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a b s t r a c t

In this paper we examine the mutual interactions between microbubbles and turbulence in vertical chan-
nel flow. An Eulerian–Lagrangian approach based on pseudo-spectral direct numerical simulation is used:
bubbles are momentum coupled with the fluid and are treated as pointwise spheres subject to gravity,
drag, added mass, pressure gradient, Basset and lift forces. Two different flow configurations (upward
and downward channel flow of water at shear Reynolds number Res = 150) and four different bubble
diameters are considered, assuming that bubbles are non-deformable (i.e. small Eotvos number) and con-
taminated by surfactants (i.e. no-slip condition applies at bubble surface). Confirming previous knowl-
edge, we find macroscopically different bubble distribution in the two flow configurations, with lift
segregating bubbles at the wall in upflow and preventing bubbles from reaching the near-wall region
in downflow. Due to local momentum exchange with the carrier fluid and to the differences in bubble
distribution, we also observe significant increase (resp. decrease) of both wall shear and liquid flowrate
in upflow (resp. downflow). We propose a novel force scaling to examine results in vertical turbulent
bubbly flows, which can help to judge differences in the turbulence features due to bubble presence.
By examining two-phase flow energy spectra, we show that bubbles determine an enhancement (resp.
attenuation) of energy at small (resp. large) flow scales, a feature already observed in homogeneous iso-
tropic turbulence. Bubble-induced flow field modifications, in turn, alter significantly the dynamics of the
bubbles and lead to different trends in preferential concentration and wall deposition. In this picture, a
crucial role is played by the lift force, which is a delicate issue when accurate models of shear flows with
bubbles are sought. We analyze and discuss all the observed trends emphasizing the impact that the lift
force model has on the simulations.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Turbulent bubbly flows are commonly encountered in environ-
mental processes and industrial applications. In natural flows bub-
bles are important in interfacial transport phenomena such as the
uptake of greenhouse gases, e.g. methane and carbon dioxide, by
the ocean (Thorpe, 1982), or the atmospheric exchange of oxygen
with hypoxic rivers, lakes and oceans (Turney and Banerjee,
2008). The variety of instances is even wider in technology. Limit-
ing the analysis to non-boiling gravity-driven flows, buoyant bub-
bles are commonly used to enhance turbulent mixing of dispersed
reagents in devices such as bubble columns (Delnoij et al., 1999;
Lain et al., 1999; Mudde, 2005; Mudde et al., 2009) and gas-lift
reactors (Korpijarvi et al., 1999; Guet and Oooms, 2006). In all
these situations, dispersion of bubbles occurs in a non-uniform
fashion and gives raise to complex interactions with the turbulent
flow structures. Experiments (Tomiyama et al., 2002; Hosokawa
et al., 2010) and simulations (Ervin and Tryggvason, 1997; Lu and
ll rights reserved.
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Tryggvason, 2006, 2007; Climent and Magnaudet, 2006) have shown
that non-uniform distribution and bubbles–turbulence interplay, to-
gether with bubble size distribution, can affect significantly the overall
evolution of the two-phase system by changing the flow hydrodynam-
ics and altering the interfacial transfer rates. These phenomena, rich in
physics and intrinsically complex, have strong modelling issues due to
the multiscale nature of turbulent transfer phenomena (Mudde, 2005).
Our study is motivated by the need to extend current physical under-
standing of microbubbles–turbulence interaction, still incomplete
even in semi-dilute systems, and to establish a benchmark for further
comparisons. In particular, we focus on pressure-driven liquid flows la-
den with gas microbubbles.

Current challenges in the analysis of pressure-driven bubbly
flows deal with the high degree of unsteadiness and complexity
manifested by liquid turbulence and bubble dispersion patterns.
Several questions are still open and concern the modalities by
which the carrier fluid determines bubble spatial distribution
(and in turn bubble velocity distribution). In an effort to clarify
these modalities, Giusti et al. (2005) used an Eulerian–Lagrangian
approach based on Direct Numerical Simulation (DNS) to study
the dispersion of small non-deformable bubbles in vertical channel
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Table 1
Parameters relative to the simulation of bubble dispersion. Superscript + identifies
dimensionless variables. Np is the number of tracked bubbles.

dp (lm) dþp sp (ls) sþp ~spðmsÞ ~sþp Np

330 2.475 7.87 4.42 � 10�4 3.033 1.71 � 10�1 6,713
220 1.650 3.50 1.11 � 10�4 1.348 7.58 � 10�2 22,659
165 1.275 1.97 1.97 � 10�4 0.758 4.26 � 10�2 53,704
110 0.825 0.87 4.92 � 10�5 0.337 1.89 � 10�2 181,340
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flow assuming very dilute conditions (no feedback of bubbles on
turbulence), a simple framework to investigate two-phase systems
like bubble columns or gas-lift reactors which is also relevant to
the small-scale dynamics of more general turbulent flows. The
main finding of Giusti et al. (2005) is related to bubble behavior
near the wall, where bubbles segregate preferentially in high-
speed regions in the downflow case, whereas non-preferential dis-
tribution is observed in the upflow case.

