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Coalescence and breakup of large droplets in turbulent
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Coalescence and breakup of large deformable droplets dispersed in a wall-bounded
turbulent flow are investigated. Droplets much larger than the Kolmogorov length
scale and characterized by a broad range of surface tension values are considered.
The turbulent field is a channel flow computed with pseudo-spectral direct numerical
simulations, while phase interactions are described with a phase field model. Within
this physically consistent framework, the motion of the interfaces, the capillary ef-
fects, and the complex topological changes experienced by the droplets are simulated
in detail. An oil-water emulsion is mimicked: the fluids are considered of same
density and viscosity for a range of plausible values of surface tension, resulting in a
simplified system that sets a benchmark for further analysis. In the present conditions,
the Weber number (We), that is, the ratio between inertia and surface tension, is a
primary factor for determining the droplets coalescence rate and the occurrence of
breakups. Depending on the value of We, two different regimes are observed: when
We is smaller than a threshold value (We < 1 in our simulations), coalescence domi-
nates until droplet-droplet interactions are prevented by geometric separation; when
We is larger than the threshold value (We > 1), a permanent dynamic equilibrium
between coalescence and breakup events is established. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4923424]

I. INTRODUCTION

Turbulent water-oil emulsions are common in the oil production process: the injection of water
into the reservoirs to lift the crude oil has the side effect of producing well-mixed water-oil emulsions
from which water has to be separated. To increase the separation efficiency, droplet coalescence has
to be promoted at large flow rates limiting the undesired droplet fragmentations. These emulsions
can be considered as two-phase flows where the dispersed phase can deform, break or coalesce. In
the simplest configuration, the fluid system is constituted by two immiscible and incompressible
pure components far from their critical point whose interfaces are endowed by surface tension.
Although being largely simplified, the physical system is still dominated by complex phenomena
characterized by a wide range of scales, from the largest turbulent scale down to the interface
thickness. The complete and accurate numerical resolution of all these scales is beyond the current
computational limits, as a result only simplified turbulent multiphase systems can be analyzed
adopting tailored robust algorithms able to account for the sharp change of physical properties and
momentum across the fluid interfaces.

The objective of the work is to investigate the role of the surface tension, here represented
by the Weber number (We), in the turbulent dispersion of a swarm of neutrally buoyant droplets;
droplets are large compared to the smallest turbulent scale and they can break and coalesce. To

a)Electronic mail: luca.scarbolo@ge.com. Current address: GE Oil & Gas, Florence 50127, Italy.
b)Electronic mail: federico.bianco@uniud.it
c)Electronic mail: soldati@uniud.it. Also at Department of Fluid Mechanics, CISM, Udine 33100, Italy.

1070-6631/2015/27(7)/073302/12/$30.00 27, 073302-1 ©2015 AIP Publishing LLC

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  158.110.32.34 On: Tue, 07 Jul 2015 14:54:59

http://dx.doi.org/10.1063/1.4923424
http://dx.doi.org/10.1063/1.4923424
http://dx.doi.org/10.1063/1.4923424
http://dx.doi.org/10.1063/1.4923424
http://dx.doi.org/10.1063/1.4923424
http://dx.doi.org/10.1063/1.4923424
http://dx.doi.org/10.1063/1.4923424
http://dx.doi.org/10.1063/1.4923424
http://dx.doi.org/10.1063/1.4923424
http://dx.doi.org/10.1063/1.4923424
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:luca.scarbolo@ge.com
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:federico.bianco@uniud.it
mailto:soldati@uniud.it
mailto:soldati@uniud.it
mailto:soldati@uniud.it
mailto:soldati@uniud.it
mailto:soldati@uniud.it
mailto:soldati@uniud.it
mailto:soldati@uniud.it
mailto:soldati@uniud.it
mailto:soldati@uniud.it
mailto:soldati@uniud.it
mailto:soldati@uniud.it
mailto:soldati@uniud.it
mailto:soldati@uniud.it
mailto:soldati@uniud.it
mailto:soldati@uniud.it
mailto:soldati@uniud.it
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4923424&domain=pdf&date_stamp=2015-07-07


073302-2 Scarbolo, Bianco, and Soldati Phys. Fluids 27, 073302 (2015)

the authors knowledge, this work represents one of the first computational efforts towards the
study of the collective dynamics of coalescence and breakup of droplets in turbulent wall-bounded
flows, setting a benchmark for further analyses and providing a useful numerical framework for the
investigation of this class of problems. In the recent past, many authors focused on the theoretical
modeling of droplet coalescence and breakup mechanisms,1,2 showing that coalescence occurs
when the drainage of the liquid film between two colliding droplets is faster than the characteristic
collision time and proposing a scaling law for the film drainage velocity. Other authors3 investigated
the behavior of deformable droplets and bubbles in turbulent flows focusing on the dispersion of
large bubbles in wall-bounded turbulence, limiting the analyses on the wall drag modifications
produced by the bubbles and neglecting the simulation of relevant effects such as breakup and
coalescence. By contrast, works focused on the coalescence and fragmentation of interfaces in
isotropic turbulence4,5 highlighted the presence of a maximum critical stable droplet diameter, in
accordance with theoretical predictions.6

