered Weber numbers (ratio between inertia and
surface tension), droplets do not deposit on the walls. The turbulent flow is modified by the presence of
the droplets: for small values of We the wall drag is increased with respect to the single phase flow. The
wall drag enhancement reduces increasingWe and its time evolution depends on the droplets coalescence
and breakup rates.

© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

Two-phase flows where large deformable droplets are dis-
persed in turbulent wall bounded flows are encountered in many
industrial applications; the turbulent water–oil emulsions ob-
tained from the water lift of the crude oil are an important exam-
ple of these flows. In these two-phase flows, the dispersed phase
is subjected to complex phenomena like deformations, breakups
or coalescence; moreover the presence of a dispersed phase can
heavily affect the motion of the carrier phase due to the large
relative velocities at the droplets interface. In the simplest con-
figuration, the fluid system is constituted by two immiscible and
incompressible pure components whose interfaces are endowed
by surface tension; although being simplified, the physical system
is still dominated by complex phenomena: droplets turbulent dis-
persion, droplet–droplet interactions andwall-dragmodifications.
Objective of this work is to investigate the dispersion of a swarm of
neutrally buoyant droplets in a turbulent channel flow at various
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values of the surface tension (here represented by theWeber num-
ber), focusing on the droplets segregation and on the wall-drag
modifications. In order to further simplify the problem and reduce
the number of experiments necessary to completely describe the
actual physical system, droplets and continuous phase are consid-
ered as density and viscosity matched. In view of this strong sim-
plification, the results of this work can be considered as the limit
case of heavy droplets where inertia effects are dominant. Droplets
are large compared to the smallest turbulent scale and they can de-
form, break and coalesce. The investigation is performed through
the Phase Field Model (PFM) [1–4], a robust and accurate numeri-
cal framework tailored for the description of turbulent multiphase
flows that has shown promising capabilities in the analysis of de-
formable breaking and coalescing fluid–fluid interfaces [5–7]. In
particular the PFM can be easily extended to cases of strong viscos-
ity ratios [5], while the description of density mismatch is possible
adopting a density based formulation of the model.

The problem of wall-drag modification produced by large
droplets in turbulent wall-bounded flow has been tackled by the
authors in a previous work [8] where the average effect of the
droplets on the wall drag has been analyzed and correlated to the
vorticity fluctuations. By contrast this work focuses on the time
evolution of the wall-drag modifications and their correlation to
the droplets dispersion, coalescence and breakup. To the authors’
knowledge, this work represents one of the first computational
efforts toward the study of the collective dynamics of large de-
formable droplets in turbulent wall-bounded flows. While many
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Fig. 1. Droplets evolution in channel flow for two different Weber numbers (upper and lower panel row). Streamwise velocity u is rendered on xy, xz and yz slices.
authors focused on the dispersion of point-wise particles in tur-
bulent flows and their effects on the wall drag, only few exam-
ples of finite size droplets or bubbles dispersion in turbulence can
be found. Some authors focused on the preferential segregation
of finite size rigid particles in laminar flows [9,10], while simi-
lar phenomena have been observed and studied experimentally
in moderate turbulence [11]. Very few investigations of the dis-
persion of large deformable droplets and bubbles in turbulence
can be found: the segregation and modifications of turbulence
regeneration mechanisms produced by the dispersion of large
bubbles in wall-bounded turbulence have been approached ne-
glecting the simulation of relevant effects such as breakup and coa-
lescence [12]. By contrast, other works focused on the coalescence
and fragmentation of interfaces in isotropic turbulence [13,14].

2. Physical problem and modeling

A swarm of nd,0 droplets of initial diameter d0 has been released
in a fully developed turbulent channel flow; the two fluid phases
(dispersed and continuous phase) have the same density ρf =

ρd = ρ and the same kinematic viscosity νf = νd = ν
(subscripts f and d stand for continuous phase flow and dispersed
phase, respectively). The two fluids are considered immiscible,
incompressible and Newtonian, moreover their interface is
endowed with surface tension. In spite of being largely simplified,
the resulting physical system retains the most important features
of the problem: the turbulent motion and the momentum transfer
between the phases are described in great detail. The problem
is described by the following dimensionless governing equations
solved on a channel of size is 4πH × 2πH × 2H in streamwise (x),
spanwise (y) and wall-normal (z) directions, respectively (Fig. 1).

