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Using direct numerical simulation of the Navier–Stokes equations, we analyse the
dynamics of the interface between air and water when the two phases are driven
by opposite pressure gradients (countercurrent configuration). The Reynolds number
(Reτ ), the Weber number (We) and the Froude number (Fr) fully describe the physical
problem. We examine the problem of the transient growth of interface waves for
different combinations of physical parameters. Keeping Reτ constant and varying
We and Fr, we show that, in the initial stages of the wave generation process, the
amplitude of the interface elevation η grows in time as η ∝ t2/5. The wavenumber
spectra, E(kx), of the surface elevation in the capillary range are in good agreement
with the predictions of wave turbulence theory. Finally, the wave-induced modification
of the average wind and current velocity profiles is addressed.
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1. Introduction
Waves at the air/water interface interact with turbulence, modifying the mass,

momentum and energy transfer rates between the phases. These processes are crucial
in many industrial applications, including condensers/evaporators and heat exchangers,
where air and water usually have countercurrent flow (Bartrand, Farouk & Haas
2009; Deendarlianto et al. 2012). In such instances, predicting the evolution of
the interface deformation – waves – according to the flow conditions is essential
since transfer mechanisms across phases depend on the magnitude and structure
of the interface deformation. However, due to the complex and very small nature
of the near-interface region, the mechanisms controlling interfacial wave generation
and growth in countercurrent air/water flow systems are not yet clear and still
require investigation. One of the reasons is that experimental measurements near the
interface, where the turbulence interacts with the waves, are extremely challenging
(Thais & Magnaudet 1996). Recently, Berhanu & Falcon (2013) used a diffusing
light photography optical method combined with a fast camera and reported the full
space–time resolved statistics of capillary wave turbulence at the air/water interface.
However, waves were obtained by a mechanical forcing rather than by imposing a
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mean shear at the interface. Obtaining a description of the flow field above and below
the interface is still an open issue using experimental techniques.

Direct numerical simulation (DNS) can help to provide at any given time the entire
velocity/pressure fields as well as the interface deformation, ensuring a level of detail
sufficient to characterize the phenomena occurring in the proximity of the interface
(where experimental measurements are difficult). One of the first DNS studies on
turbulence interactions across a freely deformable interface in a countercurrent
air/water flow was that of Fulgosi et al. (2003). The authors focused on the structure
of the turbulence over the deformable interface; however, they did not characterize the
process of wave generation/growth and, due to resolution constraints, they could not
resolve capillary length scales. The wind-wave generation process (at low wind speed)
was the objective of the DNS performed by Lin et al. (2008), who remarked that
wave growth is a two-stage process, initially linear and later exponential. They also
found that the energy transfer from wind to waves is mainly due to turbulence-induced
pressure fluctuations in the linear stage, and to wave-induced pressure fluctuations in
the exponential stage. Later, Komori et al. (2010) extended the analysis of Lin et al.
(2008), considering mass transfer phenomena across the deformable interface. They
observed that the near-interface dynamics in the water side (streamwise vortices and
turbulent burst) controls the transfer rates of mass and momentum across the interface.

In this work, we use DNS to analyse the process of wave generation and growth in
a countercurrent air/water turbulent flow. We let the air/water interface evolve starting
from flat interface conditions. The dynamics is described by three dimensionless
numbers: the Reynolds number (Reτ , which measures the importance of inertia
compared with viscosity), the Weber number (We, which measures the importance of
inertia compared with surface tension) and the Froude number (Fr, which measures
the importance of inertia compared with gravity). We keep Reτ constant and vary
We and Fr. We will first consider the transient behaviour of the interface dynamics,
deriving also a prediction for the initial growth of the surface elevation. Then, we
will focus on the statistically steady state of the interface occurring when the pressure
distribution on the interface is balanced by gravity and surface tension. Wavenumber
spectra will be computed to characterize the transient and long-term structure of
the interface, and compared with the predictions of wave turbulence theory (WTT)
(Zakharov, Lvov & Falkovich 1992). Finally, the wave-induced effect on wind and
current velocity profiles is briefly analysed and discussed.