The investigation object of this work is performed through a robust and accurate numerical
framework specifically tailored for the computational solution of turbulent multiphase flow involving
complex topological phenomena. The solution of these class of flows can be ideally considered
as a two-steps process: (i) tracking of the fluid-fluid interfaces and (ii) modeling of momentum
transfer between the two fluids. To track the surfaces separating different phases, two different
techniques can be adopted: Front Tracking (FT) or Front Capturing (FC) methods. FT methods
represent the interface as a set of connected points that are advected by the Eulerian flow field.7,8

FC methods model the interface either as the isosurface of a scalar function (sharp approach) or
as a thin volume where the scalar function varies smoothly from different bulk values (continuous
approach). Well-known FC methods are Volume-Of-Fluid (VOF),9,10 Level-Set (LS),11,12 and the
Phase-Field Model (PFM).13 In order to describe the momentum transfer between the two fluids, the
governing equations have to be coupled: steep variation of material properties across the interface
has to be numerically resolved and stress interfacial boundary conditions have to be applied. To
this purpose, both continuous and sharp techniques can be adopted. In the continuous approach,
forces and variations of material properties are smeared over a finite volume region (of few mesh
points) across the interface via delta functions; in the sharp approach, the discontinuous nature of
the changes are treated as moving boundaries where jump conditions at the interface is preserved
without artificially thickening the interfaces. Among the continuous formulations, a widely used
technique is the Continuum Surface Force (CSF) method14 that can be coupled with both FT and
FC methods. The sharp approach is represented by the ghost-fluid-method (GFM)15 which was
originally coupled to the LS method and then extended to FT16,17 and VOF.18

The PFM belongs to the continuous methods since it is a FC method coupled with a continuous
approximation of surface forces. It has shown promising capabilities in the analysis of the complex
coalescence and breakup phenomena19,20 and for this reason, it has been adopted in this work. Due
to its thermodynamic derivation which is rigorous in the case of near critical mixtures (where the
interface thickness is non-negligible), interfaces merging or creation are described with no need of
additional artificial models. Therefore, this method can be naturally applied to different multiphase
problems where phases can be either miscible, immiscible, or partially miscible. It is worth noticing
that since the model considers a finite size interface separating different phases, when applying
PFM to far-from-critical mixtures, all topological changes that take place at a scale smaller than the
interface thickness are filtered out. Nevertheless, its formal convergence to sharp-interface systems
has been shown by different authors13,21,22 and also several rigorous review of the model can be
found.13,23 The PFM has been proven to be able to describe coalescence and drainage regimes in
simple shear flows of immiscible fluids,24 hence it represents a promising method to tackle complex
multiphase flows involving coalescence and breakup.

II. PHYSICAL PROBLEM AND MODELING

To study the dynamics of coalescence and breakup of large deformable droplets in wall
bounded turbulence, a swarm of nd,0 droplets of initial diameter d0 has been dispersed in a fully
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FIG. 1. Droplets evolution in channel flow for two different Weber numbers (upper and lower panel row). Streamwise
velocity u is rendered on xy, xz, and yz slices.

developed turbulent channel flow. The two fluids (droplets and the continuous phase) have the
same density ρ f = ρd = ρ and the same kinematic viscosity νf = νd = ν (subscripts f and d
stand for continuous phase flow and droplet, respectively) and they are considered immiscible,
incompressible, and Newtonian. The fluid interfaces are free from any contaminants (i.e., surfactants
or nano-aggregates), as a result droplets coalescence can be prevented only by the film drainage or by
the presence of a strong turbulent structure. Under these hypotheses, the resulting physical system is
largely simplified, nevertheless the most important features of the problem, the turbulent motion and
the droplet-droplet interactions, are conserved and described in great detail. This physical system can
be efficiently and accurately described, with reasonable computational resources, adopting a PFM:
the present simulations required nearly 2 × 106 cpu-hours on a large scale parallel infrastructure
with a raw data production larger than 3T B. In Fig. 1, two snapshots of the simulated system
are reported; the reference frame is located at the center of the channel and x-, y-, and z-axes
point in the streamwise, spanwise, and wall-normal directions, respectively. The domain size is
4πH × 2πH × 2H in x, y , and z directions, respectively, and H is the channel half-height.

