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Upscale energy transfer and flow topology in free-surface turbulence
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Free-surface turbulence, albeit constrained onto a two-dimensional space, exhibits features that barely resemble
predictions of simplified two-dimensional modeling. We demonstrate that, in a three-dimensional open channel
flow, surface turbulence is characterized by upscale energy transfer, which controls the long-term evolution
of the larger scales. We are able to associate downscale and upscale energy transfer at the surface with the
two-dimensional divergence of velocity. We finally demonstrate that surface compressibility confirms the strongly
three-dimensional nature of surface turbulence.
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I. INTRODUCTION

The interaction of turbulence with a free surface is impor-
tant in a number of environmental and geophysical situations:
the flow structure at the free surface is dominated by the
fluid turbulence underneath and influences transfer rates of
mass, momentum, and heat. This flow structure is also proven
responsible for the highly nonuniform distribution patterns
of biological microorganisms [1,2], which have an additional
role onto the chemical and biological species cycles in open
water bodies. Understanding the paramount role of turbulence
at a free surface may therefore have strong environmental
implications at short and long time horizons (global warming,
future climate changes). The flow structure of the surface is
reminiscent of the inhomogeneous three-dimensional turbu-
lence developing in the flow bulk and follows a dynamics,
which does not fully resemble that given by simplified methods
based on simulations of two-dimensional turbulence or simula-
tions of three-dimensional homogeneous isotropic turbulence.
A specific feature of free-surface turbulence is the long life of
large-scale structures [3,4]. This long life is possibly associated
with upscale energy transfer mechanisms as predicted by
Kraichnan [5], in the context of the turbulent double-cascade
scenario: enstrophy goes from large to small scales and
energy goes from small to large scale. The turbulence double-
cascade scenario has been confirmed by simulations of two-
dimensional turbulence (see Ref. [6] and references therein)
and also by simulations of three-dimensional homogeneous
isotropic turbulence [7], even with rotation and/or stratification
[8]. However, no evidence of the energy double cascades
has been given for inhomogeneous free-surface turbulent
flows.

The aim of this work is to examine inhomogeneous free-
surface open channel flows, considering in particular surface
topology, energy flux, and local flow compressibility. We
demonstrate that the net effect of an upscale energy transfer
mechanisms can be observed in three-dimensional free surface
flows only at sufficiently high Reynolds number. We also
demonstrate that the compressibility factor can be larger
than previous theoretical prediction, suggesting that two-
dimensional and three-dimensional isotropic models cannot
capture completely the dynamics of this type of turbulence
[9,10].

II. METHODOLOGY

We consider the dimensionless incompressible continuity
and Navier-Stokes equations
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where ui is the ith component of the fluid velocity, p

the fluctuating kinematic pressure, δ1,i the mean pressure
gradient driving the flow while Reτ = huτ/ν is the shear
Reynolds number based on channel depth h and shear
velocity uτ = √

h| δ1,i | /ρ. Equations (1)–(2) are solved by a
Fourier-Chebyshev pseudospectral method, assuming free-slip
conditions at the free (and flat) surface and no-slip conditions
at the bottom (z direction). Periodicity is applied along the
streamwise (x) and spanwise (y) directions. We consider two
different shear Reynolds numbers: ReL

τ = 171 and ReH
τ =

509. The size of the computational domain is Lx × Ly × Lz =
2πh × πh × h, discretized with 128 × 128 × 129 (for ReL

τ )
and 256 × 256 × 257 (for ReH

τ ) grid points. Further details on
the numerical method can be found in Refs. [1,11,12].

III. RESULTS

A. Spectral fluxes

With the aim of quantifying downscale and upscale energy
transfer contributions across spatial flow scales, we adopt a
filtering approach [13,14] by applying a low-pass Gaussian
filter Gl(k) = exp(−|k|2�2/24) of size � to the field variables
written in the wave number space (k). The scales of the velocity
field are thus divided into scales larger than � (unfiltered)
and smaller than � (filtered). The turbulence kinetic energy
transport equation for the unfiltered scales (q = ui

(�)ui
(�)) is

thus [13,14]:
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FIG. 1. Time- and surface-averaged energy flux 	(�) as a function
of the Gaussian filter size (�) at the channel surface (z0 = 0) for ReL