2. Governing equations and numerical modelling
We consider a turbulent air–water flow, as sketched in figure 1(a). The reference

geometry consists of two different domains (one for air and one for water) separated
by a deformable interface. The origin of the coordinate system is located at the
centre of each domain, and the x-, y- and z-axes point in the streamwise, spanwise
and interface-normal directions. The air and water, which are considered to be
incompressible and Newtonian, are driven by an imposed pressure gradient, and flow
in opposite directions. We consider a Cartesian coordinate system where the air is
placed above the water. The dimensionless continuity and Navier–Stokes equations
are

∇ · u= 0, (2.1)
∂u
∂t
+ u · ∇u=−∇p+ 1

Reτ
∇2u, (2.2)

where u is the velocity vector and p is the pressure. Variables are made dimensionless
using the half-depth of each subdomain h, the thermophysical properties of each phase
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FIGURE 1. (Colour online) (a) Sketch of the computational domain. (b–d) Interface
deformation and turbulent structures (contours of the magnitude of the streamline rotation
vector, Ω) for

√
Fr/We= 2.03 (simulation S1, b),

√
Fr/We= 1.93 (simulation S2, c) and√

Fr/We = 1.4 (simulation S3, d) computed at t ' 40 s. The magnitude of Ω is in the
range 0<Ω < 150 for

√
Fr/We= 2.03, 0<Ω < 100 for

√
Fr/We= 1.93 and 0<Ω < 80

for
√

Fr/We= 1.4. It should be noted that the interface deformation has been magnified
by a factor of 3 for S1, 25 for S2 and 50 for S3.

(the density ρ and the kinematic viscosity ν) and the corresponding shear velocity
uτ =√τint/ρ (τint being the shear stress at the interface). Periodic boundary conditions
are employed in the streamwise and spanwise directions, whereas free-slip conditions
are applied at the outer boundaries in the interface-normal direction (z=±2h). At the
interface, the air and water are coupled by the continuity of the velocity and of the
normal/shear components of the stress tensor (dynamic boundary conditions):

1
Re τ

((τL − τG) · n) · n+ pG − pL + 1
We
∇ · n− 1

Fr
η= 0,

((τL − τG) · n) · ti = 0, i= 1, 2,

uG = 1
R

uL,

 (2.3)

where the subscripts G and L are for gas (air) and liquid (water) respectively, τ is
the viscous stress tensor, η is the vertical displacement of the interface, n and ti are
the normal and the two tangential unit vectors to the interface while R =√ρL/ρG is
the square root of the density ratio. The Weber (We), Froude (Fr) and Reynolds (Reτ )
numbers are defined as

We= ρLhu2
τL

γ
, Fr= ρLu2

τL

gh(ρL − ρG)
, Reτ = uτG2h

νG
= uτL2h

νL
, (2.4a−c)

where g is the acceleration due to gravity whereas γ is the surface tension (uτ being
evaluated at the beginning of the simulation).
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S1 S2 S3

h (m) 0.045 0.05 0.06
uτL (m s−1) 1.14× 10−3 1.03× 10−3 0.86× 10−3

uτG (m s−1) 3.43× 10−2 3.09× 10−2 2.58× 10−2

Reτ 170 170 170
Fr 2.97× 10−6 2.17× 10−6 1.25× 10−6

We 8.46× 10−4 7.62× 10−4 6.35× 10−4√
Fr/We 2.03 1.93 1.4

Grid 256× 128× 129 256× 128× 129 256× 128× 129

TABLE 1. Wave generation in a countercurrent air–water flow: summary of the
simulation parameters.