In this paper, we build on the results of Giusti et al. (2005)
extending the analysis to flows with larger gas fraction where
the flow can be modified by bubbles via momentum exchange.
We also consider bubble size effects, equally important in deter-
mining the overall behavior of the two-phase system. Finally, we
adopt a more accurate lift force model which accounts for wall ef-
fects (Takemura and Magnaudet, 2003). Modifications on fluid
velocity, bubble velocity and spatial bubble distribution are exam-
ined to characterize bubble preferential concentration and wall
accumulation. These modifications are discussed in the limit of di-
lute bubble loading and negligible direct hydrodynamic interac-
tions between bubbles. To our knowledge, there is no other
numerical study that addresses these issues in bounded flows by
taking into account collective bubble effects on turbulence. Many
papers (e.g. Xu et al., 2002; Ferrante and Elghobashi, 2004; van
den Berg et al., 2006; Jacob et al., 2010; Yeo et al., 2010) consider
momentum coupling to evaluate drag reduction phenomena. Other
analyses consider homogeneous isotropic turbulence (Ferrante and
Elghobashi, 2003; van den Berg et al., 2006; Mazzitelli and Lohse,
2009; Yeo et al., 2010), spatially-developing turbulent boundary
layers (Ferrante and Elghobashi, 2004; Climent and Magnaudet,
2006) or channel flow without gravity (Xu et al., 2002). Vertical
channel/pipe flow simulations are available, yet only considering
large, deformable bubbles (Lu and Tryggvason, 2006, 2007, 2008;
Hosokawa and Tomiyama, 2010). Here, we focus rather on many
small, non-deformable bubbles which can change, due to gravita-
tional pull, the overall pressure drop of the system.

The paper is organized as follows. First, we summarize the basic
features of the numerical method and the simulation parameters.
Simulation parameters were chosen to mimic bubble columns or
gas-lift reactors operating in the homogeneous (or dispersed) re-
gime, which is found at relatively low superficial gas velocity,
and is characterized by small, spherical or near-spherical bubbles
(Lucas et al., 2005). The velocity fields of both fluid and bubbles
are then analyzed to highlight modifications induced by collective
effects in situations when direct hydrodynamic interactions be-
tween bubbles can be neglected. We follow by a discussion of pref-
erential concentration and near-wall segregation, and conclude
with a quantitative analysis of the two-phase flow energy spectra
and of the forces acting on the bubbles to show the role played
by the lift force, but also the importance of the model chosen to
reproduce its effects in the equations of particle motion.
2. Physical problem and numerical methodology

The flow is driven by an imposed pressure gradient, with bub-
bles injected at void fraction low enough to ensure dilute system
conditions and negligible bubble–bubble interactions. We consider
air bubbles with density qp = 1.3 kg m�3 and diameters ranging
from 110 to 330 lm (see Table 1); the carrier fluid is water, with
density q = 103 kg m�3 and kinematic viscosity m = 10�6 m2 s�1.
The reference geometry is shown (with the coordinate system) in
Fig. 1. In the numerical experiments referring to downward flow
(DWF hereinafter), gravity is directed along the negative x-direction
(g ¼ �gêx), and along the positive x-direction (g ¼ þgêx) in upward
flow (UPF hereinafter). The flow field is periodic both in the stream-
wise and in the spanwise directions, and no-slip conditions are
applied at the walls. The size of the computational domain is
Lx � Ly � Lz = 4ph � 2ph � 2h, where h is the half wall-to-wall dis-
tance. The domain size was chosen to ensure that two-point corre-
lations of the fluid velocity components reach a zero value ahead of
the outlet section in each homogeneous direction.

2.1. Equations for the fluid phase and flow solver

The governing equations for the fluid are continuity and Na-
vier–Stokes equations, which in dimensionless form read as:

@ui

@xi
¼ 0; ð1Þ

@ui

@t
þ uj

@ui

@xj
¼ � @p

@xi
þ d1;i þ

1
Res

@2ui

@xj@xj
þ f2W;i; ð2Þ

where ui is the ith component of the fluid velocity vector, p is the
fluctuating kinematic pressure, d1,i is the mean pressure gradient
that drives the flow, and Res = h us/m is the shear Reynolds number
based on the shear velocity:

us ¼

ffiffiffiffiffiffiffiffiffiffiffi
d1;i

h
q

s
: ð3Þ

Note that, anticipating pressure drop changes due to bubbles,
the shear velocity is not defined using the shear stress at the wall,
sw, as usually done in single-phase problems. The last term on the
right-hand side of Eq. (2), f2W,i, represents the inter-phase momen-
tum coupling, given by the force per unit volume exerted by the
bubbles on the fluid, and is modelled using the well-known PSI-
Cell (Particle-Source-In-Cell) method proposed by Crowe et al.
(1977). This method does not include the effect of the particle
wake, which becomes important for particle Reynolds numbers
much higher than those obtained in our simulations (Yuu et al.,
2002). Eqs. (1) and (2) were written neglecting effects due to local
variations of the bubble volume fraction, UV. According to Elghob-
ashi (1994), this approach is valid for UV < 10�3: higher values of
the volume fraction, which may occur due to preferential concen-
tration effects, would inevitably affect the accuracy of the approach
and limit the applicability of its predictions (Ferrante and Elghob-
ashi, 2004).