τ

(solid line) and ReH
τ (dashed line). The contribution of the positive

energy flux (downscale energy transfer) and of the negative energy
flux (upscale energy transfer) are also shown in the inset.

where τij = uiuj
(�) − ui

(�)uj
(�) is the filtered stress and

Sij
(�) = 1/2(∂ui

(�)/∂xj ) is the unfiltered rate-of-strain tensor.
The following dissipation rate,
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,

is the energy flux transferred between small and large scales
across the scale of the filter size. The contribution of the
downscale and upscale energy flux can be computed as 	

(�)
+ =

1
2 (	(�) + |	(�)|) and 	

(�)
− = 1

2 (	(�) − |	(�)|), respectively.
The time and surface averaged energy fluxes for both

Reynolds numbers are shown in Fig. 1 as a function of
the dimensionless filter size, �/Ly , and are normalized by
the plane averaged value of the viscous dissipation ε0 =
(2/Reτ )SijSij at the free surface [13]. For the low Reynolds
number ReL

τ , we observe that the energy flux peaks at �/Ly �
0.1, and then monotonically decreases to zero, indicating the
predominance of the downscale energy transfer mechanism
across the entire scale range. For the high Reynolds number
ReH

τ , the maximum is reached approximately at the same
location �/Ly � 0.1, but the energy flux becomes negative for
�/Ly > 0.2, indicating a strong and persistent upscale energy
transfer at larger scales. In the inset of Fig. 1, positive and
negative energy flux contributions are shown for ReL

τ and ReH
τ ,

with evidence of both cascades coexisting in the entire range of
scales. However, for ReL

τ the contribution of the upscale energy
transfer is always smaller than the downscale energy transfer.
For ReH

τ the upscale energy transfer is proportionally more
important, with a peak occurring for scales larger than those
corresponding to the peak of the downscale energy transfer.

B. Flow topology and energy cascade

The physical mechanisms leading to downscale or upscale
energy transfer are still to be fully investigated, with new
promising theories (for two-dimensional turbulence) support-
ing the importance of large-scale strain and vortex thinning in
the dynamics of the upscale energy transfer [14]. At the surface
of our three-dimensional numerical experiment, turbulence

FIG. 2. (Color online) Contour maps of the energy flux 	(�) (a)
and of the two-dimensional surface divergence ∇2D (b) computed at
the free surface for Reτ = 171.

is continuously regenerated by upwellings advecting energy
at the surface, where turbulence dynamics appears somehow
two dimensionalized and characterized by strongly different
features [3,15].

To analyze the flow topology, we use the two-dimensional
surface divergence of velocity ∇2D = ∂u

∂x
+ ∂v

∂y
. The two-

dimensional divergence is associated with the exchange of
mass and momentum between surface and bulk of the flow.
Regions characterized by ∇2D > 0 are regions of local flow
expansion, generated by bulk flow upwellings. Regions char-
acterized by ∇2D < 0 are regions of local flow compression
leading to downwellings. Contour maps of the instantaneous
energy flux 	(�) (computed for �/Ly = 0.2, a scale at which
upscale and downscale energy transfer are both significant
for the two Reτ examined) and of the instantaneous two-
dimensional surface divergence ∇2D are shown vis a vis for low
and high Reynolds numbers in Fig. 2 and Fig. 3, respectively.
Local energy fluxes and flow sources/sinks have a distinctly
inhomogeneous distribution but nonetheless exhibit a remark-
able correspondence, which can give a possible explanation of
surface turbulence mechanisms. Regions of downscale energy
transfer (	(�) > 0) seem to correspond to regions of flow
expansion (upwellings, ∇2D > 0), whereas regions of upscale
energy transfer (	(�) < 0) seem to correspond to regions of
flow compression (downwellings, ∇2D < 0). We measured
this correspondence via the following correlations computed
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FIG. 3. (Color online) Contour maps of the energy flux 	(�) (a)
and of the two-dimensional surface divergence ∇2D (b) computed at
the free surface for Reτ = 509.

for �/Ly = 0.2:

〈∇sign
2D 	(�)

sign

〉 =
〈∇sign

2D (x − x ′,y,z0)	(�)
sign(x,y,z0)

〉
∇sign

2D,rms(z0)	(�)
sign,rms(z0)

,

where sign = +/− and z0 is the vertical coordinate of the
free surface. Results are shown in Fig. 4(a) for Reτ = 171
and in Fig. 5(a) for Reτ = 509. The correlation between 	