The kinematic boundary condition for the interface is prescribed using an advection
equation for the vertical elevation of the interface (boundary-fitted approach):

∂η

∂t
+ ux

∂η

∂x
+ uy

∂η

∂y
= uz, (2.5)

where ux,y,z is the air or water velocity at the interface. This equation is integrated at
each time step to obtain the physical deformation of the domain. Moreover, at each
time step, the deformed physical domain is transformed onto a Cartesian domain
where the governing equations are solved using a pseudospectral technique which
employs Fourier series in the homogeneous directions (x and y) and Chebyshev
polynomials in the interface-normal direction (z) (Zonta, Marchioli & Soldati 2012a).
In particular, the governing balance equations (equations (2.1) and (2.2)) are first
separately solved in each domain, then coupled at the interface using (2.3). We
employed a two-stage fractional step splitting method (Fulgosi et al. 2003), where
the convective terms are explicitly treated using the Adams–Bashforth scheme, while
the viscous terms are discretized using the Crank–Nicolson semi-implicit scheme.
Time marching is second-order accurate for the intermediate velocity and is corrected
in the next step by solving the Poisson equation for the pressure. The procedures
for dealiasing the solution are based on the 2/3 rules (see Zonta, Onorato & Soldati
2012b; Zonta & Soldati 2014 for further details).

The dimensions of the computational domain (for each phase) are 4πh× 2πh× 2h,
while the computational grid is made of 256 × 128 × 129 nodes (for each phase)
in the x, y and z directions respectively. We consider an air–water turbulent flow
at atmospheric pressure and at reference temperature θ = 50 ◦C (common operative
temperature for industrial/chemical systems). The physical properties of air and water
are evaluated at this mean temperature: the square root of the density ratio is R=29.9
and the surface tension is γ = 0.0679 N m−1. We run three different simulations,
each characterized by a specific set of dimensionless numbers and corresponding to a
specific choice of the domain height h (h= 0.045 m for S1, h= 0.05 m for S2 and
h= 0.06 m for S3). An overview of the simulation parameters is given in table 1.

3. Results
3.1. Wave generation and growth

The dynamics of the deformable interface separating air and water currents is
governed by the interaction between external forcing (pressure/velocity fluctuations
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FIGURE 2. (Colour online) Time behaviour of the r.m.s. of the interface amplitude, ηrms=
〈η(t)2〉1/2, for the simulations with

√
Fr/We= 2.03 (simulation S1, red line),

√
Fr/We= 1.9

(simulation S2, blue line) and
√

Fr/We= 1.4 (simulation S3, cyan line). The scaling law
obtained by the simplified physical model (equation (3.1), thin line) and the asymptotic
values predicted by (3.3) (ηth

rms,S, right side of the figure) are also shown.

and large-scale coherent structures) and restoring forces (surface tension and gravity).
The interface dynamics is strongly time-dependent and can support the propagation of
waves with different amplitudes and wavelengths (see figure 1b–d for a visualization
of the interaction between interface deformation and turbulence structures, visualized
therein by contours of the streamline rotation vector). To characterize the time
behaviour of the interface deformation, we computed the root-mean-square (r.m.s.) of
the interface amplitude in time, ηrms(t)=〈η(t)2〉1/2, where brackets 〈·〉 imply averaging
in space. The results are shown in figure 2. We first focus on the initial stage up
to t ' 6 s; in this stage, the growth rate of ηrms(t) seems to be independent of the
physical parameters of the simulations.

To understand this behaviour, we have developed a simple phenomenological model
able to predict the growth rate of waves at the air/water interface. We consider a
flat interface characterized by surface tension γ . For this flat interface, the air/water
pressure difference is 1p = 0. The dynamics of the interface is initially triggered
by vertical velocity fluctuations wl in the water side. The liquid vertical velocity wl
corresponds to a dynamic pressure difference 1p ' ρw2

l which acts to deform the
interface. Assuming for simplicity a locally spherical interface deformation with radius
of curvature r, this air/water pressure difference can be expressed as 1p = γ /r. As
a consequence, we obtain w2

l ∝ γ /r and hence a scaling law for the liquid interface
velocity wl ∝ 1/r1/2. Large curvatures correspond to large liquid interface velocities
and small curvatures correspond to small velocities.