Eqs. (1) and (2) were solved directly using a pseudo-spectral
method, which transforms the field variables into wavenumber
space to discretize the governing equations. All quantities are ex-
pressed by Fourier expansions in the homogeneous directions x
and y, and by Chebyshev polynomials in the wall-normal direction
z (details in Soldati and Banerjee, 1998). All simulations were run at
Res = 150. This value corresponds to a shear velocity equal to
7.5 � 10�3 m s�1 in a channel with h = 0.02 m. Calculations are
done using variables in wall units, made dimensionless using us, m
and q, and identified with the superscript +. The non-dimensional
size of the computational domain is then Lþx � Lþy � Lþz ¼ 1885�
942� 300. The domain is discretized by Nx � Ny � Nz = 128 � 128
� 129 grid points, uniformly distributed in the streamwise and
spanwise directions to provide spacings equal to d x+ � 14.72 and
dy+ � 7.36 in wall units. In the wall-normal direction, grid points
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are clustered in the near-wall region. The distance between two
neighboring points ranges from dzþmin ¼ 0:045 at the walls to
dzþmax ¼ 3:682 in the center of the channel. The grid resolution is
thus sufficient to describe the smallest length scale in the flow:
the non-dimensional Kolmogorov length scale, gþK , varies along
the wall-normal direction from a minimum value gþK ¼ 1:6 at the
wall to a maximum value gþK ¼ 3:6 at the centerline (Marchioli
et al., 2006). The step size for time integration was chosen based
on the response time of the tracked bubbles (see next paragraph)
with the minimum value dt+ = 0.0095 for the 110 lm bubbles and
the maximum value dt+ = 0.036 for the 330 lm bubbles.
2.2. Equations for the dispersed phase and Lagrangian bubble tracking

Bubbles obey the following Lagrangian equation of motion in
vector form:
dvp

dt
¼ 1� q

qp

 !
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where bold-faced letters are vectors; vp is bubble instantaneous
velocity; u@p and x@p are fluid velocity and vorticity at bubble
location; g is gravitational acceleration; and sp is the bubble re-
sponse time:

sp ¼
qpd2

p

18l
; ð5Þ

with dp the bubble diameter, and l the fluid dynamic viscosity. Eq.
(5) can be corrected to account for added mass effects, thus obtain-
ing ~sp ¼ sp½1þ q=ð2qpÞ� ’ 385:6sp. Dimensional and non-dimen-
sional values of dp, sp and ~sp are given in Table 1; and yield large
near-wall values of the bubblance parameter defined as (Lance
and Bataille, 1991):

b ¼ 1
2

UV v2
T

hu02i
; ð6Þ

with UVv2
T the kinetic energy due to bubble motion (vT ¼ g~sp being

the bubble rise velocity in still fluid) and hu02i the kinetic energy of
the fluid velocity fluctuations before bubble injection. In our prob-
lem, bubbles in the wall proximity are in the b ’ Oð1Þ regime and
are expected to modify turbulence significantly. We also remark
that, even if bubble size is varied over a rather large range of diam-
eters, no locking of bubbles into near-wall fluid velocity streaks is
observed. This unphysical effect appears when the domain extent
in the streamwise direction is not long enough to apply periodic
boundary conditions properly.

To analyze the effect that microbubbles can produce collectively
on the two-phase system, the flow should be driven by Oð104Þ
bubbles at least. Due to current computational capabilities, it is
not feasible to track these many bubbles using fully-resolved sim-
ulations, which can treat up to Oð102Þ bubbles (Esmaeeli and Try-
ggvason, 2005). Following Climent and Magnaudet (1999, 2006)
and Mazzitelli and Lohse (2009), we adopted an alternative Euleri-
an–Lagrangian approach that allows to track large swarms of bub-
bles at reduced computational costs by (i) modeling bubbles as
points, (ii) neglecting near-field interactions among bubbles, and
(iii) using effective force models for drag and lift. The point-bubble
model, in particular, is a key feature in view of the range of bubble
diameters we had to select to emphasize lift effects. The downsize
of this choice is that, for the problem under investigation (gas–li-
quid flow), these effects are maximized for bubble diameters that
become larger than the wall-normal grid spacing within few vis-
cous units from the wall. Here, the pointwise approach shows
intrinsic limitations in terms of accuracy that at present can not
be removed. In the downflow case, bubbles are kept away from
the near-wall region by lift (Giusti et al., 2005) so inaccuracies
due to bubble-to-gridsize ratios larger than unity are expected to
be negligible. In the upflow case, bubbles accumulate well inside
the viscous sublayer and our results can be considered reliable only
when the center of the bubble is at least one diameter away from
the wall (for the larger 330 lm bubbles, this corresponds to a min-
imum bubble-to-wall distance of about three wall units). A de-
tailed investigation of bubble behavior very near the wall,
however, would require an accurate modelling of bubble–bubble
interaction in area densely populated by bubbles, which is beyond
the scope of this paper. In our opinion, this ‘‘range of validity’’ is
sufficient to describe segregation patterns and accumulation fluxes
since all bubble–turbulence interactions relevant to these phe-
nomena occur outside the viscous sublayer. We stress here that,
for the parameter range of this work, other modelling approaches
would be hardly viable with present-day methods and computers.

