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Abstract In this work, a methodology based on the

analysis of single-camera, double-pulse PIV images is

described and validated as a tool to characterize fiber-

dispersed turbulent flows in large-scale facilities. The

methodology consists of image pre-treatment (intensity

adjustment, median filtering, threshold binarization and

object identification by a recursive connection algorithm)

and object-based phase discrimination used to generate two

independent snapshots from one single image, one for the

dispersed phase and one for the seeding. Snapshots are then

processed to calculate the flow field using standard PIV

techniques and to calculate fiber concentration and orien-

tation statistics using an object-fitting procedure. The

algorithm is tuned and validated by means of artificially

generated images and proven to be robust against identified

sources of error. The methodology is applied to experi-

mental data collected from a fiber suspension in a turbulent

pipe flow. Results show good qualitative agreement with

experimental data from the literature and with in-house

numerical data.

1 Introduction

Fiber suspensions in turbulent flows are commonly

encountered in a wide range of industrial applications.

Examples include pulp production, papermaking processes

and several other industrial applications in which fibers

should be processed (e.g., fiber drying) or used as drag

reducing agents (Paschkewitz et al. 2005). Controlling the

rheological behavior and the concentration/orientation

distribution of fibers is pivotal for process optimization. In

papermaking processes (Lundell et al. 2011), mechanical

properties of manufactured paper are deeply influenced by

anisotropic fiber orientation induced by the carrier flow. In

fluid transport systems [see Paschkewitz et al. (2005) and

Gillissen (2008) among others], elongated fibers interacting

with turbulent structures in the wall layer can be a valuable

alternative to flexible polymers for reducing pressure

drops.

Due to the practical importance of such suspensions,

various experimental (see Carlsson et al. 2007; Holm and

Soederberg 2007; Krochak et al. 2008; Parsheh et al. 2005,

2006 among others) and numerical works (see Zhang et al.

2001; Mortensen et al. 2008a, b; Marchioli et al. 2010)

have been carried out to study fiber dispersion in internal

flows.

Experimental and numerical works have shown that

fibers accumulate in the viscous sublayer and preferentially

concentrate in regions of low-speed fluid velocity tending

to align with the mean flow direction, in particular close to

the wall. A step forward was taken by Krochak et al.

(2009), who investigated by numerical simulations phase

coupling in fiber suspensions flowing in a tapered channel

and in Poiseuille flow (Krochak et al. 2010).

Numerical works rely heavily on the broad assumptions

required to model fiber motion in a computationally

S. S. Dearing � M. Campolo � A. Capone � A. Soldati (&)

Centro Interdipartimentale di Fluidodinamica e Idraulica,
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efficient and physically representative way. Validation of

such assumptions demands a thorough characterization of

the flow in terms of fiber orientation and distribution. More

experimental data on such flows are needed to provide

benchmark data for future modeling and approximate

simulation methods (Marchioli et al. 2008).

In this work, we describe, validate and finally apply a

comprehensive methodology based on simultaneous single-

camera two-phase PIV measurements to obtain information

about orientation and distribution of fibers together with

flow field data in a turbulent pipe flow.

The application of standard laboratory techniques at

scales of industrial interest is not straightforward since

(1) two-phase PIV parameters need to be tuned to the spe-

cific setup used to make measurements and (2) major dis-

turbances may arise from the industrial-type environment.

Optical measurements have been extensively used to

characterize fiber suspension flow. Parsheh et al. (2005)

used high-speed imaging and Laser Doppler velocimetry to

study the orientation of fibers in a planar contraction.

Metzger et al. (2007) developed a procedure to perform

PIV calculations directly on fiber images for fibers sedi-

menting in a viscous fluid at low Reynolds number. Moses

et al. (2001) used image-processing to investigate fiber

motion near solid boundaries in a simple shear flow. When

the objective is the simultaneous measurement of the dis-

persed phase and the carrier fluid in dilute two-phase flow,

more elaborated PIV approaches should be used. The

simultaneous characterization of the continuous phase and

the dispersed phase can be obtained using two synchro-

nized cameras and fluorescent tagging: The light scattered

by both phases is recorded by one camera, while the other

camera records only fluorescent images [see Cheng et al.

(2010) for a detailed review of two-cameras methods].

Alternatively, when only one single camera is used, phase

discrimination can be obtained based on image intensity,

spot size or shape or even based on the relative difference

in motion of the two phases [see Khalitov and Longmire

(2002) for a detailed review]. These techniques proved to

be successful at the laboratory scale under specific testing

conditions (i.e.. when the seeding and the dispersed phase

are sufficiently different in size, in inertia or in geometrical

properties to be discriminated correctly). In this work, we

need to identify and validate a cheap, reliable image-pro-

cessing technique which is robust enough to discriminate

between fibers and seeding in the fully developed turbulent

flow inside a pipe in order to characterize the flow field and

to calculate fiber concentration and orientation statistics.

The methodology consists of image pre-treatment (inten-

sity adjustment, median filtering, threshold binarization

and object identification by a recursive connection

algorithm) and object-based phase discrimination used to

generate two independent snapshots from one single image,

one for the dispersed phase and one for the seeding. The

performance of each image pre-treatment processing step is

controlled by specific parameters, whose value is strongly

sensitive to the test experimental setup: The minimum size

of the tracer/fiber in the image dictates the maximum size

of the median filter which can be used to remove the

background noise without removing also tracer/fibers from

the image; the relative difference between tracer/fiber

dimension determines the level of complexity of the phase

discrimination step; the fiber aspect ratio determines the

most reliable technique to identify fibers and to calculate

their orientation.

Furthermore, phase discrimination requires non-trivial

image-processing steps in order to discriminate the dis-

persed phase from the carrier flow seeded with particle

tracers (see Kiger and Pan 1999; Cheng et al. 2010).