The dimensionless governing equations are the following:

∇ · u = 0, (1)
∂u
∂t
= −u · ∇u − ∇p − ∇Π + 1

Reτ
∇2u +

3
√

8

1
We · Ch

µ∇φ, (2)

∂φ

∂t
= −u · ∇φ + 1

Pe
∇2µ, (3)

F (φ) = f (φ) + 1
2

Ch2|∇φ|2 = 1
4
(φ − 1)2(φ + 1)2 + 1

2
Ch2|∇φ|2, (4)

µ =
δF
δφ
= φ3 − φ − Ch2∇2φ. (5)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  158.110.32.34 On: Tue, 07 Jul 2015 14:54:59



073302-4 Scarbolo, Bianco, and Soldati Phys. Fluids 27, 073302 (2015)

Eqs. (1) and (2) are the incompressible mass and momentum conservation equations, where u is
the incompressible velocity field and p and Π are the fluctuating and mean components of the
pressure field, respectively. Eq. (3) is the phase field conservation equation, known as Cahn-Hilliard
equation; in the PFM framework, the two components are described as a mixture through a
continuous scalar order parameter φ(x). The order parameter assumes constant values φ+ and φ− in
the bulk fluid regions and it is characterized by smooth variations across the fluid-fluid interface.
The thermodynamic chemical potential, µ, describes the variation of free energy (F (φ)) resulting
from a small local change of composition of the mixture; the free energy F (φ), (4), is the sum
of a double-well potential f (φ) (that keeps in account the phobic behavior) and a non-local term
(Ch2|∇φ|2) that accounts for the non-zero surface tension. Due to surface tension, Eqs. (2) and (3) are
coupled via the capillary force term, 3√

8
1

We·Ch µ∇φ, that describes the momentum exchanged between
the two fluids at the interface. Equations (1)-(5) are rewritten in a non-dimensional formulation
using the scaling quantities Uτ, H , and φ+, where Uτ =


τw/ρ is the shear velocity based on the

wall shear stress τw and the fluid density ρ. The non-dimensional groups that appear in Eqs. (1)-(4)
are defined as follows:

Reτ =
UτH
ν

, Pe =
UτH

M
, We =

ρU2
τ H
σ

, Ch =
ξ

H
, (6)

where M is the fluid mobility inside the interfacial layer of thickness ξ and surface tension σ. The
shear Reynolds number (Reτ) is the ratio between inertial forces and viscous forces, and the Weber
number (We) is the ratio between inertial forces and the surface tension. In the PFM, the Peclet
number (Pe) represents the ratio between the diffusive time scale H2/M and the convective time
scale H/(UτH) in the interfacial layer, and it controls the interface characteristic relaxation time;
the Cahn number (Ch) is the dimensionless interface thickness (or capillary width).

In this work, Reτ and We are input parameters that are defined by considering the physical
properties of the fluids, the flow regime, and the surface tension; furthermore, the flow is driven
by imposing a mean pressure gradient ∇Π along the streamwise direction. Due to the presence of
a non-zero capillary force term, the average pressure gradient should be generalized25 to keep into
account the flow driving force and the average capillary forces. Once the shear Reynolds number
is fixed, the value of the surface tension is chosen by changing the Weber number. The PFM here
adopted is based on a thermodynamic framework that is rigorous when simulating near critical
systems, namely, mixtures where the interface thickness is a transition layer of the same order of the
problem length scale Ch ∝ O(H).13,23 When considering mixtures of fluids far from critical point, the
physical interface thickness is extremely small, of the order of molecular length-scale,26,27 therefore
Ch → 0. The numerical resolution of such interface thickness is beyond the current computational
limits (and beyond the continuum hypotheses, as well); thus, for a given spatial discretization, Ch
is chosen as the smallest value that guarantees a good (spectral) numerical accuracy.19 Once the
Cahn number is fixed, a consistent “sharp-interface limit”19,28,29 (Ch → 0) is recovered imposing
Pe ∝ Ch−1. As shown by means of formal asymptotic expansions,22 in such limit, Cahn-Hilliard
equation (3) describes the advection of the order parameter φ, preventing the degradation of the
interface profile. As a result, the value of surface tension σ is correctly represented and the
capillary force coupling term in the Navier-Stokes equations (1) and (2) is equivalent to any CSF
formulation.14

A. Modeling of capillary effects

In the PFM framework, surface tension forces are transformed to volume forces acting in a
small finite region, via delta functions; in order to highlight the common features of PFM with other
CSF models, the capillary force fc of the momentum equations (2) is exploited,

fc =
3
√

8

1
ChWe

(µ∇φ − ∇ f ) = − 3
√

8

1
ChWe

�
Ch2 (∇ · ∇φ)∇φ� , (7)

where the pressure gradient in Eq. (2) has been split:13,21 ∇p = ∇p̃ + ∇ f = ∇p̃ + (φ3 − φ)∇φ.
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Starting from a scalar field φ, the average curvature κ = (κ1 + κ2)/2 and the local normal vector
n of each level-set curve are