The time derivative Du@p/Dt = @u@p/@t + u@p � ru@p is the total
acceleration of the fluid at bubble location, whereas du@p/
dt = @u@p/@t + vp � ru@p is calculated along bubble trajectory. Fi-
nally, the coefficients CSN, CW and CL represent corrections to drag
and lift, respectively. The coefficient CSN ¼ 1þ 0:15Re0:687

p provides
a non-linear correction to the Stokesian drag force when the bub-
ble Reynolds number, Rep ¼ ju@p � vpjdp=m becomes larger than
unity (Schiller and Naumann, 1933). In our simulations, the mean
value of the bubble Reynolds number, Rep, changes significantly
with the bubble diameter but not much with the flow configura-
tion: both in upflow and in downflow, we find Rep ’ 0:75; 1:9; 4
and 11.2 for the 110, 165, 220, and 330 lm bubbles, respectively.
The standard deviation from such mean values varies between
0.18 and 0.34 depending on bubble size, and corresponds to correc-
tions of Stokes drag below 10% for the smaller bubbles and up to
80% for the larger bubbles. The coefficient CW accounts for further
modifications to the drag force due to the presence of a solid
boundary in the vicinity of the bubble. Following Fukagata et al.
(2001), the equations used to calculate CW, in directions parallel
(k) and orthogonal (\) to the wall, are:

CWk ¼ 1� 9
16
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ð7Þ

where the term d+/2z+ indicates the ratio between bubble radius
and the distance between wall and bubble center. The coefficient
CL in the lift force term accounts for corrections due to small/large
bubble Reynolds number. We calculated CL as:

CL ¼

CLMcL ¼ 5:816 Srp

2Rep

� �0:5
� 0:875 Srp

2

	 

3

4Srp

Jð�Þ
2:255 for Rep < 1
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In Eq. (8) CLMcL represents the coefficient calculated following
McLaughlin (1991). The function J(�) is reported in McLaughlin
(1991), with � = (Srp/Rep)0.5 and Srp ¼ jðu@p � vpÞ�x@pjdp=ju@p�
vpj2. The coefficient CLKK is calculated as in Kurose and Komori
(1999), where K0 and K1 are tabulated as functions of Rep. Based
on the values of Rep in our simulations, we note that CL ¼ CLMcL for
the 110 lm bubbles only, while CL ¼ CLKK for the 330 lm bubbles.
For the intermediate-size bubbles (165 and 220 lm), in most of
the occurrencies Rep is in such range that the lift coefficient is com-
puted as linear interpolation between CLMcL and CLKK .

Aerodynamic lift is computed accounting also for the term fLW,
the wall-induced extra lift acting on each bubble. This term was
not considered in Giusti et al. (2005), and is computed here accord-
ing to Takemura and Magnaudet (2003):

fLW ¼
3
4

q
qpdp

V2
LW CLW ; ð9Þ

where VLW is the relative velocity between bubble and fluid in
the wall-parallel (x,y)-plane, i.e. VLW = {[(ux)@p � vp,x]2 + [(uy)@p �
vp,y]2}0.5, and CLW is a non-dimensional coefficient computed as:

CLW ¼CLW0 1þ0:6Re0:5
LW �0:55Re0:08

LW

� �2
� 1

3
2zþ

dþp

 !�2tanhð0:01ReLW Þ

ð10Þ

where ReLW = VLWdp/m is bubble Reynolds number based on the
relative velocity VLW, and CLW0 is a coefficient that depends on the
non-dimensional distance from the wall, z⁄ = zVLW/m, according to
the following equations:

CLW0

¼ 9
8þ5:78�10�6ðz�Þ4:58
h i

b2 expð�0:292z�Þ for z�<10

¼8:94b2ðz�Þ�2:09 for z�>10

8<
: ð11Þ

Note that b = 1 for the case of contaminated bubbles (Takemura and
Magnaudet, 2003).

Eq. (4) is similar to the equation of motion for small rigid
spheres (Gatignol, 1983; Maxey and Riley, 1983), written here
neglecting the second order terms (related to ru@p) due to the
small size of the bubbles (Rizk and Elghobashi, 1985). The rigid
sphere approach is valid until the condition Eo < 0.2 is satisfied,
where Eo ¼ d2

pjqp � qjg=rs is the Eotvos (or Bond) number and rs

is the surface tension at fluid/bubble interface. For this study, we
assumed rs = 0.0728 N/m, corresponding to an air/water interface
at 20 �C. The resulting values of the Eotvos number are
E0 ’ 1,44 � 10�2 for the 330 lm bubbles and E0 ’ 1,6 � 10�3 for
the 110 lm bubbles. In solving Eq. (4), we also assumed that water
contains surfactants: Under this hypothesis, a no-slip condition can
be applied at bubble interface (Ferrante and Elghobashi, 2004), and
bubble internal circulation can be neglected.