To describe the evolution in time of the interface amplitude, we consider that the
interface area A grows in time as the liquid is pushed by turbulent fluctuations towards
the interface, hence dA/dt = hwl (see Hoepffner, Blumenthal & Zaleski 2011). Since
A∝ η2 and considering that r∝ η, we get dη2/dt∝ η−1/2. Upon integration, we obtain

η∝ t2/5. (3.1)

This behaviour is shown in figure 2, together with our DNS results. In the initial
stages of the growth, the η ∝ t2/5 behaviour is robust and almost independent of
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the specific choice of the physical parameters (for S2 and S3 the t2/5 scaling is
recovered starting from t > 3 s). It should be noted also that the time behaviour of
the wave growth observed in the present study is different from the linear law (η∝ t)
usually found in wind-driven wave generation processes (Lin et al. 2008); the reason
is that our configuration differs from the standard problem of wind-driven waves.
The countercurrent air/water flow is characterized by the presence of two opposite
boundary layers generating waves in opposite directions and producing an almost
negligible streamwise surface velocity.

So far, we have considered the initial dynamics of the interface (t< 6 s in figure 2).
Whether the amplitude of the interface maintains a η∝ t2/5 law or not depends on the
interface deformability (interplay between gravity and surface tension). For

√
Fr/We<

2, capillary effects always dominate, and we do not observe significant changes from
the η∝ t2/5 growth rate (see S2 and S3 in figure 2). By contrast, for

√
Fr/We> 2 we

observe a stage of faster growth. This growth is exponential in time and is due to a
resonant mechanism between the interface elevation and the wave-induced fluctuations
of pressure and stress occurring for gravity waves (see Janssen 2004).

After a transient, ηrms attains an asymptotic value, indicating a saturation for the
growth of the interface amplitude (figure 2). This occurs when the hydrostatic pressure,
dynamic pressure and surface tension balance:

1p′rms +
1

We
∇ · n= 1

Fr
ηrms, (3.2)

where 1p′rms is the r.m.s. of the air/water pressure difference. Since the pressure
fluctuations in the water side (p′rms,L) are larger than those in the air side, 1p′rms'p′rms,L.
Equation (3.2) can be used to roughly estimate the asymptotic value of the interface
amplitude ηrms. Assuming that the curvature of the interface is ∇ · n ' −ηrms, i.e.
assuming a quasi-sinusoidal interface deformation, we obtain

ηrms ' Fr ·We
Fr+We

p′rms,L. (3.3)

Equation (3.3) requires the knowledge of p′rms,L, which can be easily obtained from
our simulations. The behaviour of p′rms,L as a function of the dimensionless vertical
coordinate z+ = zuτ/ν (interface-normal) is given in figure 3. The air/water interface
is located at z+= 170, and the dimensionless value of p′rms,L at the interface is p′rms,L=
3400 for

√
Fr/We= 2.03 (simulation S1), p′rms,L= 240 for

√
Fr/We= 1.93 (simulation

S2) and p′rms,L = 160 for
√

Fr/We = 1.4 (simulation S3). Hence, our estimate for the
dimensionless amplitude of the interface deformation ηrms is ηth

rms,S1 = 1 × 10−2 for√
Fr/We = 2.03 (simulation S1), ηth

rms,S2 = 5.2 × 10−4 for
√

Fr/We = 1.93 (simulation
S2) and ηth

rms,S3 = 2× 10−4 for
√

Fr/We= 1.4 (simulation S3).
The effect of the capillary term (We−1

∇ · n) turns out to be very important at the
beginning of the wave generation process (see the discussion on the wave generation
process in this section). It is also important in determining the structure of the
interface (generation of ripples of short wavelengths, see § 3.2). However, it is less
important in establishing the asymptotic value of the interface amplitude, where the
leading terms of the force balance at the interface (equation (3.2)) are the dynamic
pressure drop (1p′rms) and the hydrostatic pressure drop (Fr−1ηrms). Therefore, a
simplified expression for the interface amplitude is

ηth
rms,S ' Fr · p′rms,L. (3.4)
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FIGURE 3. Distribution of the pressure fluctuations, p′rms,L = 〈p′2L 〉1/2, in the water domain
as a function of the interface-normal direction (the interface is located at z+= zuτ/ν=170)
for simulations S1 (

√
Fr/We= 2.03), S2 (

√
Fr/We= 1.93) and S3 (

√
Fr/We= 1.4).