∇ · u = 0, (1)
∂u
∂t

= −u · ∇u − ∇p − ∇Π +
1
Reτ

∇
2u +

3
√
8

1
We · Ch

µ∇φ, (2)
∂φ

∂t
= −u · ∇φ +

1
Pe

∇
2µ, (3)

F (φ) = f (φ) − Ch2
|∇φ|

2
=

1
4

(φ − 1)2 (φ + 1)2 − Ch2
|∇φ|

2,(4)

µ =
δF

δφ
= φ3

− φ − Ch2
∇

2φ. (5)

Eqs. (1)–(2) are the incompressible Navier–Stokes equations,
where u is the incompressible velocity field and p and Π are the
fluctuating and mean components of the pressure field, respec-
tively. Eq. (3) is the phase field conservation equation, known as
Cahn–Hilliard equation; in the PFM framework the two compo-
nents are described as amixture through a continuous scalar order
parameter φ(x). The order parameter assumes constant values φ+

and φ− in the bulk fluid regions and it is characterized by smooth
variations across the fluid–fluid interface. The thermodynamic
chemical potential,µ, describes the variation of free energy (F (φ))
resulting from a small local change of composition of the mixture;
the free energyF (φ), (4), is the sumof a double-well potential f (φ)
(that keeps in account the phobic behavior) and a non-local term
(Ch2

|∇φ|
2) that accounts for the non zero surface tension. Due to

surface tension, Eqs. (2) and (3) are coupled via the capillary force
term, 3

√
8

1
We·Chµ∇φ, that describes the momentum exchanged be-

tween the two fluids at the interface. Eqs. (1)–(5) are rewritten in
a non-dimensional formulation using the scaling quantities Uτ , H
and φ+, where Uτ =

√
τw/ρ is the shear velocity based on the

wall shear stress τw and the fluid density ρ. The non-dimensional
groups that appear in Eqs. (1)–(4) are defined as follows:

Reτ =
UτH
ν

, Pe =
UτH
M

, We =
ρU2

τ H
σ

, Ch =
ξ

H
,

(6)

where M is the fluid mobility inside the interfacial layer of thick-
ness ξ and surface tension σ . The shear Reynolds number (Reτ ) is
the ratio between inertial forces and viscous forces and theWeber
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number (We) is the ratio between inertial forces and the surface
tension. In the PFM the Peclet number (Pe) represents the ratio be-
tween the diffusive time scale H2/M and the convective time scale
H/(UτH) in the interfacial layer and it controls the interface char-
acteristic relaxation time; the Cahn number (Ch) is the dimension-
less interface thickness (or capillary width).

In this work, Reτ and We are input parameters that are defined
by considering the physical properties of the fluids, the flow
regime and the surface tension; furthermore the flow is driven
by imposing a mean pressure gradient ∇Π along the streamwise
direction. Once the shear Reynolds number is fixed, the value of
the surface tension is chosen by changing the Weber number.
The PFM here adopted is based on a thermodynamic framework
that is rigorous when simulating near critical systems, namely
mixtures where the interface thickness is a transition layer of the
same order of the problem length scale Ch ∝ O(H) [3,2]. When
considering mixtures of fluids far from critical point, the physical
interface thickness is extremely small, of the order of molecular
length-scale [15,16], therefore Ch → 0. The numerical resolution
of such interface thickness is beyond the current computational
limits (and beyond the continuum hypotheses, as well) thus, for
a given spatial discretization, Ch is chosen as the smallest value
that guarantees a good (spectral) numerical accuracy [5]. Once the
Cahn number is fixed, a consistent ‘sharp-interface limit’ (Ch →

0) is recovered imposing Pe ∝ Ch−1. As shown by means of
formal asymptotic expansions [4], in such limit, the Cahn–Hilliard
equation (3) describes the advection of the order parameter φ,
preventing the degradation of the interface profile and granting
higher accuracy with respect to Level-Set methods. As a result the
value of surface tensionσ is correctly represented and the capillary
force coupling term in the Navier–Stokes equations (1)–(2) is
equivalent to any continuum surface force (CSF) formulation [17].