κ = −∇ ·
(
∇φ
|∇φ|

)
= − ∇

2φ

|∇φ| +
1

|∇φ|2∇φ · ∇ (|∇φ|) , (8)

n = − ∇φ|∇φ| , (9)

where definitions (8) and (9) are valid only if φ has the properties of a signed function, namely,
if each of its iso-surfaces is parallel to the others. This property is conserved when advecting φ
through Cahn-Hilliard equation (3), adopting the Pe ∝ Ch−1 scaling.22 In this way, the controlled
diffusion within the interfacial layer is fast enough to restore the local modification of the interface
profile produced by the convective effects. As a result, the profile of φ across the interface, along
the interface-normal coordinate s, is always φ(s) = tanh[s/(√2Ch)] which has the properties of a
signed function. Substituting (8) and (9) into Equation (7), the capillary force yields

fc = −
3
√

8
Ch|∇φ|2 · κ

We
n +

3Ch
√

8We
∇φ · ∇ (|∇φ|)n. (10)

The following δ-function can be isolated:

3
√

8
|∇φ|2Ch = δ(x) =⇒


s

δ(x)ds = 1, (11)

where the integral is performed along an interface-normal direction s and the integration extrema
are, by definition, ±∞. Integrating in the same way Equation (10), the equivalent surface force
applied on a sharp interface is obtained,

s

fcds = − n
We


s

δ(x)κds +

s

(
3Ch
√

8We
∇φ · ∇ (|∇φ|)n

)
ds ≃ κ0

We
n, (12)

where the second integral on the RHS vanishes (integral of the product between a symmetric
positive function and an antisymmetric function). The difference between


δκ and κ0 is due to

the computation of the local curvature that is based on a finite thickness layer rather than on a
zero-thickness layer. The error committed with this approach is in any case small when the curvature
radius is large with respect to the interface thickness. The same conclusions of the derivation above
have been obtained either through a similar approach21 or adopting a variational approach.13 The
result reported here can be generalized to physical systems with non-uniform surface tension: in
that case, the Marangoni force30 term is recovered by introducing a non-constant Cahn number.31,32

B. Simulation parameters

The equations system (1)-(5) has been solved using a pseudo-spectral approach33,34 where
periodic boundary conditions have been applied along the homogeneous streamwise and spanwise
directions (x and y) for both velocity field and order parameter. The wall boundary conditions for
velocity are the usual no-slip conditions. For the interface advection, we impose a normal contact
angle condition.19,35 In this way, droplets are free to interact with the walls by creating contact lines.
An initial number of nd,0 = 256 droplets of diameter d = 0.6 have been initialized superposing the
scalar field φ over a fully developed turbulent flow obtained from previous single phase simulations.
Since the two fluids are density and viscosity matched, the initial transient is extremely fast. The
volume fraction of the droplets id ϕ = 0.054 and the simulations have been performed considering
a wide range of Weber numbers: We = 0.18 ÷ 2.8.

In order to consider a fully developed turbulent flow, the shear Reynolds number is set Reτ = 150;
in this regime, the initial droplet diameter is much larger than the Kolmogorov length scale ηκ and
the ratio between the Kolmogorov length scale and the droplet diameter is 0.027 ≤ ηκ/d0 ≤ 0.063.
Simulations were run on a 512 × 256 × 257 fixed cartesian grid fine enough to resolve the smallest
length scale of the turbulent flow, while the time step ∆t = 10−4 has been chosen to resolve the
smallest temporal scales and respond to the numerical stability requirements associated with the grid
resolution. The pseudo-spectral scheme adopted can resolve accurately the interfacial layer with a
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minimum number of three mesh-points.19,36 Here, the interface is described by three mesh-points
along x and y directions (where a uniform discretization is adopted) and by a minimum number
of seven mesh-points along the z direction where a finer non-uniform discretization is adopted
(Chebyshev polynomials). With the grid resolution adopted, the interface thickness (a layer where
−0.9 ≤ φ ≤ 0.9) is fixed choosing Ch = 0.0185 and, according to the scaling law,22 the Peclet
number is Pe = 162.2. These parameters ensure that the PFM converges to the “sharp interface
limit.” In addition, we can also grant that the pseudo-spectral algorithm can solve correctly Eq. (2)
for local capillary forces (12) for the chosen range of the Weber number. The interface thickness
is larger than the Kolmogorov length scale 0.36 ≤ ηκ/Ch ≤ 0.84, thus the interface cannot be
deformed by eddies of that size. This drawback is unavoidable when smearing the interfacial forces
over a finite thickness layer, thus it afflicts all the CSF methods; however, the size of the damped
eddies is in any case small compared to the droplet diameter. The PFM cannot completely fulfill
local mass conservation.20,36 However, due to the accuracy of the numerical method and to the
small interface thickness adopted, the mass loss is in any case small: specifically, after the entire
simulation (2.5 × 105 time-steps and 4000t+, corresponding to ∼50 channel length covered by the
mean flow), the mass loss ranges from 2% for the smallest We to 10% for the largest We.