The trajectory of individual bubbles is obtained upon time
integration of Eq. (4) using a 4th-order Runge–Kutta scheme:
bubbles start from an initial random distribution over the com-
putational domain with initial velocity equal to the fluid velocity
at bubble location. Fluid velocity interpolation is performed
using 6th-order Lagrangian polynomials (near the wall, the inter-
polation scheme switches to one-sided). The time-step size for
bubble tracking was chosen equal to that of the fluid and corre-
sponds to roughly one fifth of the corrected response time ~sp for
a given bubble set (see Table 1). According to the Nyquist theo-
rem, this ensures a faithful reproduction of bubble transient
behavior (Elghobashi and Truesdell, 1992). Bubble-wall interac-
tion is modelled by rigid elastic rebound, and bubbles are re-in-
jected into the domain when they cross periodic boundaries in
streamwise or spanwise direction. This procedure also allows
to keep the average volume fraction of the bubbles constant in
time.
2.3. Summary of simulations

The database developed for this study comprises eight simula-
tions with two-way coupling (four bubble diameters and two flow
configurations), all performed imposing the same average void
fraction, UV = 10�4, corresponding to an average mass fraction
UM = 1.3 � 10�7. A larger void fraction would change the regime
from bubbles transported by the fluid to fluid driven by bubble
swarms (Mudde, 2005). For each simulation, its one-way coupling
counterpart is available. The total simulation time for each run was
TUPF ’ 108 s for the upflow case (in wall units TþUPF ¼ 6120), and
TDWF ’ 95 s for the downflow case (in wall units TþDWF ¼ 5400).
These times are sufficient for a fluid particle moving at the average
fluid velocity to sweep the entire streamwise length of the channel
more than forty times. The total tracking time was Tþtr;UPF ¼ 2880
for the upflow case, and Tþtr;DWF ¼ 2160 for the downflow case. Fi-
nally, the time span considered for averaging the statistics was
Tþavg ’ 1500 for all cases. We remark that, upon bubble injection,
the momentum coupling introduces a ‘‘numerical perturbation’’
in the system and alters the wall shear stress. Once this perturba-
tion is damped, the system reaches a new steady state character-
ized by constant average wall shear stress, and statistics can be
gathered. The time evolution of the wall shear stress observed in
our simulations is analyzed in detail in Section 3.

3. Results

In this section, upflow and downflow statistics of the velocity
field for both fluid and bubbles are presented. Before discussing
the results, it is crucial to stress on the changes of the wall shear,
which will show on the quantitative figures of all dimensionless
quantities. We thus start from a simple one-dimensional model
in which bubbles act on the fluid as an additional pressure gradient
that can eventually modify the shear stress at the wall. Through
this model we can link directly bubble feedback onto turbulence,
and we can devise a theoretical tool to look at the results.

3.1. Rescaling wall shear stress to account for bubble-induced
modifications

Consider the flow (no matter if laminar or turbulent) in a verti-
cal channel of size Lx � Ly � Lz. Let the flow be driven by an external
imposed pressure difference DP (including the hydrostatic pres-
sure difference required to balance the gravity force acting on
the fluid). At steady state, the force balance is:

DP � A ¼ sW � P;! sW ¼
DP
Lx

Lz

2
ð12Þ

where A ¼ Ly � Lz is the cross-sectional area, sW is the mean shear
stress at the wall, and P ¼ 2 � ðLx � LyÞ is the wetted perimeter. Con-
sider now the bubble-laden case, in which Np spherical bubbles (of
volume Vp ¼ d3

pp=6) are injected into the flow. Bubble feedback on
the fluid can be quantified by the body force term F2w = Np � F2w,p

where F2w,p is the force imposed on the fluid by the pth bubble. In
the streamwise (vertical) direction, bubbles dynamics is mostly
influenced by drag, gravity and buoyancy. Hence:

F2w;p ¼ �Fdrag ¼ Fbuoyþgrav ¼ ðq� qpÞVpg: ð13Þ

If it is further assumed that bubbles remain uniformly distrib-
uted in the channel then the total force F2w is also uniformly dis-
tributed, and the effect of bubbles on the flow may be expressed
in the form of an equivalent pressure difference imposed at the
channel streamwise ends. In scalar form:

DPeq;2w ¼
F2wLx

V ¼ Npðq� qpÞVpg
Lx

V ¼ UV ðq� qpÞgLx; ð14Þ



Table 2
Effect of bubbles on wall shear stress, shear velocity and shear Reynolds number.
Values for bubble-laden flow with one-way coupling or unladen flow (first column)
are compared against values for bubble-laden flow with two-way coupling (second

column: upflow, third column: downflow). Definitions are as follows:

us;2w;UPF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sW ;2w;UPF

q

q
; us;2w;DWF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sW ;2w;DWF

q

q
; Res;2w;UPF ¼ us;2w;UPF �h

m and Res;2w;DWF ¼ us;2w;DWF �h
m .