These results are in agreement with the amplitude of the interface deformation
obtained by DNS (see the ηth

rms,S values indicated in figure 2). We underline that the
above equation cannot be used for predictions because measuring the pressure is
equally difficult to measuring the surface itself. Equation (3.4) and its verification
should be considered as a validation of our hypotheses on the forces acting at the
free surface.

3.2. Wave spectra
The object of this section is to show the wavenumber spectra and discuss their
features in the context of WTT, a statistical theory describing weakly interacting
random waves.

Focusing on the specific case of gravity/capillary waves, WTT is based on the
inviscid and irrotational equations of motion (Laplace equation with suitable boundary
conditions on the free surface), which, under the hypothesis of homogeneity and weak
nonlinearity, leads to an evolution equation for the wave spectrum. This equation is
known as the kinetic equation. In the presence of forcing and dissipation, the kinetic
equation has isotropic solutions, known as Kolmogorov–Zakharov solutions (Zakharov
et al. 1992), which bear similarities to the Kolmogorov solutions in fluid turbulence.
In the capillary regime, the theory predicts a direct cascade of energy E(k)∼ k−15/4,
with k=

√
k2

x + k2
y . In the following, we will try to compare the theoretical predictions

given by WTT with the results of our simulations in the statistically stationary regime
(which can be observed for t> 40 s, after the entire process of wave generation). In
particular, we will compute the time-averaged (for t> 40 s and using a time window
of 1t' 20 s) wavenumber spectrum E(kx)= (1/1T)

∫
t

∫
ky

E(kx, ky, t) dky dt. The results
are shown in figure 4 as a function of the wavenumber in the streamwise direction kx.
The behaviour of the long-term interface (spatial) structure depends on the relative
importance between turbulent fluctuations, gravity and surface tension (see Brocchini
& Peregrine 2001). The low-wavenumber region of the spectrum corresponds to the
gravity regime, while the high-wavenumber region of the spectrum corresponds to
the capillary regime. There is a crossover between the gravity and capillary regimes
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FIGURE 4. Wavenumber spectra, E(kx)=
∫
η(kx, ky) dky, for simulations with

√
Fr/We=

2.03 (simulation S1, a),
√

Fr/We= 1.93 (simulation S2, b) and
√

Fr/We= 1.4 (simulation
S3, c). The insets show the temporal evolution of the energy spectrum at three different
time instants (and averaged over a time window 1T = 1 s): t= 1 s, –u–; t= 20 s, –p–;
t= 40 s, –q–.

occurring at a wavenumber of kx = kcap. For linear waves, kth
cap = 2π/λcap ' 300 m−1,

where we assume the capillary wavelength λcap =
√

4π2γ /(gρ) ' 2 × 10−2 m (see
Falcon, Laroche & Fauve 2007). This value, kth

cap ' 300 m−1, is indicated in figure 4.



Gravity–capillary waves in countercurrent air/water flows 253

Regardless of the
√

Fr/We, the wavenumber spectra exhibit for k > kcap a capillary
power law k−19/4. It would be tempting to verify also the power law predicted by
WTT when gravity is the dominant restoring force. However, within the size of our
computation, this seems to not be feasible. Different interface deformations (surface
roughness versus smooth waves) can be observed for different values of gravity
compared with capillarity (see also the qualitative pictures in figure 1). The spectral
slope in the capillary regime is consistent with that obtained theoretically from WTT
when surface tension is dominant, and corresponds to the Kolmogorov–Zakharov
solution of the three-wave kinetic equation (see Pushkarev & Zakharov 1996). Due to
the directional averaging, our spectra scale as k−19/4

x instead of k−15/4. Similar power
laws were observed in experiments by Wright, Budakian & Putterman (1996), Falcon
et al. (2007) and Cobelli et al. (2011), and more recently in simulations by Deike
et al. (2014) and Pan & Yue (2014). Although WTT is developed under a number
of restrictions (weak nonlinearity, homogeneity, isotropy and separation of scales
between forcing and dissipation), it has already been observed (Berhanu & Falcon
2013) that some theoretical predictions can hold even if such hypotheses are not fully
met. This seems to happen also in our simulations, where turbulence forces interfacial
waves over a broad range of length scales (hence a sharp separation between forcing
and dissipative scales is not guaranteed). The results just shown can be important in
possibly clarifying the issue related to the role of viscous dissipation in the capillary
wave range. In this context, we computed the ratio α/ω between the linear wave
propagation time 1/ω, with the angular frequency ω(k) = (gk + γ k3/ρL)