Different methods for fiber identification and subsequent

orientation measurement have been implemented in vari-

ous works. In Bernstein and Shapiro (1994) fibers detection

and fiber orientation assessment were achieved through a

visualization technique consisting of a short-duration 3D

video-photography system. However, typical bi-dimen-

sional PIV systems feature a single camera and orientations

must be calculated directly from a single image. In the

work by Parsheh et al. (2005), the authors investigated the

fiber orientation distribution function at the centerline of a

planar contraction using an object-fitting technique.

In Carlsson et al. (2007), authors investigated fiber ori-

entation in a flow over an inclined plane using a second-

order ridge detector with steerable filters [adapted from

Jacob and Unser (2007)] for the calculation of fiber posi-

tion and orientation in both streamwise and crosswise

planes. Carlsson et al. (2011) build on these results, com-

paring the ridge detector to an elliptic filter using data from

a fiber suspension in a laminar shear flow, finding that the

two methods achieve approximately the same accuracy in

spite of a lower computation time demanded by the ridge

detector. With the same setup and methodology, Kvick

et al. (2010) measured fiber position and orientation in

relation to the low-speed streaks present in a turbulent

boundary layer.

In this work, we develop and validate a robust fiber

identification and orientation calculation algorithm that is

suitable for simultaneous PIV applications in our specific

test environment in which (1) the (lower) size of the dis-

persed phase (fiber diameter) is similar to the size of the

tracer and (2) the fiber aspect ratio is not very large (order

10). When the fiber aspect ratio is small, edge detection as

used by Rose et al. (2007, 2009) becomes quite difficult to

apply. The methodologies proposed by Metzger et al.

(2007) and by Moses et al. (2001) to calculate fiber

orientation become also difficult to apply. In Metzger et al.

(2007), the typical fiber length was large (80 pixels); in
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Moses et al. (2001), the aspect ratio of fibers was also quite

large 40–60. In fact, fiber images size should be as big as

possible in order to get good results when fiber orientation

is measured based on the orientation of the line connecting

the two ends of the fiber.

Since our object is to process a large number of images

as required in a PIV-like context to derive joint statistics of

flow field and dispersed phase (fiber) distribution and ori-

entation, also the costs associated with image processing

may become a major concern. Carlsson et al. (2007, 2011)

used convolution of the fiber images with a steerable filter

to detect fiber orientation. This algorithm is likely to be

computationally more expensive than the algorithm (ellipse

fitting-based) we propose in this work.

In Sect. 3, a detailed description of each image-pro-

cessing step of the algorithm is given, with a focus on

phase discrimination and fiber orientation detection.

Details about the image pre-filtering processing steps are

discussed in the ‘‘Appendix’’. A key aspect of this work is

the algorithm validation process, which is fully described

in Sect. 4. In Sect. 5, results of the application of this

methodology to experimental data gathered on the large-

scale facility along with sample PIV velocity fields are

shown and compared on a qualitative basis to the literature

data.

2 Experimental facility

The experimental facility consists of a closed loop pipe

with circular section of D = 0.10-m internal diameter and

a total working length of ^30 m. The working fluid

(water) is supplied by a centrifugal pump connected to a

frequency inverter, which allows flow rate control. A

schematic of the setup is shown in Fig. 1. The test section

is made of Plexiglass in order to allow visual access and

consists of a 2-mm-thick pipe surrounded by a box filled

with water. The pipe wall thickness inside the test section

is thinner than in the rest of the pipe loop. This feature

reduces image distortion due to refraction resulting from

the curved geometry of pipe which acts like a lens, whereas

the water-filled box helps minimize image distortion due to

refraction resulting from change in material (plexiglass/

water) occurring at the pipe interface.

Pressure drop data are collected by a pair of differential

pressure transducers (DPT). Flow and fibers visualization

was achieved by means of an imaging system comprising a

pulsed Nd: Yag laser (k = 524 nm), optics for the light

sheet shaping whose thickness was set to 1 mm, a

1,280 9 1,024 PCO Sensicam camera with a Nikon F

50 mm (f = 1.4), a frame grabber and PC for image

acquisition and analysis. Experiments were carried out at

Reynolds number (Re = UD/m where m is the kinematic

viscosity of the fluid, U is the fluid bulk velocity, and D is the

pipe diameter) equal to Re = 8,043. Flow seeding was

attained with 20-lm diameter hollow glass spheres, whereas

nylon fibers (Polyamide 6.6, density 1.13–1.15 g/cm3

produced by Swissflock AG) with a mean length of approxi-

mately 320 lm and mean diameter 24 lm were employed as

dispersed phase (see Fig. 2).

Fiber concentration expressed as mass fraction was

C = 0.01 %. Non-interacting suspensions are character-

ized by nLf
3 � 1, where n is the number density of fibers,

and Lf is the fiber half-length. The fiber suspension

DPT DPT

θx

DPT

water from tank

pump/inverter

Plexiglass test section
water recirculates to tank

pipe mid−plane
imaged area

x
y

z

x’’

z
x

y

z’’

y’’

fiber image

Fig. 1 Schematic of the experimental facility. DPT is differential

pressure transducer. Imaged region is shown in red. Angle hx is used

to determine fiber orientation with respect to a comoving frame

(x0 0 , y0 0 , z0 0) with origin in the fiber’s center of mass and parallel to

the inertial frame of reference

Fig. 2 Fibers microscopic image. Diameter and length of a sample

fiber are given
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presented in this work is characterized by nLf
3 = 0.02� 1

indicating dilute flow conditions.

The imaged area (shown in red in Fig. 1) was a 17 mm 9

21 mm region lying on the vertical plane through the pipe

axis and covering the near-wall region of the flow. A series of

800 images was collected with an acquisition rate of 15 Hz.