Unladen flow Bubble-laden flow (2-way)

Upflow (UPF) Downflow (DWF)

sþW ¼ 1 sþW ;2w;UPF ¼ 1:3483 sþW ;2w;DWF ¼ 0:6517

us = 7.5 mm s�1 us,2w,UPF = 8.7 mm s�1 us,2w,DWF = 6.1 mm s�1

Res = 150 Res,2w,UPF = 174.2 Res,2w,DWF = 121.1

Fig. 1. Sketch of the computational domain.
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where V is the volume occupied by the fluid in the channel, and
UV ¼ NpVp=V is the void fraction. The wall shear stress with two-
way coupling at steady state then becomes:

sW ;2w ¼
DP � DPeq;2w

Lx

Lz

2
¼ DP

Lx
�UV ðq� qpÞg

	 

Lz

2
;

where sign + (resp.�) holds for the upflow (resp. downflow) case. In
our channel Lz = 2h, and we find: sW,2w = sW ± UVg(q � qp)h. In wall
units, obtained normalizing by qu2

s:

sþW ;2w ¼ 1� agþð1� qp=qÞRes: ð15Þ

Values of sW,2w obtained in our two-way coupled simulations are
shown in Table 2. Due to the additional pressure difference induced
by the bubbles, the wall shear stress in upflow (sþW;2w;UPF ) increases
with respect to the single-phase simulation, whereas the wall shear
stress in downflow (sþW;2w;DWF) decreases. Changes of the wall shear
stress correspond to changes of the shear velocity and, in turn, of
the shear Reynolds number. Elaborating, in upflow (resp. down-
flow) the effect of bubbles on the fluid at Res = 150 is equivalent
to increasing (resp. decreasing) the shear Reynolds number to Re-
s,2w,UPF = 174.2 (resp. Res,2w,DWF = 121.1) in a single-phase simula-
tion. In the following paragraph, we will verify the validity of this
prediction examining bubble-induced flowrate modifications.

3.2. Fluid velocity statistics

Fig. 2 shows the time evolution of sþW;2w. For ease of discussion,
profiles in this figure, and in figures hereinafter unless otherwise
stated, are relative to the 220 lm bubbles (solid lines), for which
direct comparison against the results of Giusti et al. (2005) is avail-
able, and to the 110 lm bubbles (dashed lines), which will be used
to highlight modifications due to bubble size. Results for the other
two bubble sets (dp = 165 lm and dp = 330 lm) are qualitatively
similar and will not be shown. The time span covered in this figure
starts at t+ = 1800 after inclusion of two-way coupling in the sim-
ulations (note that all statistics shown in this paper were gathered
from this time instant onwards), and finishes at t+ = 3280, when
sþW;2w has reached its steady-state value. In the downflow case, this
value tends asymptotically to the theoretical prediction
sþW;2w;DWF ¼ 0:6517 for both bubble sizes. This means that, at steady
state, momentum transfer between fluid and bubbles reduces sþW;2w

with respect to unladen flow (dot-dashed line). In the upflow case,
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values of sþW;2w at steady-state are always smaller than the predic-
tion sþW ;2w;UPF ¼ 1:3483, even though differences are larger for smal-
ler bubbles. Bubble effects on wall shear stress correspond to
variations of the streamwise fluid velocity profiles, which are
shown in Fig. 3: Profiles for upflow/downflow laden with bubbles
of diameter 110 lm and 220 lm are shown in Fig. 3a. Compared
to unladen flow (dot-dashed line), the presence of bubbles in-
creases the velocity in upflow (solid line), and decreases the veloc-
ity in downflow (dashed line). Profiles relative to bubbles with
diameter 165 lm and 330 lm follow the same trend. This result
is expected since bubbles rising in a co-current flow favor the
upward transport of fluid, whereas bubbles rising in a counter-cur-
rent flow hinder downward transport of fluid. To characterize
bubble-induced effects in terms of equivalent pressure gradient,
we renormalized the profiles shown in Fig. 3a replacing us with
us,2w,UPF and us,2w,DWF for upflow and downflow, respectively. Re-
scaled profiles are shown in Fig. 3b and in Fig. 3c, with thick lines
referring to two-way coupled bubble-laden flow and thin lines
referring to single-phase/one-way coupled flow. Analytic profiles
and the wall-normal coordinate z+ are also rescaled based on the
proper value of the shear velocity. Fig. 3b shows that the difference
observed in Fig. 3a is significantly reduced: for both bubble sizes
the rescaled velocity uþx;2w;UPF

D E
¼ hux;2w;UPFi=us;2w;UPF falls just

slightly below the analytic profile and the computed single-
phase/one-way coupled flow profile. The same trend is observed
in downflow (Fig. 3c), where all profiles collapse onto each other
almost perfectly. The improved agreement obtained upon rescaling
support the conclusion that rising bubbles act on the fluid as an
‘‘equivalent’’, albeit non uniform, pressure gradient. This pressure
gradient may either accelerate (in upflow) or decelerate (in down-
flow) the fluid: in both cases, bubbles will alter not only mean
quantities but also turbulence intensities. This is demonstrated in
Fig. 4, where we show the Root Mean Square (RMS) of the fluid
velocity fluctuations, rescaled according to Table 2. In each panel,
results obtained from two-way coupled simulations (thick lines)
are compared against the reference one-way coupled simulations
(thin lines). For the 220 lm bubbles only, the non-rescaled fluid
RMS components are also shown for comparison purposes. Some
general observations can be drawn from Fig. 4. First, without
rescaling bubbles appear to have a significant effect on the inten-
sity of velocity fluctuations, which are increased in upflow and de-
creased in downflow. This result is consistent with the variation of
the flowrate discussed in Fig. 3: when the flowrate (the bulk Rey-
nolds number) increases, an increase of turbulence intensity is ex-
pected and viceversa. Second, rescaled turbulence intensities in
two-way coupled simulations compare reasonably well with tur-
bulence intensities in pure-fluid simulations, indicating that turbu-
lence in momentum-coupled bubble-laden upflow (resp.
downflow) is similar to an unladen flow at suitably-chosen higher
(resp. lower) Reynolds number. There are important differences
however. In upflow, the rescaled streamwise RMS component is al-
ways lower than in single-phase/one-way coupled flow; in down-
flow, this undershoot is observed consistently for all three RMS
components. These latter findings show some agreement with
the experimental observations of Serizawa et al. (2004), who re-
ported pseudo-laminarization in vertical pipe flow in presence of
bubbles arguing that bubbles may reduce the capability of near-
wall vortices to mix high-speed and low-speed fluid and, in turn,
to sustain turbulent fluctuations. Third, bubble size has marginal
effect on the overall system behavior: RMS profiles for the
110 lm bubbles and for the 220 lm bubbles overlap almost per-
fectly, with a slight underestimation observed only for the wall-
normal component in downflow (Fig. 4f).