(�)
+

and ∇+
2D and between 	

(�)
− and ∇−

2D , is strong for both
Reynolds numbers within a length roughly corresponding to
the filter size, and then drops for larger x/Ly . This strong
spatial correlation suggests a causal relation between the
downscale/upscale energy transfer and the surface renewal
mechanism based on upwellings and downwellings [3,13].
To show this striking correspondence, in Figs. 4(b)–4(c)
and in Figs. 5(b)–5(c) we present an enlargement of the
small square area depicted in Figs. 2–3. Contour maps of
Figs. 4(b)–4(c) and of Figs. 5(b)–5(c) show an almost perfect
coincidence of downscale/upscale energy transfer regions
with the expansion/compression regions: the overlapping
streamlines complete this evident correspondence.

The occurrence of downscale/upscale energy transfer can
be directly linked to the behavior of the third-order structure
function, S3 = 〈(δru)3〉, with δru = [u(x + r) − u(x)] being
the longitudinal velocity increments [16]. In particular, the sign
of S3 indicates the direction of the energy flux: for negative

FIG. 4. (Color online) Correlation coefficient 〈∇+
2D	�

+〉 (solid
line) and 〈∇−

2D	�
−〉 (dashed line) between the positive (negative)

energy flux 	�
+ (	�

−) and the positive (negative) two-dimensional
surface divergence ∇+

2D (∇−
2D) computed along the streamwise

direction x and averaged in time for ReL
τ = 171 (a). We also show the

spatial distribution of 	(�) (b) and ∇2D (c) on the small square area
depicted in Fig. 2. Flow streamlines have been superposed to each
contour map to highlight regions of local flow expansion (sources)
and of local flow compression (sinks).

S3, energy goes from large to small scales (downscale energy
transfer), whereas for positive S3 energy goes from small
to large scales (upscale energy transfer). Our results on the
behavior of S3 at the channel center and at the free surface

FIG. 5. (Color online) Correlation coefficient 〈∇+
2D	�

+〉 (solid
line) and 〈∇−

2D	�
−〉 (dashed line) between the positive (negative)

energy flux 	�
+ (	�

−) and the positive (negative) two-dimensional
surface divergence ∇+

2D (∇−
2D) computed along the streamwise

direction x and averaged in time for ReH
τ = 509 (a). We also show the

spatial distribution of 	(�) (b) and ∇2D (c) on the small square area
depicted in Fig. 3. Flow streamlines have been superposed to each
contour map to highlight regions of local flow expansion (sources)
and of local flow compression (sinks).
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FIG. 6. Third-order structure function S3(r) computed at the
channel center (a) and at the free surface (b) for both ReL

τ = 171
and ReH

τ = 509. S3 is shown as a function of r/Ly .

are shown (as a function of r/Ly) in Fig. 6 for both ReL
τ and

ReH
τ . At the channel center [Fig. 6(a)], S3 is always negative

for both Reτ , indicating the predominance of the downscale
energy transfer: in the bulk, energy flows from large to small
scales only. A similar behavior is observed at the free surface
for ReL

τ [−�− in Fig. 6(b)], with only a narrow range of
scales (around r/Ly � 0.1) were S3 is positive (i.e., a limited
upscale energy transfer). The situation changes for ReH

τ at the
free surface [− • − in Fig. 6(b)]: S3 is negative at small length
scales but turns positive (displaying a plateau) for r/Ly >

0.1. This indicates the occurrence of a downscale energy
transfer for r/Ly < 0.1, which is replaced by a persistent
upscale energy transfer for r/Ly > 0.1. The length scale at
which S3 changes sign (r/Ly � 0.1) can be regarded as the
average size of an upwelling. This may be understood from
a simple physical interpretation of the third-order structure
function. By drawing an imaginary circle around a given
flow field, the radial vector of the velocity difference between
the center of the circle and its circumference indicates the
energy direction: the energy flows out of the circle, if the
circle encloses an upwelling, whereas the energy flows in,
if the circle encloses a downwelling. The upscale energy
transfer has been recently associated [7] also to the behavior of
the second-order S2 = 〈(δru)2〉 and fourth-order S4 = 〈(δru)4〉
structure functions. In particular, structure functions were
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FIG. 7. Second-order [S2(r), (a)] and fourth-order [S4(r), (b)]
structure functions for ReL