III. RESULTS AND DISCUSSION

The scalar field φ is initialized so that different sets of droplets with the same Weber number
are released in a fully developed turbulent flow in an equally spaced arrangement whose center
of mass is set at distance z = 54w.u. from the wall. Droplets are superposed to an initial velocity
field obtained from previous fully developed single phase simulations; the time needed for the flow
to adapt to the superposition of the scalar field φ is extremely short.36 This is because only the
capillary forces at the droplets interfaces need to be balanced, and the choice of Pe ensures an
interface relaxation time much faster than the time scale of the external convective forcing. As a
result, relaxation of the initial interface profile is almost instantaneous. Upon injection, droplets
are advected by the flow and undergo two distinct phenomena: segregation towards the center of
the channel and droplet-droplet interaction. Due to segregation, droplets tend to concentrate in the
center of the channel, with the consequent negligible probability of collision with the walls, which in
the entire simulation was never observed. In this work, we focus our analyses to the droplet-droplet
interactions, only. In Figs. 2 and 3, examples of coalescence and breakup dynamics as they appear
in our simulations are depicted. We could not find previous experimental investigations referring to
systems with two fluids of the same density, yet the qualitative behavior of such events does not
appear in contrast with the experimental observations37,38 despite the large density ratio considered
in those works. These events strongly depend on the We number and take place multiple times in
different places of the domain. The snapshots of Fig. 3 show a typical time evolution of a breakup
event: a droplet deformed by local velocity fluctuations and shear is stretched until a thin bridge of
fluid is formed; the thin bridge is then broken by surface tension forces that tend to minimize the
energy stored in the interface. As an opposite case, the snapshots of Fig. 2 depict a time evolution of

FIG. 2. Time evolution of the coalescence process depicted in the top panels of Fig. 5. The snapshots are taken at time
distances of 15t+ and the spanwise velocity fluctuations v′+ are rendered over the droplets isosurfaces (that are identified by
φ = 0).
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FIG. 3. Time evolution of a breakup event observed in the We= 1.41. The snapshots are taken at time distances of 15t+

starting from an initial time of 1170t+. The streamwise velocity fluctuations u′+ are rendered over the droplets isosurfaces.

a typical coalescence event: droplets are forced to collide by the external flow field; in the collision
region a bridge forms, then the surface tension starts to restore the sphere-like shape of the droplet
(which minimizes the energy stored in the interface). Within the PFM framework, these dynamics
are captured without the adoption of any artificial model, thus this method is a good candidate to
investigate, with the limitations explained in Sec. II, the collective dynamics of coalescence and
breakup.

A. Dynamics of the dispersed phase

The droplets are allowed to interact and collide under the action of the turbulent flow field: their
dynamics is controlled both by the mean shear and the turbulent fluctuations.

Let us consider two colliding droplets. In general, not every collision results in a coalescence
event and, in particular, two leading mechanisms can prevent the coalescence: (i) turbulent
fluctuations that cause a trajectory deviation so that droplets move away from each other preventing
collision and (ii) the presence of a thin film between the colliding droplets, which does not drain
rapidly enough causing the bouncing.

Supported by the simple scaling analyses reported below, the first mechanism appears to be more
efficient and, as a result, coalescence is expected to be the most likely event when the two droplets
collide. In particular, approximating two droplets as spheres of diameter dl > ds with dl ∼ O(ds)
colliding at velocity ur , their collisional momentum Qd can be estimated. In a similar way, the
momentum of the thin film of fluid that separates two colliding droplets Q f can be estimated,

Qd = ρ f

4πd3
s

3
ur , Q f = ρ f h f

πℓ2
f

4
u f . (13)

The film is approximated by a thin disk of height h f and diameter ℓ f while u f is the characteristic
velocity at which the film is drained; u f can be estimated adopting the lubrication theory into the
film:2 u f ≃ (2σh2

f )(µ f dsℓ f ). Hence, the film-droplet inertial ratio results,

Q f

Qd
∼

(
ρ f

ρd

) (
ds

ℓ f

) (
uτ
ur

) (
Reτ
We

) (
h f

ds

)3

. (14)