3.3. Bubble statistics

In this section, we discuss concentration and velocity statistics
to quantify the influence of momentum exchange between the
two phases on preferential segregation and wall fluxes. Results
are then explained by analysis of the fluid energy spectra and eval-
uation of the forces acting on bubbles, in particular lift.

3.3.1. Momentum coupling effects on preferential concentration and
wall accumulation

Several DNS-based studies of heavy particle dispersion in chan-
nel flow (see Soldati and Marchioli, 2009; and references therein)
have demonstrated the strong correlation existing among coherent
wall structures and particle transport mechanisms. In Fig. 5 we
provide a pictorial view of transport mechanisms for the case of
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� �
¼ RMS u0i;2w;UPF

� �
=us;2w;UPF ; panels (a), (c) and (e)] and in downflow

[RMSðuþi;2w;DWF Þ ¼ RMS u0i;2w;DWF

� �
=us;2w;DWF ; panels (b), (d), and (f)]. Panels (a and b): streamwise RMS component; panels (c and d): spanwise RMS component; panels (e

and f): wall-normal RMS component. Lines: (- - - ) 110 lm bubbles; (— ) 220 lm bubbles; (-�-) unladen flow. Symbols: (	) non-rescaled RMS components,
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=us and RMS uþi;2w;DWF

� �
¼ RMS u0i;2w;DWF

� �
=us , for two-way coupled simulations with the 220 lm bubbles.
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microbubbles: one instantaneous snapshot of bubble spatial distri-
bution in the near-wall region of the channel, focused on a cross-
sectional window of the computational domain having streamwise
thickness Dx+ = 400. All bubble classes are included in the snap-
shots, reproduced with diameters in the correct reciprocal dimen-
sional scale. Notice that we can not scale bubble diameter to the
box dimensions (the smallest bubbles would be invisible). The col-
ored background represents the in-plane streamwise fluid velocity
at x+ = 800, shown here to relate bubble distribution with the local
flow structure. As already observed in many previous works (Seriz-
awa et al., 1975; Hibiki et al., 2004; Giusti et al., 2005), bubbles in
upflow (Fig. 5a) are transported towards the wall where they tend
to accumulate regardless of their size; bubbles in downflow
(Fig. 5b) are prevented from reaching the very near-wall region
where practically no bubble is ever found. In both situations, bub-
bles maintain a rather uniform spatial distribution away from the
wall and there is no clear evidence of segregation into clusters
(van den Berg et al., 2006; Calzavarini et al., 2008).

In Fig. 6 we show the instantaneous concentration profiles in the
wall-normal direction for the different bubble classes both in up-
flow (Fig. 6a) and downflow (Fig. 6b). Bubble concentration is com-
puted at the final time step of the simulations: The flow domain was
divided into Ns = 193 wall-parallel slabs of thickness
DzþðsÞ ¼ Res

tanhðcÞ tanh c s
Ns

� �
� tanh c s�1

Ns

� �h i
, where s = 1, . . . ,Ns is the

slab counter and c = 1.7 is the stretching factor. The number of
bubbles within each slab, Nb(s, t), is counted and divided by the vol-
ume of that slab, Vs, to obtain local concentration C = C(s, t) = Nb(s, t)/
Vs. Finally, C is normalized by its initial value, C0 = C(s, t = 0). The ra-
tio C/C0 is bubble number density and will be larger than unity in
the flow regions were bubbles tend to segregate and smaller than
unity in the regions depleted of bubbles. Note that integration of
C/C0 over half cross section in the wall-normal direction gives a con-
stant value equal to Res in wall units. Fig. 6a shows that all bubble
classes, with the exception of the 330 lm bubbles, undergo accu-
mulation at the wall and a maximum is observed for the 165 lm
bubbles (black circles). For the intermediate-size bubbles
(dp = 110, 165 and 220 lm) local variations of the volume fraction
reach peak values of order 10�2. These values are significantly lar-
ger than the threshold separating the dilute flow regime from the
dense flow regime (Elghobashi, 1994), yet they are found only with-
in a distance of one viscous unit from the wall. This distance corre-
sponds to roughly one bubble diameter: our results, which apply to
dilute flow conditions, may thus be considered reliable when bub-
bles are at least one diameter away from the wall.