τ = 171 expressed as a function of r/Ly

and computed at the surface and at the center of the channel. The
solid lines indicate the observed scaling in the inertial range. At the
channel center (midchannel, − ◦ −), S2 � r2/3 and S4 � r4/3.

found to scale as Sp � rp/3 in the inertial range. Here, we
try to quantify the behavior of S2(r) and S4(r) in free surface
flows, where no clear indication of these behaviors is available
[18]. Our results are shown in Figs. 7–8 as a function of
the dimensionless displacement r/Ly and for both ReL

τ and
ReH

τ . Specifically, we compare the behavior of the structure
functions at the free surface (− • −) and at the channel center
(− ◦ −). The range of scales where we observe an algebraic
scaling, although not extremely large, is however sufficient to
propose a trend behavior [19]. As expected, where turbulence
is three dimensional (channel center) Sp � rp/3 for both ReL

τ

and ReH
τ . To quantify carefully the scaling behavior of the

structure functions at the free surface, we use the extended
self-similarity (ESS) representation [17]. The slope (ξp) of the
pth-order structure function (Sp � rξp ) is obtained by plotting
〈(δru)p〉 versus 〈(δru)3〉 on a log-log plot, and by computing
ξp = d log Sp/d log S3. The value of ξp measured for p � 6
is shown in Fig. 9 and compared with the Kolmogorov
p/3 scaling (dotted line). Deviations from the Kolmogorov
scaling are seen for p � 4 for both ReL

τ and ReH
τ (with

larger deviations for ReH
τ ), and are likely due to intermittency

phenomena occurring at the free surface.

C. Flow compressibility

Examination of the previous results allows us to infer the
following scenario for the dynamics of downscale/upscale
energy transfer in free-surface turbulence. Downscale energy
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FIG. 8. Second-order [S2(r), (a)] and fourth-order [S4(r), (b)]
structure functions for ReH

τ = 509 expressed as a function of r/Ly

and computed at the surface and at the center of the channel. The
solid lines indicate the observed scaling in the inertial range. At the
channel center (midchannel, − ◦ −), S2 � r2/3 and S4 � r4/3.

transfer is associated with regions of local flow expansion
(∇2D > 0) caused by plumes and upwellings reaching the
free surface from below. Since upwellings are produced by
the fully three-dimensional flow field, they follow their three-
dimensional turbulence nature, with a dynamics maintained
also in the initial stage of their joining the surface. This
reminiscence of the three-dimensional turbulence explains
the regions of downscale energy transfer observed at the
free surface. At later stages, and once attached at the free
surface, upwellings gradually forget their three dimensionality
and move according to the basic laws of two-dimensional

0.6

1

1.4

1.8

1 2 3 4 5 6p

ξp

Reτ=509

Reτ=171

p/3

FIG. 9. Structure function scaling exponent ξp at the free surface
for both ReL

τ and ReH
τ . The dotted line indicates the classical

Kolmogorov scaling p/3.

FIG. 10. Behavior of the compressibility factor C along the wall-
normal direction z/h for ReH

τ and for ReL
τ (inset). Note that z = 0

represents the free surface. Values of the compressibility factor (i) for
a two-dimensional cut of a three-dimensional homogeneous isotropic
turbulent flow (C � 0.16) and (ii) for a compressible Kraichnan flow
(C = 0.5) are also shown [10].

turbulence (hence following the upscale energy transfer). The
relative strength of the upscale energy transfer mechanism is
small for low Reτ , but increases for increasing Reτ . There-
fore, it would be natural to hypothesize that, especially for
increasingly high Reynolds numbers, the three-dimensional
nature of the surface is progressively lost. In fact, it is not
so, as we will show by examining the flow compressibility,
also in connection with previous results obtained for two-
dimensional and three-dimensional homogeneous turbulence
[9,10,20]. The degree of compressibility is quantified by the
dimensionless compressibility factor

C = 〈(∇ · v)2〉
〈|∇v|2〉 . (4)