PIV calculations were performed using a commercial

software (DaVis by LaVision Gmbh). The image-process-

ing algorithm was implemented using Matlab routines.

3 Description of image-processing algorithm

Figure 3 shows a sample snapshot of fiber and seeding

particles taken from our pipe testing section. A close-up of

the picture is shown on the right. The close-up covers a

5.6 mm 9 6 mm area (about 1/9 of the full image) and yet

shows many of the features affecting image quality in the

system under investigation. The simultaneous presence of

seeding particles (appearing as white dots and indicated by

the green arrows) and fibers (elongated white regions) is

clearly noticeable. Sources of noise and image quality

decay are introduced by the optical interactions between

fibers and particles. Fiber diameters have dimensions of the

order of the seeding particles, hence fibers which are per-

pendicular to the laser sheet (as those indicated by yellow

arrows) will not be distinguishable from seeding particles.

Another issue is the presence of out of focus fibers and

fibers lying in front of laser sheet which cause shadows to

appear (indicated by blue arrows). These regions are

characterized by little or no seeding particles. The last issue

is that of partially overlapping fibers, as those indicated by

red arrows. Image quality is undermined by all these dif-

ferent concurring effects and image processing is required

to minimize these disturbances.

The whole image-processing algorithm is composed

of four main steps, that is, image pre-processing, phase

discrimination, fiber analysis by object fitting and PIV

analysis. A detailed description of the algorithm is

described in the following sections.

3.1 Pre-processing

Raw images of laser-illuminated fibers must be pre-pro-

cessed to remove the background noise. In this work, this is

made in three steps: First, the image intensity is adjusted

such that 1 % of the pixels is saturated at lowest and

highest intensities of the original image. This increases the

contrast of the output image and makes the fibers appear

brighter. Second, high-frequency noise is eliminated using

a 3 9 3 pixels median filter. Larger values of filter size

prove to introduce a filtering effect on tracer images [as

described in Kiger and Pan (2000)] without significant

advantages in noise removal. Third, images are binarized:

Every pixel value above a prescribed intensity level (230)

is set to a maximum (255), and every pixel below this value

is set to zero. Once the image is binarized, phase dis-

crimination can be carried out. Details on the implemen-

tation of each image pre-treatment step and criteria for the

tuning of the parameters involved by the processing algo-

rithm are briefly discussed in ‘‘Appendix’’.

3.2 Phase discrimination

The features of connected bright regions showing in each

binarized image are evaluated using a recursive connec-

tivity algorithm. Information about the size and the aspect

ratio of each identified region, or object, is stored and can

be employed to assess whether the object represents a

tracer particle or a fiber. In this work, in order to identify

Fiber normal to plane

Partially overlapping fibers

Out of focus fiber

PIV Seeding

Fig. 3 Sample raw image with tracer particles and fibers (left) and

selected area (red square); close-up of selected area (right) with

shadows of out of focus fibers (indicated by blue arrows), partially

overlapping fibers (indicated by red arrows), PIV seeding particles

(indicated by green arrows) and fiber normal to image plane

(indicated by yellow arrows)
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image objects representing fibers, we applied first an aspect

ratio threshold discarding all the image objects featuring an

aspect ratio lower than 1.5. Also, setting an aspect ratio

threshold may be useful to eliminate both deformed, highly

curved fibers and intersecting fibers from the identification

process when this becomes a critical issue in the experi-

ment. Secondly, objects with a length exceeding a thresh-

old value l* [ 1/7 l where l is the fiber length (see Table 1

for details) were considered as fibers. The criteria under-

lying the choice of the threshold value are discussed in

detail in Sect. 4.3

A set of pictures describing the pre-processing and

phase discrimination steps is shown in Fig. 4. Figure 4a

depicts a close-up of a raw image of 140 9 200 pixels

(approximately 2 mm 9 3 mm actual size) where seeding

particles and fibers are clearly visible. Figure 4b is the

output of the filtering and binarization step carried out on

the raw image. As described, image is then fed to the

recursive connectivity algorithm to identify the features of

the image objects. Finally, Fig. 4c shows image objects

which have been identified as fibers according to the

mentioned criteria on aspect ratio and size.

3.3 Fiber analysis by object fitting

Images in which fibers have been identified may then be

further processed to obtain information about fiber orien-

tation. To this end, image regions sorted as fibers are fitted

to geometric ellipses following a non-linear least square

approach as described in Fitzgibbon et al. (1999). Ellipses

were chosen because they reproduce quite reasonably the

behavior of rigid elongated fibers in a number of applica-

tions of both scientific and engineering interest (Marchioli

et al. 2010).

Given a set of N points (xi, yi), i = 1, 2, …, N, with

(xi, yi) representing the coordinates of the center of each

pixel associated with the image object identified as a fiber,

a fitting conic is described by a second-order polynomial:

Fðx; yÞ ¼ a11x2 þ a12xyþ a22y2 þ 2a13xþ 2a23yþ a33

¼ 0

ð1Þ

Table 1 Effect of threshold length, l*, on mean direction cosine

relative error

Threshold length j cosðhxÞj Relative error on j cosðhxÞj (%)

l* [ 1/9 lf 0.61 4.4

l* [ 1/7 lf 0.64 0.5

l* [ 1/3 lf 0.66 3.5

l* [ 2/3 lf 0.677 5.96

l* & lf 0.698 8.8

lf represents fibers actual length. Test case 2, error calculated over

45,000 fibers

(a) (b) (c)

(d) (e) (f)

Fig. 4 Steps of image-processing algorithm: raw image, pre-processing and phase discriminated fibers (top); seeding only image and PIV

analysis
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The fitting conic is an ellipse if coefficients aij satisfy the

specific constraint:

a2
12 � a11a22\0: ð2Þ

Values of aij, i = 1, 3; j = 1, 3 can be estimated using a

general least-squares fitting approach which minimizes the

sum of the squared algebraic distances of the N points to

the generic conic [see Fitzgibbon et al. (1999) for details].