1/2, and the
dissipative time 1/α, with α = 2νk2. For the range of wavenumbers considered here,
102 < k < 103 m−1, we obtained 10−4 < α/ω < 10−2, which suggests that there is
a clear time scale separation, with the linear wave propagation time being smaller
compared with the dissipative time (as expected by weak turbulence theory).

To deepen our analysis, we consider the temporal evolution of the energy spectrum
E(kx) computed for each simulation at three different time instants (t = 1 s, –u–;
t = 20 s, –p–; t = 40 s, –q–). The results are shown in the insets of figure 4. For√

Fr/We= 2.03 (figure 4a) we observe that E(kx) grows in time qualitatively with a
self-similar shape (Deike, Berhanu & Falcon 2013) that scales as k−19/4 for large k.
For
√

Fr/We = 1.93 and
√

Fr/We = 1.4 (insets of figure 4b,c) we do not observe a
distinctive temporal evolution of the energy spectra: for these values of

√
Fr/We the

wave dynamics is faster and at t= 1 s wavenumber spectra already reach a stationary
condition.

To characterize further the spatial structure of the interface, we analyse the
time evolution of the energy in each wave mode during the wave generation
process. In particular, we look at the instantaneous values of the wavenumber
spectrum E(kx, t) = ∫ky

E(kx, ky, t) dky. Two-dimensional contour maps of E(kx, t)
for each simulation are presented in figure 5. The time evolution of two single-wave
modes, one in the gravity regime (kx = 150 m−1) and one in the capillary regime
(kx = 450 m−1), is also explicitly shown for each simulation in figure 6. For√

Fr/We= 2.03 the growth of the gravity wave modes (k< 200 m−1 in figure 5a and
kx= 150 m−1 in figure 6a) is similar to that of ηrms, consisting of an initial sublinear
growth (t < 10 s) followed by an exponential growth (up to t ' 40). This behaviour
is somehow visible also for wave modes in the capillary regime (k > 300 m−1 in
figure 5a and kx = 450 m−1 in figure 6a). For smaller

√
Fr/We (figures 5b,c and

6b,c) the situation changes and the energy content of both gravity and capillary wave
modes remains almost constant in time: for these values of

√
Fr/We the gravity and

capillary wave modes quickly reach a statistically stationary condition characterized
by a dynamical energy transfer between scales.
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FIGURE 5. (Colour online) Two-dimensional contour maps of the time behaviour of the
wave modes E(kx, t) for simulations with

√
Fr/We= 2.03 (simulation S1, a),

√
Fr/We=

1.93 (simulation S2, b) and
√

Fr/We= 1.4 (simulation S3, c).

3.3. Evolution of the wind and current velocity profiles
We finally discuss the flow modification on both the air (wind) and water (current)
velocity fields due to wave–turbulence interactions. In figure 7 we show the wind
(u+ = u/uτ ) and current velocity profiles (u+ = (u − uI)/uτ , with uI the interface
velocity) computed at three different time instants during the transient evolution of
the waves.
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FIGURE 6. Time behaviour of E(kx, t) for simulations with
√

Fr/We= 2.03 (simulation S1,
a),
√

Fr/We= 1.93 (simulation S2, b) and
√

Fr/We= 1.4 (simulation S3, c). Two different
values of kx have been chosen, namely kx = 150 m−1 and kx = 450 m−1.