The value of C as a function of the vertical direction z/h

is shown in Fig. 10 for both Reynolds numbers. The range of
abscissae in Fig. 10 is limited to the top half of the channel from
the free surface down to the channel centerline (z/h = 0.5).
For both Reτ , compressibility peaks close to the surface and
drops down almost asymptotically to C � 0.16 (dashed line
in Fig. 10) at the channel half height. This limiting value
represents the theoretical prediction of C for homogeneous
isotropic turbulence [10]. The line C = 0.5 in Fig. 10 is
instead the theoretical prediction based on the Kraichnan
compressible flow as reported in Refs. [10,21]. This value
was thought to represent the upper limit of the compressibility
factor as computed from three-dimensional simulations of
homogeneous isotropic turbulence with suitable boundary
conditions [10,20]. Our data show that the compressibility
C of a three-dimensional free-surface channel flow exceeds
the theoretical threshold value C = 0.5. In accordance with
Ref. [22], in which an increase of the compressibility factor
C was associated with an important upscale energy transfer,
we find that compressibility is larger for larger Reτ , when
the upscale energy transfer is proportionally stronger. We also
remark that a compressibility factor larger than the critical
value C = 0.5 is of significant importance: it suggests the
occurrence of extreme events (velocity sources and sinks,
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associated to pointlike structures), which might have strong
influence on the dispersion of chemical species and particles
in free-surface flows [1] but also in other flow instances [23].

IV. CONCLUSIONS

We used direct numerical simulation of an open channel
flow at two different Reynolds numbers (ReL

τ = 171 and
ReH

τ = 509) to analyze the behavior of the energy flux (	(�))
and of the local flow compressibility (C) in free-surface
turbulence. The value of the energy flux closely relates to
the downscale or upscale energy transfer: a positive energy
flux indicates a downscale energy transfer, whereas a negative
energy flux indicates an upscale energy transfer. For the lower
Reynolds number case (ReL

τ ), we observe that the mean energy
flux is always positive, indicating the predominance of the
downscale energy transfer across the entire scale range. For
increasing Reτ , we observe the formation of an upscale energy
transfer, which controls the dynamics of larger scales, with
important implications for all transport mechanisms influenced
by these scales. We also found that downscale/upscale energy
transfer correlates with the behavior of the two-dimensional
surface divergence ∇2D: downscale energy transfer is as-
sociated with regions of local flow expansion (∇2D > 0),
while upscale energy transfer is associated with regions of
local flow compression (∇2D < 0). There are two possible
sources of energy transport at a turbulent free surface. First,
energy can be exchanged between the free surface and the
bulk simultaneously at all spatial scales. Second, mass and
energy transport between the bulk and the surface does
not occur simultaneously at all spatial scales. Rather, the

fluid enters the surface at flow upwellings (positive flow
divergence) and leaves the surface at flow downwellings
(negative flow divergence). Both of these mechanisms are
at play in free-surface flows: the former dominates at lower
Reτ , while the latter becomes prominent for increasing Reτ .
This scenario is consistent with the behavior of the structure
functions of the velocity difference Sp = 〈(δru)p〉 (and in
particular of S3). Despite its two-dimensional geometry, free-
surface turbulence has specific features, which cannot but
partially be observed in two-dimensional computations. We
computed the compressibility factor C and we found that the
free-surface compressibility factor can trespass the theoretical
threshold C = 0.5 (Kraichnan compressible flow), which was
considered an upper limit in previous computations [10,20].
These findings are also particularly important because they
open new intriguing perspectives to model and parametrize the
free-surface dynamics in large eddy simulations (LES), where
the adopted subgrid-scale stress models are usually absolutely
dissipative, i.e., they only provide for the downscale energy
transfer. Based on current results, we suggest that an upscale
energy transfer must be taken into account to ensure accurate
predictions using LES [24,25].

ACKNOWLEDGMENTS

We acknowledge CINECA supercomputing center
(Bologna, Italy) and ISCRA Computing Initiative for generous
allowance of computer resources. We also acknowledge
Regione Autonoma Friuli Venezia Giulia under Grant No. PAR
FSC 2007/2013. We wish to thank the anonymous reviewers
for the valuable comments and suggestions made on the
previous version of this manuscript.

[1] S. Lovecchio, C. Marchioli, and A. Soldati, Phys. Rev. E 88,
033003 (2013).

[2] Y. Zhong, A. Bracco, and T. A. Villareal, Limnol. Oceanogr. 2,
12 (2012).