Once the best fitting ellipse in terms of coefficients aij is

computed, the orientation and all other relevant fiber sta-

tistics are calculated from the values of aij. For instance,

rotation is calculated from coefficient a12, which represents

the tilt of an ellipse in the x–y plane. Fiber orientation,

hx, is defined as the angle formed by the best fitting ellipse

major axis and the streamwise axis x, as depicted in Fig. 1.

Using simple algebra, the coefficients aij can also be used

to code the information about the fiber center of mass,

aspect ratio and length as derived from the 2D image.

3.4 PIV analysis

For a simultaneous PIV system to be implemented though,

also images of particle-seeded flow are necessary. To obtain

such pictures, a straightforward method was employed that

is, fibers-only images were subtracted from the intensity-

adjusted/median-filtered images, thus leading to images

displaying only particle tracers (see Fig. 4d). The resulting

images are thus suitable for PIV processing.

The reason why this procedure was preferred to object

detection to identify seeding particles is twofold. First,

fibers are considerably brighter than seeding particles and

the region surrounding fibers is immersed with residual

gray pixels which blur particles lying within this region.

This is known as the corona effect and has been reported

for spherical particles in Sakakibara et al. (1996) and is one

of the main causes of spurious velocity measurements.

Second, since fibers which are not perfectly in focus do not

have an uniform gray level nor are bright, they may result

broken after binarization and appear like seeding particles,

producing spurious vectors in the PIV processing phase.

PIV processing was performed using a commercial

software. The advanced image deformation multipass PIV

cross-correlation algorithm with window offset, adaptive

window deformation and Gaussian subpixel approximation

was used (see Stanislas et al. 2008). Minimum window size

was set to 32 9 32 pixels with an overlap of 50 % leading

to a distance between vectors of 16 pixels corresponding to

0.3 mm. Figure 4e, f show the typical output of PIV pro-

cessing. In Fig. 4e, the effect of fiber removal on PIV

results has been highlighted discarding the velocity vectors

when the correlation peak ratio was below 4, leading to

no data areas in the regions where fibers were removed.

Figure 4f shows the vector field obtained when the men-

tioned threshold on correlation peak ratio was set to 3.

4 Validation of image-processing algorithm

on synthetic experiments

Experimental two-phase simultaneous PIV investigations

of fiber-laden turbulent flows are prone to various sources

of error which should be adequately assessed and esti-

mated. In particular, the fiber identification and orientation

calculation process described in the previous section are

subject to several limitations. First of all, distribution

and orientation statistics are calculated only considering

detected fibers. This means that fibers which are aligned or

nearly aligned to the z axis and feature small orientation

angles with respect to streamwise direction will be most

likely not identified in the phase discrimination step and,

therefore, will not be included in the calculations. In the

limiting case, fibers perpendicular to the x–y plane will

look like a dot and thus invisible to the detection algorithm.

Second, fibers that are only partially illuminated by the

laser sheet could be misinterpreted as seeding or impurities.

Finally, special attention should be paid to the intrinsic

approximation of using two-dimensional image informa-

tion which are indeed the projection of three-dimensional

orientation data. In this and similar works where images

are collected with a single camera, fiber orientation data are

in fact worked out from projections of three-dimensional

fibers onto the bi-dimensional image plane, and the effect

of such process should be carefully accounted for.

When fiber length distribution is narrow enough (i.e., all

fibers have the same length, lf) and the laser sheet thick-

ness, Dz; is known, 2D orientation data can be used to

evaluate the 3D orientation using simple algebra. Indicated

with hx,2D the fiber orientation in the laser image plane

calculated as j cosðhx;2DÞ j¼ lx=ðl2
x þ l2yÞ

0:5
where lx and ly

are the projected length of the fiber image along x and y

directions, the 3D orientation can be calculated as:

j cosðhx;3DÞ j¼j cosðhx;2DÞ j
ðl2x þ l2

yÞ
0:5

ðl2x þ l2
y þ d2Þ0:5

ð3Þ

where d ¼ Dz if l2x þ l2
y\l2

f � Dz2 or d = lf
2 - (lx

2 ? ly
2) if

l2
x þ l2y [ l2

f � Dz2:

With reference to PIV velocity fields calculation, it is

necessary to assess the error introduced by the ‘‘holes’’ left

by fibers’ image removal.

Monte Carlo simulations were adopted in this work to

quantify the error magnitude affecting fibers number den-

sity and orientation distribution results. These simulations

provide pseudo-experiment information on fiber distribu-

tion and orientation within the laser sheet. Artificial images
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which contain a certain number of seeding particles and

randomly oriented fibers are generated automatically and

subsequently fed to the phase detection and fiber orienta-

tion modules. Statistical reliability is ensured by the large

amount of data employed over the process, whereas the

way artificial images are generated is aimed at simulating

the sources of uncertainty previously detailed. Two main

test cases have been setup to validate the algorithm, each

one characterized by specific image features as described

below:

1. Artificial images displaying 50 or 150 fibers featuring

no spanwise orientation (all fibers lying entirely within

planes parallel to x–y plane)

2. Artificial images displaying 150 fibers featuring span-

wise orientation

In all test cases, fiber aspect ratio in the artificial images

has been set to 20. Each test case has been run several

times by gradually increasing the number of images and

consequently the number of fibers, to assess the effect of

fiber sample size on the accuracy of the calculated statis-

tics. Finally, the effect of the length threshold on the

accuracy of the fiber identification step has been quantified.