2.1. Simulation parameters

The equations system (1)–(5) has been solved using a pseudo-
spectral approach [18] where periodic boundary conditions have
been applied along the homogeneous streamwise and spanwise
directions (x and y) for both velocity field and order parameter;
no-slip velocity and normal contact angle for the interface have
been imposed at the walls [19,5]. An initial number of nd,0 =

256 droplets of diameter d = 0.6 (non dimensionalized with
the channel half height H) have been initialized superposing the
scalar field φ over a fully developed turbulent flow obtained from
previous single phase simulations; the volume fraction of the
droplets isϕ = 0.054. Since the two fluids are density and viscosity
matched the initial transient is extremely fast. In order to consider
a fully developed turbulent flow, the shear Reynolds number is set
Reτ = 150; in this regime the initial droplet diameter is much
larger than the Kolmogorov length scale ηκ and the ratio between
the Kolmogorov length scale and the droplet diameter is 0.027 ≤

ηκ/d0 ≤ 0.063. The simulations have been performed considering
a wide range of Weber numbers: We = 0.18 ÷ 2.8. The values
have been selected first considering typical values of density,
viscosity and surface tension of a light crude oil (respectively:
ρ = 058 kg/m3, ν = 6 · 10−6 m2/s and σ = 0.025 N/m)
flowing in a channel of H = 0.02 m (We ≃ 1.6). The range
has been extended toward smaller and higher values of Weber
numbers to investigate the effects of surface tension limiting
We to values at which wall-drag modifications are significative.
Simulations were run on a 512 × 256 × 257 fixed Cartesian grid
fine enough to resolve the smallest length scale of the turbulent
flow: uniform spacing 1x = 1y = 0.245 is imposed along the
stream-wise and the span-wise directions, while a non uniform
(Chebyshev based) nodes distribution is applied along the wall-
normal direction. The time step 1t = 10−4 has been chosen to
resolve the smallest temporal scales and respond to the numerical
stability requirements associated with the grid resolution. With
the chosen grid size and the required time step constraint, the
present simulations required almost 2 · 106 CPU-hours on a large
parallel HPC infrastructure, producing 3TB of raw computational
data. The pseudo-spectral scheme adopted can resolve accurately
the interfacial layer with a minimum number of three mesh-
points [5,20]. Here the interface is described by three mesh-points
along x and ydirections (where a uniformdiscretization is adopted)
and by a minimum number of seven mesh-points along the z
direction where a finer non-uniform discretization is adopted
(Chebyshev polynomials). With the grid resolution adopted, the
interface thickness (a layer where −0.9 ≤ φ ≤ 0.9) is fixed
choosing Ch = 0.0185 and, according to the scaling law [4], the
Peclet number is Pe = 162.2. The interface thickness is larger
than the Kolmogorov length scale 0.36 ≤ ηκ/Ch ≤ 0.84, thus the
interface cannot be deformed by eddies of that size. This drawback
is unavoidable when smearing the interfacial forces over a finite
thickness layer, thus it afflicts all the CSF methods; however the
size of the damped eddies is in any case small compared to the
droplet diameter. The PFM cannot completely fulfill local mass
conservation [6,20]; thanks to the accuracy of the numerical and
to the small interface thickness adopted, however, the mass loss is
in any case small.1

3. Results and discussion

In order to highlight possiblemid-channel segregation, droplets
are released in an equally spaced arrangement in the near wall
regions. Droplets center of mass is set at a distance z+

=

54w.u. From each wall superposing the scalar field φ over a
turbulent velocity field obtained from previous fully developed
single phase simulations. The time needed for the flow to adapt to
the superposition of the scalar field φ, is extremely short: namely
only the capillary forces at the droplets interfaces need to be
balanced and the choice of Pe ensures an interface relaxation time
much faster than the time scale of the external convective forcing
[20,8]. As a result, settling of the initial interface profile are almost
immediate. After being released, droplets are advected by the
flow stream and three distinct phenomena that can be observed
for the transport dynamics: (i) droplet interface modifications;
(ii) droplets segregation; (iii) wall drag modifications. In this
work only droplets segregation and wall drag modifications will
be considered. The complex droplet interface modifications can
be briefly summarized in the following way: for small Weber
numbers (We < 1 in the present work) droplet coalescence
dominates until geometric separation prevents the phenomena,
leading to a We independent asymptotic number of droplets; for
largeWeber numbers (We > 1) inertial forces are strong enough to
produce the breakup of droplets larger than a critical diameter [21],
resulting in a persistent dynamic balance between coalescence and
breakup [7].