[3] T. Sarpkaya, Annu. Rev. Fluid Mech. 28, 83 (1996).
[4] D. H. Kelley and N. Oullette, Phys. Fluids 23, 115101 (2011).
[5] R. Kraichnan, Phys. Fluids 11, 945 (1968).
[6] G. Boffetta, J. Fluid Mech. 589, 253 (2007).
[7] L. Biferale, S. Musacchio, and F. Toschi, Phys. Rev. Lett. 108,

164501 (2012).
[8] R. Marino, P. D. Mininni, D. L. Rosenberg, and A. Pouquet,

Phys. Rev. E 90, 023018 (2014).
[9] B. Eckhardt and J. Schumacher, Phys. Rev. E 64, 016314

(2001).
[10] G. Boffetta, J. Davoudi, B. Eckhardt, and J. Schumacher, Phys.

Rev. Lett. 93, 134501 (2004).
[11] S. Lovecchio, F. Zonta, and A. Soldati, Adv. Water Resour 72,

22 (2014).
[12] F. Zonta and A. Soldati, J. Heat Transfer-Trans. ASME 136,

022501 (2014).
[13] Y. Pan and S. Banerjee, Phys. Fluids 7, 1649 (1995).
[14] Z. Xiao, M. Wan, S. Chen, and G. L. Eyink, J. Fluid Mech. 619,

1 (2009).
[15] An analysis of turbulence kinetic energy spectra of the surface

[1] reveals clear deviations from two-dimensional turbulence.

In particular, the usual −5/3 law of the inertial range is here
accompanied by steeper scaling behaviors occurring at large
wave numbers and indicating that small-scale structures play
only a negligible role in determining turbulence properties at
the free surface.

[16] G. Boffetta, A. Celani, and M. Vergassola, Phys. Rev. E 61, R29
(2000).

[17] R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet,
F. Massaioli, and S. Succi, Phys. Rev. E 48, R29
(1993).

[18] W. I. Goldburg, J. R. Cressman, Z. Voros, B. Eckhardt, and J.
Schumacher, Phys. Rev. E 63, 065303 (2001).

[19] Further analysis might include the computation of structure
functions in the isotropic sector of the flow as discussed in M.
A. Taylor, S. Kurien, and G. L. Eyink, Phys. Rev. E 68, 026310
(2003).

[20] J. Schumacher, Prog. Theor. Phys. Suppl. 150, 255 (2003).
[21] R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).
[22] M. Chertkov, I. Kolokolov, and M. Vergassola, Phys. Rev. Lett.

80, 512 (1998).
[23] K. Gustavsson and B. Mehlig, J. Stat. Phys. 153, 813

(2013).
[24] S. Kumar and S. Banerjee, Phys. Fluids 10, 160 (1998).
[25] M. V. Salvetti, Y. Zang, R. L. Street, and S. Banerjee, Phys.

Fluids 9, 2405 (1997).