4.1 Artificial images generation

Artificial images have been generated to account for the

several sources of uncertainty which exist in actual

experimental conditions. First of all, the light source is

provided by a laser sheet having a finite thickness which

implies that fibers could possibly be only partially lit thus

leading to inaccuracy in the detection phase. The light

intensity is also not uniform along the laser sheet thickness,

resulting in non-homogeneously illuminated fibers. Images

have been thus obtained generating first an artificial vol-

ume in which fully three-dimensional fibers and seeding

particles have been randomly generated and subsequently

taking into account just a thin slice of the volume. The

objects, that is, fibers and seeding particles, contained

within the obtained sub-volume are then projected onto a

plane. This method makes it possible to mimic the laser

sheet thickness effect on algorithm accuracy along with the

effect of estimating object orientation in a three-dimen-

sional space from the two-dimensional data. Fiber objects

have been simulated by ellipsoids with same fixed

dimensions and have been placed randomly in the artificial

volume applying to them a random three-dimensional

rotation matrix; seeding particles were considered as

spherical objects distributed randomly inside the artificial

volume. Light intensity distribution of tracer particles is

calculated based on the relation described in Raffel et al.

(2002) which has been extended to ellipsoid-like objects.

For the generic fiber depicted in Fig. 5, light intensity

along fiber minor axis in the region included between the

two focal points of coordinates (xf1, yf1) and (xf2, yf2) is

assumed to be constant. In the same region, the intensity

along fiber major axis is instead assumed to follow a

Gaussian profile, described as

Iðx0Þ ¼ I0 exp
�ðx0 � x0Þ2

1
8

d2
s

" #
ð4Þ

where (x0, y0), ds and I0 represent, respectively, the

coordinates of ellipsoid center, the ellipsoid image length

and laser sheet peak intensity. At the ellipsoid’s ends, in the

region where xf1 C x C xf2 holds, light intensity is

considered to be dependent on both coordinates leading

to the following relation

Iðx0; y0Þ ¼ I0 exp
�ðx0 � xfiÞ2 � ðy0 � yfiÞ2

1
8

d2
s

" #
ð5Þ

where (xfi, yfi) is the generic focal point coordinate. The

value ds represents the particle image diameter which

accounts for diffraction limited and geometric spot size

(Raffel et al. 2002) and is determined considering the

following relations

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2d2

p þ d2
s

q
ð6Þ

ds ¼ 2:44ð1þMÞf k ð7Þ

where dp represents the physical particle size, M the lens

magnification, approximately 0.4 in this work (Raffel et al.

2002), ds is the diffraction limited spot size and f = 1.4 and

k = 524 nm are optical system parameters. Peak intensity

of the laser sheet I0 is non-constant within the laser sheet,

resulting in inhomogeneous lighting of fibers lying within

the sheet. The peak intensity depends on the actual position

of fiber within the sheet, leading to the following

expression for I0

I0ðzÞ ¼ q exp
z2

1
8
Dz2

0

" #
ð8Þ

where z-axis origin is considered to be at the center of the

laser sheet where light intensity is maximum, Dz0 is the

Fig. 5 Single fiber model for light intensity calculation. Focal points

are labeled f1 and f2

Exp Fluids (2013) 54:1419 Page 7 of 14
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laser sheet thickness, and q is the efficiency with which the

particle scatters light. In Fig. 6 a sample artificial fiber

image (right) is compared to an actual one (left).

4.2 Accuracy of ellipse fitting statistics

4.2.1 Test case 1

This case represents the baseline test with fibers orienta-

tions defined in x–y plane only. Fibers are located ran-

domly inside the three-dimensional volume and oriented

randomly in the x–y plane. Two runs of this test case have

been performed: the first is characterized by each artificial

image displaying 50 fibers; in the second run, fiber number

per image has been increased to 150. In the first case, a

very dilute suspension could be simulated, in which no

fiber image intersection would occur. By increasing the

concentration to 150 fibers a dilute suspension could still

be simulated where fiber images intersection would occur,

then resembling actual experimental conditions for fiber

suspensions in turbulent flow.

Figure 7 shows a close-up of a sample image from the

50 fibers per image case, in which fibers detected with the

presented methodology are depicted along with their center

of mass. To validate extensively the proposed algorithm,

statistics of fiber number density and fiber direction cosine

have been computed and compared to expected values.

The normalized number density is defined binning

(i.e., counting) identified fibers inside regions of constant

volume. When a dependence from one spatial coordinate is

expected (e.g., the wall-normal direction y in a boundary

layer flow), volumes are arranged to span different value of

the y coordinate. Dividing the number of fibers in each bin

by the overall number of fibers in the image (about 60

fibers per square centimeter), the normalized number

density obtained represents a probability density function

and its integral equals to 1. Values of fiber number density

calculated for artificial images were quite good, with

approximately 99.9 % of generated fibers correctly iden-

tified and located. The normalized average fiber number

density, calculated binning the fibers into 17 discrete slabs

arranged in the y direction, was 0.0588 ± 0.0005.

Statistics on fiber orientation are obtained in terms of

average value of direction cosine, j cosðhxÞ j : The average

value can be calculated considering the whole volume.

Nevertheless, when the objective is to define a spatial

profile for fiber orientation, the average value can be cal-

culated considering sub regions specifically defined to span

different values of the relevant coordinate (e.g., y).

Dividing the region of interest in I identical bands along the

y direction, the orientation cosines of all the fibers whose

centroid lies within the ith band are summed over and then

divided by the overall number of fibers. The mean direction

cosine at every ith band expressed in y position is thus

calculated as

hj cosðhxÞ jii ¼
1

Np;i

XNp;i

k¼1

j cosðhxÞ jk ð9Þ

where Np,i represents the number of fibers identified within

the ith band. Values of j cosðhxÞ j’ 1 denote a strong mean

alignment of fibers to the streamwise direction.