3.1. Droplets segregation

It is known [9,10] that a swarm of neutrally buoyant rigid
particles, uniformly released in a laminar pipe flow, tend to
accumulate on a narrow annulus. This inertia driven phenomena,
originally known as tubular pinch, was first observed at low

1 After the entire simulation (2 · 105 time-steps, corresponding to ∼50 channel
length covered by the mean flow), losses of volume V− (or equivalently of massm)
range from 2% to 10%.
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Fig. 2. Time evolution of the collective surface area St ∝ (nd/nd,0)
1/3 (panel a) and normalized mean droplet surface ⟨S⟩/S0 (panel b) as function of the Weber numberWe.
Reynolds number flows for relatively large particles (d/D = 8 −

42 being d and D particle and pipe diameter). When moving to
turbulent flows, the radial segregation phenomena is blurred by
the turbulent mixing; nevertheless it has been experimentally
observed that radial preferential concentration still persists for
rigid particles of diameter d/D = 17 in moderate turbulent flows
up to Re = 2400 [11].

In the case of deformable light dispersed phase (bubbles),
numerical investigations [12] have shown that deformability plays
a central role in the bubbles segregation. In fact, non-deformable
bubbles tend to accumulate near the wall and deposit, while
deformable bubbles are pushed in the center of the channel
avoiding walls showing, in fact, a segregation in the center of the
channel.

In this case, the neutrally buoyant and deformable droplets in
a moderate turbulent flow (Reτ = 150) show clear Weber depen-
dent segregation toward the channel center. In Fig. 3 the volume
fraction profile α is reported at different times: the turbulent ad-
vection produces a spatial redistribution of the dispersed phase,
qualitatively ruling out the initial distribution shows after 1200t+.
For the complete range of Weber number here considered, the
dispersed phase accumulate always at the center of the channel:
in agreement with results obtained for deformable bubbles [12],
larger deformability enhances this droplets segregation. Due to the
non uniformwall-normal flow distribution the droplets are driven
toward the center of the channel: the droplets tend to move to-
ward regions of smaller shear [9,10], and the observed phenomena
is opposite to the segregation driven by the lift forces in the case
of micro bubbles dispersion [22,23]. Moreover, due to the droplets
size, entrainment in the near wall region (z+ < 15) is probably
not possible even releasing the droplets closer to the wall; never-
theless a complete investigation of the segregation leading mech-
anisms is out of the bounds of the present work. Droplets never
deposit on the walls, despite this mechanism has not been ar-
tificially prevented through the numerical setup: the boundary
conditions adopted yield to a normal contact angle at the walls.
Nevertheless, large droplets, for the whole range of deformabil-
ity, tend to avoid impacts with the walls. In addition, Fig. 3 (pan-
els d–h) shows that less deformable droplets (smallWe) can reach
smaller distances from the walls suggesting that wall impact and
deposition is likely to be observed at smallerWe. Authors have ob-
served deposition of droplets and thin film formation at the walls,
for We = 0.014 (simulation that has been performed but not re-
ported in this work).

3.2. Dynamics of the carrier phase

The presence of a dispersed phase is affecting the features of
the turbulent flow: depending on the Weber number, the droplets
can promote or reduce the momentum transfer between fluid
regions at diameter distance: l ∼ d. When the turbulent forcing
is weaker than the surface tension σ , here We < 1, the droplets
can efficiently affect the local turbulent structures while, when
the turbulent forcing is larger than σ , the capillary forces at
the droplets interface produce small modifications of the local
flow field and the fragmentation mentioned in Section 3 can be
observed [7]. To quantify the impact of the droplets on the flow
field, the instantaneous friction coefficient is defined as:

Cf =
∇Π

1
2ρu

2
b

, (7)