In our simulations, ρ f /ρd = 1 and the ratio ds/ℓ f can be safely considered as O(1). Estimating ur as
the time-averaged relative velocity between the droplet pairs characterized by the minimum droplet
pair distance, the ratio ⟨uτ/ur⟩ is of O(1) for every set of tested Weber number. We explore regimes
Reτ/We from O(102) to O(103), while (h f /ds)3 varies in time, at least in the initial transient, because
droplets increase in volume while they coalesce. However, since h f is of the order of the interface
thickness (h f ≃ 4Ch ≃ 0.04), on average O(2 × 10−6) ≤ ⟨(h f /ds)3⟩ ≤ O(10−4). Consequently, the
ratio Q f /Qd varies from O(10−1) to O(10−4) meaning that, in average, colliding droplets have larger
inertia with respect to the thin fluid film. The local Reynolds number into the film can be roughly
estimated as

Re f =
ρ fu f h f

µ f
=

Re2
τ

We

h3
f

d2
sH

. (15)
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Re f is relatively small at the early stages of the simulations (O(10−2) for large We) because of the
small droplets diameters but, in general, it becomes large once the droplets grow (up to O(101) for
the largest droplets and the smallest We). Therefore, since droplet inertia is larger with respect to
film inertia and viscous forces into the film play a minor role during drainage, droplets bouncing is
likely to be observed only in the early stages of simulations while, most of the time, the coalescence
of two colliding droplets is expected. Hence, the only way to prevent coalescence, when droplets are
large, is avoiding collision by transport mechanisms. It is worth to observe that, due to the so called
reflexive separation mechanism,37,38 a coalescence event occurring after a collision could still result
in a subsequent breakup. Due to the wall-bounded turbulence and the zero density contrast between
the phases, the droplets relative velocity is in general small. This corresponds to the relative Weber
number37,38 Wer = We(ur/uτ)(ds/H) being of O(1) making the reflexive separation unlikely to be
observed in this work.

The number of distinct droplets in the channel (nd/nd,0) is shown in Fig. 4(a) as function of
time for different Weber numbers. As expected, nd/nd,0 decreases in time and it stabilizes toward
an asymptotic value after a long transient. Consequently the average droplet diameter ⟨d⟩ increases
in time due to the coalescence events and volume conservation (Fig. 4(b)). Two different dynamics
of coalescence are observed depending on the Weber number.

1. Small Weber number: We < 1

For small Weber numbers, a continuous reduction of the number of droplets (nd/nd,0) is
observed. This trend is possible only if coalescence events dominate over the breakups events;
however, from a detailed analyses of the droplet fields, breakup appears to be remote events. This
behavior is consistent with the relative importance of inertial forces with respect to surface tension
at small Weber numbers (We < 1). To shed some light on the coalescing events, in Fig. 5, the time
evolution of a coalescence event (top panels) is compared with the case in which the collision is
prevented (bottom panels). The fluctuating streamwise velocity field is rendered on a slice crossing
the two droplets. Coalescence or separation of the droplets is driven by the successive flow regions
experienced by the droplets. In the bottom panels, at the beginning, both droplets are experiencing
a similar velocity region, as a result their distance is not reduced. After 15t+, the front droplet
encounters a region of positive velocity fluctuations that drives it apart from the droplet behind.
After 30t+, the droplets are separated by different spanwise velocities, indicating that the large scales
turbulent structures encountered are, in this case, preventing the coalescence. It is worth noticing
that in case of no coalescence, the liquid film between the droplets produces only a slightly flattening
of the front droplet interface and, proceeding in time, the local shape do not differ much from a
spherical shape (ℓ f < ds). In this case, as predicted in the momentum scaling of Sec. III, the film
inertia is negligible and the collision dynamics is controlled by the velocity field. On the contrary, the

FIG. 4. Time evolution of the normalized number of droplets nd/nd,0 (panel (a)) and normalized mean diameter ⟨d⟩/d0
(panel (b)) as function of the Weber number We.
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FIG. 5. Time evolution of two coalescing droplets (top panels) and two non-coalescing droplets (bottom panels) taken at time
distances of 15t+. The streamwise velocity fluctuations u′+ are rendered over a x–y plane crossing the droplets (z+= 50w.u.
and z+= 250w.u. for the top panels and bottom panels, respectively). The time sequences are taken at the same initial time
390t+, at different positions on the computational domain and for We= 0.18.

initially non-homogeneous flow regions encountered by the coalescing droplets (A and B depicted
in the top panels) move the droplets closer fostering collision. The fluid film is squeezed by the
motion of the droplets and, as a result, large negative streamwise velocity fluctuations (u′+ ≃ 3)
can be observed into the film. After 15t+, the film is completely drained and the droplets interface
collide; after 30t+, a large bridge between the droplets is generated. It is worth to notice that the
coalescence can take place because the film drainage characteristic time ℓ f /u f is smaller than the
characteristic collision time1 h f /ur . In fact, in this case, u f ≃ 3⟨ur⟩, and h f ≃ ℓ f , since no flattening
of the droplet is observed. Fig. 2 helps to clarify the coalescence driving mechanism: it is evident
that the spanwise velocity fluctuations are acting to push the droplets tips close together. Combining
top panel of Figs. 5 and 2, a coalescing event in a x y plane can be summarized: (i) the spanwise
velocity fluctuations push the droplets closer, (ii) the film drains in the streamwise direction helped
by the local velocity fluctuations, and (iii) the bridge between the droplets forms.