The expected mean direction cosine calculated from

artificial images was 2/p & 0.64, which is the mean ori-

entation angle projected on a unit sphere for randomly

rotated fibers. The mean direction cosine calculated from

ellipse fitting of 250 artificial images containing 50 fibers

each was 0.64 ± 0.02 (mean ± standard deviation).

Fig. 6 Sample actual (left) and artificial (right) fiber images

Fig. 7 Close-up of artificial image with 50 fibers (top) and detected

fibers (bottom). Red contours and green circles show, respectively,

the best fitting ellipse and center of mass
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For the test case 1, in which 50 fibers per image were

generated, the relative error in j cosðhxÞ j is less than 1 % if

the number of processed fibers is O(104), that is, the

number of processed images is large enough to be statis-

tically representative of average fiber orientation.

The second run of the test case, in which 150 fibers were

generated per image, made it possible to simulate a more

practical flow condition, in which fiber intersection occurs

within images, adding a further source of uncertainty in

fiber discrimination and orientation calculation due to

overlapping fibers. The relative error of calculated mean

direction cosine with respect to expected value 2/p is

reported in Fig. 8 versus the number of fibers over which

statistics are calculated (i.e., fiber sample size). Validation

results confirmed the algorithm accuracy and robustness: A

mean direction cosine relative error of 1 % was achieved

already after processing 12,500 fibers, corresponding to

nearly 85 images.

4.2.2 Test case 2

In this test case, fibers were generated with a random ori-

entation in the three-dimensional volume, that is, without

forcing them to lie parallel to the x–y plane. This test case

gives information on algorithm robustness toward orien-

tation estimate errors due to fibers featuring weak orien-

tation in the x–y plane as opposed to strong orientation in

x–z plane. Artificial images were generated containing 150

fibers each; different runs with increasing number of ima-

ges were tested to assess the dependency of algorithm

accuracy on overall number of fibers sampled. Validation

gave satisfactory results, with number density data in good

agreement with the expected uniform value. For fibers

randomly oriented in the three-dimensional space, expected

mean direction cosine should be equal to 0.5. Nevertheless,

since statistics are calculated for (the portion of) fibers

which are partially illuminated by the laser sheet, calcu-

lated mean direction cosine is typically larger than 0.5

because fibers which are strongly orientated out of the

image x–y plane are difficult to detect and, in the limiting

case, appear as dots and are not even discriminated as fiber.

Even in this case, convergence in accuracy is achieved

quite fast: j cosðhxÞj relative error calculated for a fiber

sample size equal to 1,500 is as much as 5 %; it drops to

below 1 % as the total number of fibers reaches 45,000.

Figure 8 shows results of test case 2 in comparison with

test case 1.

4.3 Effect of threshold setting

Two parameters are used to identify fibers within the

phase discrimination step, that is, image object’s aspect

ratio and length. Accurately setting the threshold for the

latter can result in significant improvement in algorithm

accuracy in terms of j cosðhxÞj relative error. Proper thres-

hold setting involves a certain degree of compromise.

More conservative choices, such as deeming as fibers-

only image objects having a length equal to actual fiber

length lf, could lead to too many overseen fibers; on the

other hand, too loose a threshold would eventually lead to

many false positives.

In Table 1, the comparison of results obtained by con-

sidering four different length thresholds, l*, is given.

Artificial images used for validation purpose were those

from test case 2 (300 images with 150 fibers each). As may

be noticed, a strict constraint on image object length

compared to actual fiber length, lf, (l* ^ lf) leads to almost

10 % error in j cosðhxÞj calculation. Error decreases stea-

dily when threshold length is set to l* = 1/3 lf of actual

fiber length as reported in Parsa et al. (2011) and reaches

an optimum with l* = 1/7 lf. Lowering the threshold below

l* = 1/7 lf leads to an increment in error and an overall

decay of algorithm accuracy.

4.4 Effect of phase discrimination on PIV results

Experimental data collected with the facility described in

Sect. 2 were used to assess the accuracy of PIV velocity

field calculated from tracer images obtained from the

processing of pipe images.

Figure 9 shows an instantaneous PIV velocity field. The

vector field was resampled, showing only one vector for

every two vectors in both directions in order to have a clear

image. The removal of fibers images leads to holes in tracer

only pictures and consequently, as expected, to regions

where no velocity vectors are present.
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Fig. 8 Mean direction cosine versus number of fibers sampled. Test

case 1 and test case 2 compared to expected 2/p value, red line with

1 % error bar
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A validation of the phase discrimination algorithm was,

therefore, performed to assess the error introduced in the

PIV calculations by the phase discrimination step. Vali-

dation was performed as described in Kiger and Pan (2000)

comparing the PIV results from tracer only images to those

stemming from the same images to which fibers were

artificially added. PIV velocity fields were first calculated

from 70 pairs of tracer only images. Composite images

displaying seeding and fibers were then generated by

combining seeding only images to fibers-only images. The

discrimination algorithm was applied to the latter images

obtaining seeding only images. PIV calculations were

performed on such images and results statistically com-

pared to those collected in the first step.

In Fig. 9, a sample instantaneous field of original

seeding only image and a discriminated one are compared.

The velocity fields have been obtained subtracting the

dominant mean velocity field and show good overall per-

formance. This was confirmed by the computed average

error on x, y components, respectively, equal to 0.0042 and

0.0036 pixels. The total error of 0.98 % of the average

displacement over the whole field of observation was of the

same order of magnitude of that reported in Kiger and Pan

(2000).

5 Experimental evaluation of fiber concentration/

orientation in turbulent pipe flow

Images of fiber-laden flow recorded from the turbulent pipe

were finally examined to calculate concentration/orienta-

tion statistics.