where ∇Π is the mean pressure gradient that is driving the flow
and ub is the instantaneous bulk velocity. In the case of a single
phase turbulent flow, Cf is constant and equal to Cf ,s. After the
droplets injection the transported phase starts to interact with
the turbulent structures, resulting in a variation of Cf . Since the
driving force is kept constant in the simulations, variation of the
friction coefficient is due to variation of the flow rate only. The
time evolution of the friction coefficient normalized with the aver-
age single-phase friction coefficient Cf ,s, is reported in Fig. 4(a). As
expected, Cf depends on theWeber number:when the surface ten-
sion is smaller than the turbulence forcing (We < 1) almost negli-
gible modifications of Cf are observed; by contrast, decreasingWe,
increments of Cf (and consequently of thewall-drag) are observed.
When We < 1, the friction coefficient is characterized by a non
monotonic behavior: (i) Cf increases up to t+ ≃ 1000; (ii) a al-
most steady condition is maintained when 1000 ≤ t+ ≤ 2000;
(iii) Cf reduces when t+ ≥ 2000. This wall-drag reduction is in
any case small and needs a detailed investigation of the possible
physical phenomena underpinning it. One of the possible explana-
tions is through the vorticity modification mechanism [12]: due to
the high shear present in the near wall region, droplets are forced
to move at a favorable wall-distance to sustain the canceling of
the local vorticity fluctuations. Clearly this has to be supported by
the measurements of vorticity that are out of the scope of this pa-
per. The non monotonic behavior of Cf can be explained consider-
ing two factors: (i) the droplets can exchange forces through their
external surface, only; (ii) the flow field modifications are mainly
due to the streamwise velocities differences experienced by the
droplet, due to its finite size. Due to droplets coalescence, the total
surface area of the swarm of droplets can be roughly estimated as
S(t) ∼ n1/3

d , thus it reduces in time according to the time evolution
of the droplet swarm (Fig. 2(a)).

At the same time, due to the average diameter increment, the
average surface of the single droplet ⟨S⟩ increases (Fig. 2(b)). The
velocity difference ∆u experienced by the droplets is larger the
larger is the droplet diameter, in fact larger size bodies can span
wider regions in the non homogeneous wall-normal direction. As
a result, the behavior of Cf can be considered as the effect of
the velocity difference ∆u that increases in time, modulated by
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Fig. 3. Distribution of the dispersed phase volume fraction α along the channel height z. Two different Weber numbers are shown: We = 0.28 in the top panels (a)–(d),
We = 1.41 in the bottom panels (e)–(h). Different simulation times are considered: t+ = 600 for panels (a) and (e); t+ = 1350 for panels (b) and (f); t+ = 2100 for panels
(c) and (g); t+ = 2850 for panels (d) and (h). The same Weber numbers times are shown in Fig. 1.
Fig. 4. Friction coefficient Cf normalized with the average friction coefficient measured in a single phase turbulent channel flow Cf ,s . In panel (a), the time evolution of
Cf /Cf ,s is reported; panel (b) depicts the dependence of the friction coefficient to the Weber number We at different times: t+ = 500, 1000, 2000, 3000. Times are also
shown as vertical lines in panel (a).
the total external surface of the droplet S that decreases in time.
Moreover, due to the mid-channel segregation, droplets tend to
move in a region of smaller velocity non-homogeneity, further
reducing the velocity differences experienced by the droplets and
emphasizing the modulation of Cf at t+ > 2000. In Fig. 4(b) the
friction coefficient is reported as function of We at four different
times, confirming the presence of a quasi-steady state when
1000 ≤ t+ ≤ 2000. It is in any case clear that less deformable (or
small We) droplets produce larger increments of Cf , as observed
through time averaged statistics [8].

4. Conclusions

The segregation and wall-drag modifications produced by a
swarm of large breaking and coalescing droplets dispersed in a
fully turbulent channel flow have been investigated with a Phase
Field Model. Concerning the dynamics of the dispersed phase, for
small Weber (We < 1), coalescence dominates: in such regime,
surface tension prevents fragmentation and a continuous decre-
ment of the normalized number of droplets nd/nd,0 is observed
until a universal asymptotic regime is reached. At large t+, coa-
lescence becomes a rare event because droplets are too distant to
interact and nd/nd,0 stabilizes to a value that is We independent.
On the contrary, for large Weber numbers (We > 1), nd/nd,0 does
not decreasemonotonically. Local turbulence causes droplets frag-
mentation if the diameter of a droplet is larger than a critical value
and a dynamic equilibrium between coalescence and break-up is
reached at large t+. Although droplet/wall interaction is not pre-
vented, the dispersed phase tend to accumulate at the center of the
channel. This mechanism, qualitatively observed here, in agree-
ment with previous numerical simulations [12], is influenced by
We. The dynamics of the continuous (or carrier) phase is influenced
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by the presence of the droplets: the friction coefficient of the
flow is modified and its time evolution depends on the Weber
number. Deformable droplets (higher We) are transported more
effectively and the friction coefficient Cf is comparable with that
measured in the single phase flow. Increasing the surface tension,
Cf increases showing a time-dependent behavior: larger wall-drag
is observed when an optimal balance between droplets total sur-
face S and droplet average diameter ⟨d⟩ is reached.
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