Finally, in the early stages (t+ < 2000), the coalescing regime shows a weak dependence from
We, while, for t+ > 2000 the number of droplets observed in the asymptotic regime is almost
universal (Fig. 4(a)). As shown in Fig. 4(b), the droplet coalescence produces an increment of the
droplet average diameter ⟨d⟩. In the first stages of the simulation, ⟨d⟩ < H and the droplets are
subjected to a turbulent mixing that promotes their interactions. Due to the increments in size, the
droplet motion decorrelates from turbulent scales of size smaller than ⟨d⟩ that can only deform
the interface. When t+ > 1000, ⟨d⟩ > H and the droplets motion starts to be controlled by the
average velocity field, rather than by the turbulent fluctuations. Fig. 6(a) shows the minimal distance
between the two closest droplets, averaged over all the droplets pair ⟨lm⟩ and normalized by the
average droplet diameter ⟨d⟩. In the case of small Weber numbers, the distance increases in time,
consequently the probability of interaction decreases in time. At large times, the minimal distance
can be ⟨lm⟩/⟨d⟩ ≃ 2 ÷ 3, such that droplets are essentially too distant to interact and coalescences
are dramatically reduced. In particular, the ratio ⟨lm⟩/⟨d⟩ at which the droplet-droplet interactions
cease is smaller than that observed for point-wise particles in turbulence.39 This behavior is likely
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FIG. 6. Time evolution of the average minimal distance ⟨lm⟩ normalized by the average droplet diameter ⟨d⟩. Small Weber
numbers (We < 1) are reported in panel (a). Large Weber numbers (We > 1) are reported in panel (b) where the case We= 0.71
is also shown for sake of comparison.

due to the droplets size that is large enough to make them insensitive to a significant portion of the
turbulence spectrum.

2. Large Weber number: We > 1

In the case of large We, as for small We but with a shorter transient, nd/nd,0 decreases in time
until an asymptotic behavior is reached. However, if We is larger than a critical value (We > 1,
in this work), the reduction of nd is not strictly monotonic. Such behavior is due to the alternate
imbalance between coalescence and the breakups produced by the combined action of mean and
turbulent shear stress. As shown in Fig. 4, local increments of the number of droplets are observed
after an early transient in which breakups are rare. Indeed, at this stage (t+ < 1000), droplets are
small and the local turbulent shear can produce very large deformations only if We is very large. As
a result nd/nd,0 is first dominated by coalescence. Growing in size, droplets can be large enough
to be subjected to velocity fluctuations that break them. This behavior is consistent with the theory
of the critical stable diameter6 and the recent numerical results for homogeneous and isotropic
turbulence.4,5 After the initial transient, an asymptotic regime (in the statistical sense) is reached
and coalescence/breakup events are in a dynamic equilibrium. Droplets generated by breakup are
compensated by other coalescences and, as a result, at equilibrium the number of droplets is much
larger than that observed in the case of small Weber numbers. For instance, We = 1.41 ÷ 2.82 leads
to a steady number of droplets that is from one to two magnitude orders larger than the small Weber
number cases, Sec. III A 1. Fig. 3 depicts the time evolution of a droplet breakup: (i) subjected
to the local velocity field, the droplet loses its initial sphere-like shape; (ii) the droplet deforms
assuming an elongate shape with a neck; and (iii) finally, the pinch-off take place. Observing the
streamwise velocity fluctuations u′+ rendered over the droplet surface, it can be shown that the local
velocity field is responsible to create a curvature that will allow the surface tension to complete the
breakup. When the concave curvature is produced, the local velocity field tends to pull apart the thin
neck helping surface tension to finalize the breakup. Fig. 6(b) shows how the breakup introduces an
upper bound to ⟨lm⟩/⟨d⟩ which, on average, for this regimes is smaller than 3⟨d⟩. Due to this bound,
the probability of droplet-droplet collisions and coalescences is large, and droplets easily coalesce
and grow to a diameter beyond the critical size (for a given We) resulting in a new breakup. This is
essentially the mechanism that leads to the permanent dynamical equilibrium observed in Fig. 4(a).