Figure 10 shows one sample image and the results of the

ellipse fitting phase: red contours represent the ellipses

fitting to the fibers, with green circles being the calculated

centroids.

Fibers distribution and orientation data obtained from

images similar to Fig. 10 have been compared to data from

Marchioli et al. (2010).

In the current experimental work, Re = 8,043 and

Res = 250. Res, defined as us D/m, is the Reynolds number

based on friction velocity, us, and on a relevant dimension

(pipe diameter D for experimental data, half-channel width

for numerical data). Friction velocity is defined as us ¼ffiffiffiffiffiffiffiffiffiffi
sw=q

p
where sw is the mean shear stress at the wall, and q

is fluid density. Simulation results from Marchioli et al.

(2010) correspond to Re = 9,000 and Res = 150. Our

object in this comparison is to verify a qualitative agree-

ment between current results and previous simulations.

Considering (1) the assumptions in the simulations, (2) the

difference of the operative parameters and (3) the objective

difficulties in examining fibers in wall proximity of a

curved pipe, a good qualitative agreement will make us

confident that the assumptions of the simulations can be

considered a realistic physical model of the reality.

In the simulation of Marchioli et al. (2010), fibers were

assumed rigid, with aspect ratios ranging from 1 to 50; the

fiber was one way coupled with the fluid and the action of

Fig. 9 Phase discrimination validation with respect to PIV calcula-

tions: sample field of velocity fluctuations calculated from seeding

only image (top) and from the same image containing seeding and

artificially added fibers after discrimination phase (bottom)

Fig. 10 Fiber fitting ellipses (red lines) and centroids (green dots)

obtained from sample image. Re = 8,043
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the fluid was simulated with a force acting in the fiber’s

center of mass. In addition, fibers could not interact, and

there was no torque exerted by the fluid acting.

To have the closest experimental representation of this

idealized simulation, we chose rigid plastic fibers with a

similar aspect ratio. Fibers are shown in Fig. 2. We char-

acterized the dimensions of the fibers with a particle size

distribution analyzer based on laser diffraction (Horiba

Partica LA-950), and we obtained their characteristic sizes.

They are all equal, with a very narrow range distribution;

they are cylindrical in shape, with a diameter of 24 lm and

a length of 320 lm, corresponding to an aspect ratio of

13.6.

Pressure drop readings and velocity data confirm that the

flow is fully developed and turbulent and the pipe is

smooth. Figure 11 shows the calculated mean wall-normal

fiber concentration obtained from the entire 800 images set.

Normalized number density is plotted against the distance

from the wall expressed in wall units y? = us y/m, where m
is the kinematic viscosity of the fluid.

Fiber number density profile is calculated binning the

distance from the wall into 17 slabs. With this choice, an

overall number of at least 3,000 fibers could be located in

each slab, obtaining smooth number concentration profiles

and yet achieving a good resolution. Fiber number density

reaches a peak relatively close to the wall, whereas the

concentration profile approaches a value of 0.059 (i.e., the

uniform value) further away from the wall.

Experimental results confirm on a qualitative basis the

profile of normalized number density shown in Marchioli

et al. (2010). In the simulations, the concentration profiles

flatten in the center of the channel rising in proximity to the

wall. Such a peak was explained for spherical particles in

connection with the structure of turbulence in the near-wall

region (see Marchioli and Soldati 2002). In Marchioli et al.

(2010), the peak of fibers’ distribution in wall proximity

was explained by similar arguments. In current experi-

ments, the concentration profile develops a peak between

y? & 13.5 and y? & 27 as noticeable from Fig. 11.

In the simulations, the peak occurs at y? between 1 and

2. We should remark here that specific assumptions of non-

interacting fibers and the representation of fibers as point-

wise are crucial for this result and are known as weak

points of such Lagrangian simulations which, ultimately,

overpredict the concentration peak and predict its occur-

rence too close to the wall (Picciotto et al. 2005). It is of

some significance to compare present results on orientation

against those obtained by the simulations. In Fig. 12, we

show the absolute value of 2D mean direction cosine

against DNS data discussed in Marchioli et al. (2010). We

also plot in the Figure the line corresponding to the mean

value of the absolute direction cosine expected for fibers

oriented randomly in a two-dimensional space (2/p ^
0.64) and in a three-dimensional space (0.5). Observing the

experimental data, we notice that close to the wall, the

mean direction cosine values reach almost 0.8. This indi-

cates that, in the wall region, fibers tend to move with a

strong alignment with the flowing fluid: This alignment is

determined by the action of shear. The direction cosine

decreases gradually from the wall region to the outer region

until reaching a value in the central region of the channel

which is slightly lower than 0.64.

DNS data match with experimental data only in the

region between y? = 10 and y? = 30. In the region closer

to the wall, DNS data predict fiber orientation less aligned

with the flow. This datum may be questionable because of
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the rather crude assumptions of fiber motion in wall

proximity. We remark here also that in the simulations

(Marchioli et al. 2010) fibers touch the wall only when

their center of mass touches the wall. In reality, fibers

which approach the wall in a streamwise-oriented position

are likely to coast the wall in the same position, also due to

the hydrodynamic interactions with the wall. Beyond

y? = 30, DNS data also tend to underpredict experimental

data. They eventually approach a value ^0.5 for the

streamwise direction cosine: This is exactly the average

orientation expected for fibers oriented randomly in the

three-dimensional space.

6 Conclusions

A methodology based on the analysis of single-camera,

double-pulse PIV images is described and validated as a

tool to characterize fiber-dispersed turbulent flow in large-

scale facilities.

The methodology includes image pre-processing, object

identification, phase discrimination and object fitting for

the calculation of fiber distribution and orientation statis-

tics. In the phase discrimination step, objects are sorted

according to parametric combinations of length and aspect

ratio. The outcome of this process is fiber-only images

which can be subtracted to the raw image to obtain

seeding particles only image to be processed in a PIV step.