In particular, we chose t=1 s (–u–), t=20 s (–p–) and t=40 s (–q–). It should be
noted that z+ = 0 represents the interface. Results are shown only for the simulation
with

√
Fr/We = 2.03, because all the effects we wish to discuss are emphasized in

this case. At the beginning of the simulations (t = 1 s), when the waves are small,
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FIGURE 7. Average wind velocity profile u+G (a) and average current velocity profile
u+L − u+I (with u+I the interface velocity, b) computed for simulation S1 (

√
Fr/We= 2.03)

at three different time instants (t= 1 s, –u–; t= 20 s, –p–; t= 40 s). Theoretical profiles
describing the law of the wall (with different shifting constants) are also shown for
comparison.

the wind profile (figure 7a) collapses onto the classical law of the wall (linear-log
profile):

u+G =
{

z+ if z 6 11.6,
2.5 · ln(z+)+ 5.5 if z > 11.6,

(3.5)

indicating that the wave-induced flow modification is weak. When the wave amplitude
increases (t> 10 s), there is a significant wave–turbulence interaction which produces
a systematic decrease of the wind velocity (which, however, maintains the usual linear-
log structure, though with a different shifting constant, i.e. 3.75 instead of 5.5). This
is due to the increase of the pressure drag contributions to the total surface drag
(Lin et al. 2008; Grare et al. 2013). We explicitly compute the time evolution of the
pressure drag on the interface, for the simulation with

√
Fr/We= 2.03, as follows:

PD = 1
LxLy

∫ Lx

0

∫ Ly

0
pG

(
∂η

∂x
+ ∂η
∂y

)
dx dy, (3.6)
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FIGURE 8. Time evolution of the pressure drag PD normalized by the reference value of
the shear stress at the interface, τint = 1.17 × 10−3, for simulation S1 (

√
Fr/We = 2.03).

Explicit indication of the statistically steady-state value of PD/τint ' 0.1 is also shown
(dashed line, – – –).

with Lx and Ly the streamwise and spanwise extensions of the interface respectively.
The pressure drag PD, normalized by the reference shear stress at the interface τint =
1.17 × 10−3, is shown in figure 8 as a function of time. We observe that PD/τint
increases rapidly during the exponential wave growth process (10 s< t<40 s, see also
figure 2), and when the wave amplitude reaches a steady-state condition (t> 40 s), the
dimensionless pressure drag fluctuates around the average value PD/τint ' 0.1 (shown
by the dashed line in figure 8). This indicates that a significant proportion of the
flow energy ('10 %) is lost into interface deformation. For the mean water velocity
(figure 7b), we observe that the initial current profile (t= 1 s) is similar to the initial
wind profile. Later, the situation changes and not all of the current profiles exhibit the
usual law of the wall, suggesting the importance of orbital motions induced by large
interface deformations.

4. Conclusions and future development
In this work we used DNS to analyse the dynamics of a deformable interface

between countercurrent air and water turbulent streams. The motion of the air/water
interface was tracked employing a boundary-fitted method. At each time step, the
distorted physical domain was mapped into a rectangular domain where Navier–Stokes
and continuity equations were solved using a pseudospectral method. The problem
can be described by three dimensionless numbers: the Reynolds number Reτ , the
Weber number We and the Froude number Fr. We started by considering the transient
behaviour of the interface dynamics. At the beginning, the growth of the interfacial
wave amplitude η is driven by surface tension and follows an η ∝ t2/5 law, for all
the values of the physical parameters considered. Later in time, the dynamics of the
interface depends on the ratio between gravity and surface tension effects, i.e. on√

Fr/We. For
√

Fr/We < 2, η continues to evolve following an η ∝ t2/5 law, which
indicates that surface tension remains the leading term. A simplified phenomenological
model has also been derived to describe this result. For

√
Fr/We> 2, we observed a

faster growth rate which is probably due to gravity effects becoming more important.
From a transient wave mode analysis, a similar behaviour is observed for the
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growth rate of the most significant modes. After the transient evolution, the interface
deformation reached a statistically steady state. To characterize this statistically steady
state, we computed wavenumber spectra E(kx) of the interface deformation, and we
found a fair agreement between our results and those predicted by WTT. We finally
observed that wave/turbulence interactions can produce remarkable modifications on
the average wind and current velocity profiles. Further developments of this study
could include surface tension gradients (air/water interface elasticity), which are of
specific importance in many environmental and industrial applications (when biofilms,
microlayers or contaminants are present at the air/water interface).
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