IV. CONCLUSIONS

The coalescence and breakup of swarm of large breaking and coalescing droplets dispersed in
a fully turbulent channel flow has been investigated with a phase field model. This method does
not require any fictitious treatment of coalescence and breakup events: its thermodynamics origin
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allows to accurately describe the interfacial topological changes, furthermore it can be efficiently
implemented in a pseudo-spectral numerical framework. It has been shown that two different
droplet-droplet interaction regimes can be observed depending on the Weber number (We, that is,
the ratio between inertia and surface tension). For small Weber (We < 1), coalescence dominates: in
such regime, surface tension prevents fragmentation and a continuous decrement of the normalized
number of droplets nd/nd,0 is observed until a universal asymptotic regime is reached. At large t+,
coalescence becomes a rare event because droplets are too distant to interact and nd/nd,0 stabilizes
to a value that is We independent. On the contrary, for large Weber numbers (We > 1), nd/nd,0 does
not decrease continuously. Local turbulence can cause droplets fragmentation if the diameter of a
droplet is larger than a critical value and a dynamic equilibrium between coalescence and break-up
is reached at large t+. The asymptotic number of droplets is function of We and it can be one to two
order of magnitude larger than the number of droplets observed for We < 1.
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26 D. M. Mitrinović, A. M. Tikhonov, M. Li, Z. Huang, and M. L. Schlossman, “Noncapillary-wave structure at the water-alkane
interface,” Phys. Rev. Lett. 85, 582 (2000).

27 A. Giacomello, S. Meloni, M. Chinappi, and C. M. Casciola, “Cassie–baxter and wenzel states on a nanostructured surface:
Phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations,” Langmuir 28, 10764–10772
(2012).

28 V. Kendon, “Scaling theory of three-dimensional spinodal turbulence,” Phys. Rev. E 61, R6071 (2000).
29 V. M. Kendon, M. E. Cates, I. Pagonabarraga, J.-C. Desplat, and P. Bladon, “Inertial effects in three-dimensional spinodal

decomposition of a symmetric binary fluid mixture: A lattice Boltzmann study,” J. Fluid Mech. 440, 147–203 (2001).
30 L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes (Cambridge University

Press, 2007).
31 D. Jacqmin, “Contact-line dynamics of a diffuse fluid interface,” J. Fluid Mech. 402, 57–88 (2000).
32 A. Lamorgese and R. Mauri, “Liquid mixture convection during phase separation in a temperature gradient,” Phys. Fluids

23, 034102 (2011).
33 L. Scarbolo and A. Soldati, “Turbulence modulation across the interface of a large deformable drop,” J. Turbul. 14, 27–43

(2013).
34 L. Scarbolo and A. Soldati, “Wall drag modification by large deformable droplets in turbulent channel flow,” Comput. Fluids

113, 87–92 (2014).
35 P. Yue, J. J. Feng, C. Liu, and J. Shen, “A diffuse-interface method for simulating two-phase flows of complex fluids,”

J. Fluid Mech. 515, 293–317 (2004).
36 L. Scarbolo, D. Molin, P. Perlekar, M. Sbragaglia, A. Soldati, and F. Toschi, “Unified framework for a side-by-side

comparison of different multicomponent algorithms: Lattice Boltzmann vs. phase field model,” J. Comput. Phys. 234,
263–279 (2013).

37 N. Ashgriz and J. Poo, “Coalescence and separation in binary collisions of liquid drops,” J. Fluid Mech. 221, 183–204
(1990).

38 J. Qian and C. Law, “Regimes of coalescence and separation in droplet collision,” J. Fluid Mech. 331, 59–80 (1997).
39 C. T. Crowe, J. D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji, Multiphase Flows with Droplets and Particles (CRC Press,

2011).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  158.110.32.34 On: Tue, 07 Jul 2015 14:54:59

http://dx.doi.org/10.1021/la304919p
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2008.03.003
http://dx.doi.org/10.1103/PhysRevLett.85.582
http://dx.doi.org/10.1021/la3018453
http://dx.doi.org/10.1103/PhysRevE.61.R6071
http://dx.doi.org/10.1017/S0022112001004682
http://dx.doi.org/10.1017/S0022112099006874
http://dx.doi.org/10.1063/1.3545840
http://dx.doi.org/10.1080/14685248.2013.863426
http://dx.doi.org/10.1016/j.compfluid.2014.06.027
http://dx.doi.org/10.1017/S0022112004000370
http://dx.doi.org/10.1017/S0022112004000370
http://dx.doi.org/10.1016/j.jcp.2012.09.029
http://dx.doi.org/10.1017/S0022112090003536
http://dx.doi.org/10.1017/S0022112096003722