The impact on PIV calculations resulting from the pres-

ence of fibers has been assessed statistically. Fiber-only

images can be further processed using an ellipse fitting

algorithm to calculate fibers statistics (number density

concentration and orientation). The intrinsic limitations of

the image-processing technique have been pointed out,

and a validation process has been designed to take into

account sources of uncertainties arising in experimental

conditions.

The algorithm proved to be robust toward typical

sources of error, featuring good convergence behavior and

accuracy. Based on these results, the methodology has

been successfully employed to obtain fiber concentration

and orientation data from a fiber-laden turbulent flow.

Simultaneous PIV calculations of the fluid phase have

been proven possible. Preliminary experimental results of

fiber concentration and orientation obtained for a mod-

erate Reynolds turbulent pipe flow were shown and

qualitatively compared to DNS results showing a good

match.
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Appendix: Image pre-treatment processing algorithms

Intensity adjustment and contrast enhancement

Images of fiber/particle laden flows acquired by a camera

when a laser sheet illuminates the flow can be very dif-

ferent in pixel intensity distribution depending on the

specific setup used (laser power, camera) and test condi-

tions (distance of camera). In spite of this, image-pro-

cessing algorithm must be designed to be robust to changes

in light conditions. Therefore, it is common practice to

adjust the pixel intensity of the original image,

I(x, y), where (x, y) is pixel position in the bi-dimensional

image, to span the reference intensity interval 0–255. Some

loss of information can be tolerated in this step since the

final result should be a set of images characterized by

normalized pixel intensity and increased contrast between

objects and background.

In this work, we use the probability density function

(PDF) of pixel intensity to (1) obtain a compact represen-

tation of the image intensity level and to (2) fix intensity

thresholds to correct the image to account for variability in

light conditions. Irreversible corrections of pixel intensity

(such as trimming of image intensities which are above/

below some threshold value) should be contained as much

as possible to reduce the loss of information during image

processing. Intensity thresholds can be fixed based on the

PDF of pixel intensity such that only a small fraction a of

pixels in the image (1, 5 or 10 %) will be affected. Spe-

cifically, the lower threshold, Pa/2, can be defined as the a/2

percentile of the PDF of pixel intensities; the upper

threshold, P100-a/2, can be defined as the 100 - a/2 per-

centile of the PDF of pixel intensities.

Image pixel intensity, I(x, y), is then modified as

follows:

if Iðx; yÞ\Pa=2 then Itrimðx; yÞ ¼ Pa=2 ð10Þ

if Iðx; yÞ[ P100�a=2 then Itrimðx; yÞ ¼ P100�a=2 ð11Þ

else Itrimðx; yÞ ¼ Iðx; yÞ ð12Þ

Changes in pixel intensity reduce (reset) the variability of

intensity values of pixel belonging to the darkest (the

brightest) areas of the image. Finally, image intensity is

mapped (linearly) from Pa/2–P100-a/2 into the reference

intensity range 0–255 increasing the contrast between dark

and bright areas.
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In this work, image intensity adjustment was made using

a = 1 %. The proper value of a depends on image quality

and can be fixed basing on an objective measure of image-

processing performance. If I(x, y) is the 2-D map of pixel

intensity of the raw image and Itrim, a(x, y) is the pixel

intensity after image processing when the a level of cor-

rection is applied, image-processing performance can be

evaluated as [see Hosseini and Naghsh-Nilchi (2012) and

Weeratunga and Kamath (2003) among others]:

MSEðaÞ ¼
P
ðx;yÞðIðx; yÞ � Itrim;aðx; yÞÞ2P

ðx;yÞ Iðx; yÞ2
ð13Þ

The value of a minimizing MSE(a) is the best value of the

parameter preserving the information content stored in the

intensity of the image.

High-frequency noise removal by median filtering

Median filtering is widely used to reduce the random noise

scattered over a uniform background (Kiger and Pan 1999).

In this work, the median filter is performed by convolving a

square two-dimensional filter stencil of width d over all the

pixels within the image. For each position (pixel), the

median of gray-level values of pixels within the stencil is

evaluated and used to modify the local intensity. The

appropriate filter size (d) for each application depends on

the size on the image of the objects which should be pre-

served by the filter. In our work, the size of tracer particles

for the specific arrangement of the test (camera resolution,

magnification and focus) is about 4 pixel, and any filter size

smaller than 4 pixels will preserve the tracers in the filtered

image.

To identify the optimal filter size, we used again the

normalized MSE as an image-processing performance

index. This time, prior to median-filtering, artificial noise

[Gaussian with standard deviation 20 %, as reported in

Weeratunga and Kamath (2003) or salt and pepper noise] is

added to images. The MSE is defined as a function of the

size d of the median filter:

MSEðdÞ ¼
P
ðx;yÞðIðx; yÞ � Imed:filt:;dðx; yÞÞ2P

ðx;yÞ Iðx; yÞ
2

ð14Þ

The size of the filter which minimizes MSE(d) is the most

appropriate filter size to be used.

Binarization

In the binarization step, a grayscale image is transformed

into a black and white image according to the following

rule:

if Iðx; yÞ\Ibw then Ibinðx; yÞ ¼ 0 ð15Þ

else Ibinðx; yÞ ¼ 255 ð16Þ

The appropriate binarization threshold, Ibw, can be deter-

mined considering again the variation of the image-

processing performance index when different values of

Ibw are considered. In this work, we define the optimal

value of the binarization threshold as the one for which

MSEðIbwÞ ¼
P
ðx;yÞðIðx; yÞ � Ibin;Ibw

ðx; yÞÞ2P
ðx;yÞ Iðx; yÞ2

ð17Þ

is minimum.
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