033010-6

http://dx.doi.org/10.1103/PhysRevE.88.033003
http://dx.doi.org/10.1103/PhysRevE.88.033003
http://dx.doi.org/10.1103/PhysRevE.88.033003
http://dx.doi.org/10.1103/PhysRevE.88.033003
http://dx.doi.org/10.1215/21573689-1573372
http://dx.doi.org/10.1215/21573689-1573372
http://dx.doi.org/10.1215/21573689-1573372
http://dx.doi.org/10.1215/21573689-1573372
http://dx.doi.org/10.1146/annurev.fl.28.010196.000503
http://dx.doi.org/10.1146/annurev.fl.28.010196.000503
http://dx.doi.org/10.1146/annurev.fl.28.010196.000503
http://dx.doi.org/10.1146/annurev.fl.28.010196.000503
http://dx.doi.org/10.1063/1.3657086
http://dx.doi.org/10.1063/1.3657086
http://dx.doi.org/10.1063/1.3657086
http://dx.doi.org/10.1063/1.3657086
http://dx.doi.org/10.1063/1.1692063
http://dx.doi.org/10.1063/1.1692063
http://dx.doi.org/10.1063/1.1692063
http://dx.doi.org/10.1063/1.1692063
http://dx.doi.org/10.1017/S0022112007008014
http://dx.doi.org/10.1017/S0022112007008014
http://dx.doi.org/10.1017/S0022112007008014
http://dx.doi.org/10.1017/S0022112007008014
http://dx.doi.org/10.1103/PhysRevLett.108.164501
http://dx.doi.org/10.1103/PhysRevLett.108.164501
http://dx.doi.org/10.1103/PhysRevLett.108.164501
http://dx.doi.org/10.1103/PhysRevLett.108.164501
http://dx.doi.org/10.1103/PhysRevE.90.023018
http://dx.doi.org/10.1103/PhysRevE.90.023018
http://dx.doi.org/10.1103/PhysRevE.90.023018
http://dx.doi.org/10.1103/PhysRevE.90.023018
http://dx.doi.org/10.1103/PhysRevE.64.016314
http://dx.doi.org/10.1103/PhysRevE.64.016314
http://dx.doi.org/10.1103/PhysRevE.64.016314
http://dx.doi.org/10.1103/PhysRevE.64.016314
http://dx.doi.org/10.1103/PhysRevLett.93.134501
http://dx.doi.org/10.1103/PhysRevLett.93.134501
http://dx.doi.org/10.1103/PhysRevLett.93.134501
http://dx.doi.org/10.1103/PhysRevLett.93.134501
http://dx.doi.org/10.1016/j.advwatres.2014.03.009
http://dx.doi.org/10.1016/j.advwatres.2014.03.009
http://dx.doi.org/10.1016/j.advwatres.2014.03.009
http://dx.doi.org/10.1016/j.advwatres.2014.03.009
http://dx.doi.org/10.1115/1.4025135
http://dx.doi.org/10.1115/1.4025135
http://dx.doi.org/10.1115/1.4025135
http://dx.doi.org/10.1115/1.4025135
http://dx.doi.org/10.1063/1.868483
http://dx.doi.org/10.1063/1.868483
http://dx.doi.org/10.1063/1.868483
http://dx.doi.org/10.1063/1.868483
http://dx.doi.org/10.1017/S0022112008004266
http://dx.doi.org/10.1017/S0022112008004266
http://dx.doi.org/10.1017/S0022112008004266
http://dx.doi.org/10.1017/S0022112008004266
http://dx.doi.org/10.1103/PhysRevE.61.R29
http://dx.doi.org/10.1103/PhysRevE.61.R29
http://dx.doi.org/10.1103/PhysRevE.61.R29
http://dx.doi.org/10.1103/PhysRevE.61.R29
http://dx.doi.org/10.1103/PhysRevE.48.R29
http://dx.doi.org/10.1103/PhysRevE.48.R29
http://dx.doi.org/10.1103/PhysRevE.48.R29
http://dx.doi.org/10.1103/PhysRevE.48.R29
http://dx.doi.org/10.1103/PhysRevE.63.065303
http://dx.doi.org/10.1103/PhysRevE.63.065303
http://dx.doi.org/10.1103/PhysRevE.63.065303
http://dx.doi.org/10.1103/PhysRevE.63.065303
http://dx.doi.org/10.1103/PhysRevE.68.026310
http://dx.doi.org/10.1103/PhysRevE.68.026310
http://dx.doi.org/10.1103/PhysRevE.68.026310
http://dx.doi.org/10.1103/PhysRevE.68.026310
http://dx.doi.org/10.1143/PTPS.150.255
http://dx.doi.org/10.1143/PTPS.150.255
http://dx.doi.org/10.1143/PTPS.150.255
http://dx.doi.org/10.1143/PTPS.150.255
http://dx.doi.org/10.1063/1.1762301
http://dx.doi.org/10.1063/1.1762301
http://dx.doi.org/10.1063/1.1762301
http://dx.doi.org/10.1063/1.1762301
http://dx.doi.org/10.1103/PhysRevLett.80.512
http://dx.doi.org/10.1103/PhysRevLett.80.512
http://dx.doi.org/10.1103/PhysRevLett.80.512
http://dx.doi.org/10.1103/PhysRevLett.80.512
http://dx.doi.org/10.1007/s10955-013-0848-z
http://dx.doi.org/10.1007/s10955-013-0848-z
http://dx.doi.org/10.1007/s10955-013-0848-z
http://dx.doi.org/10.1007/s10955-013-0848-z
http://dx.doi.org/10.1063/1.869558
http://dx.doi.org/10.1063/1.869558
http://dx.doi.org/10.1063/1.869558
http://dx.doi.org/10.1063/1.869558
http://dx.doi.org/10.1063/1.869359
http://dx.doi.org/10.1063/1.869359
http://dx.doi.org/10.1063/1.869359
http://dx.doi.org/10.1063/1.869359