Direct comparison of concentration profiles against Giusti et al.
(2005) is only possible for the 220 lm bubbles (open squares). For
these bubbles, inclusion of two-way coupling effects lowers the
peak of concentration compared to one-way coupling results, mak-
ing it quantitatively closer to experiments (see for instance Felton
and Loth, 2001, 2002). A significant proportion of bubbles does not



Fig. 5. Cross-sectional view of instantaneous bubbles distribution in the near wall region of the channel. A computational window in the range 600 < x+ < 1000, 100 < y+ < 600,
0 < z+ < 60 is considered. Bubbles are rendered as circles sized according to bubble diameter and colored according to bubble streamwise velocity. Bubbles are superposed to
colormap of the instantaneous fluid streamwise velocity taken at x+ = 800. Panels: (a) upflow; (b) downflow. (For color interpretation in this figure legend the reader is
referred to see the web version of this article.)
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migrate right at the wall anymore, leading to the formation of a
bulge in the concentration profile (1 < z+ < 5). No peak is observed
for the 330 lm bubbles (black squares), which slowly move away
from the viscous sublayer and migrate towards the center of the
channel. To understand the change of shape in the concentration
profile between the 220 lm bubbles and the 330lm bubbles, in
Fig. 6a we included an additional class of bubbles with intermedi-
ate diameter (dp = 250 lm, open triangles). It is apparent that, as
bubble diameter increases, both regions of maximum peak and
bulge are drained and the viscous sublayer becomes more and
more depleted of bubbles. Bubbles concentration in downflow is
shown in Fig. 6b: there is practically no bubble in the viscous sub-
layer, and bubble distribution away from the wall is nearly uni-
form. This behavior is in qualitative agreement with that
observed in Giusti et al. (2005), the only two-way coupling effect
being a sharper concentration gradient for z+ < 10.

Bubble distribution in the wall region of the channel is related
to bubble transfer fluxes in the wall-normal direction. Concentra-
tion build-up occurs in upflow because bubble transfer to the wall
is more efficient than bubble transfer away from the wall during
the time transient in which concentration is developing from the
initial condition of random seeding: the resulting net flux of
bubbles to the wall, k+ in dimensionless units, is quantified in Table
3. We remark that this quantity is zero in downflow because trans-
fer fluxes compensate each other and bubble concentration has al-
ready reached the steady state. To determine k+ we computed the
rate of change of the number N(t) of bubbles with positive (resp.
negative) wall-normal velocity which instantaneously cross an
arbitrarily-chosen wall-parallel monitor surface in the near-wall
region. A net mass flux of gas (bubbles), indicated here as J
(kg m�2 s�1), is thus obtained and then normalized by the mean
bulk concentration of bubbles, Cb (kg m�1), to get k = J/Cb. Given
the number N0 of tracked bubbles, J and Cb in non-dimensional
form read as:

JþðtþÞ ¼ 1
Aþ
� dNðtþÞ

dtþ
;CbðtþÞ ¼

N0 � NðtþÞ
Vþ

ð16Þ

where Aþ ¼ Lþx Lþy is the area of the monitor surface, V+ = A+z+ is the
volume of fluid comprised between the monitor surface and the
wall, and z+ is the distance from the wall at which a bubble crosses
the monitor surface, which we placed at z+ ’ 2, z+ ’ 5 and z+ ’ 7.
Values of k+ obtained for the 220 lm bubbles show that wallward
mass fluxes are much less intense when bubbles can exchange
momentum with the fluid, the reduction being of order 50% at all
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Table 3
Non-dimensional bubble wallward fluxes, k+, as a function of bubble diameter, dp, and
location of the monitor surface from the wall, z+, in upward channel flow.

Fluid-bubble coupling Bubble diameter (dp (lm)) Bubble wallward flux
(k+ � 10�5)

z+ ’ 2 z+ ’ 5 z+ ’ 7

One-way 220 0.29 0.59 0.81
220 0.12 0.35 0.43

Two-way 165 0.46 1.11 1.61
110 0.11 0.24 0.34
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monitor surfaces. Considering values of k+ obtained in two-way
coupling simulations, it is confirmed that the 165 lm bubbles exhi-
bit the strongest fluxes, in agreement with the results of Fig. 6.

3.3.2. Bubble velocity statistics
A statistical description of bubble velocity field and of the flow

field seen by the bubbles can be useful to interpret the transport
mechanisms discussed previously. In particular, time-averaged
velocity statistics can be used to analyze the importance of bub-
bles–turbulence interactions on the two-phase system by correlat-
ing the turbulent field sampled by the bubbles with the mean
turbulent field. In Figs. 7 and 8 we compare the mean streamwise
velocity of the fluid, uþx

� �
, of the fluid seen by bubbles, uþx

� �
@p (eval-

uated upon interpolation of uþx at the bubble location), and of the

bubbles, vþp;x
D E

, for upflow and downflow respectively. Note that,

since statistics in these figures are at steady state, the relative (slip)
velocity between fluid and bubbles can be obtained directly as
vþslip;x

D E
¼ uþx

� 
@p � vþp;x

D E
¼ uþx
� �

@p � vþp;x
D E

. In upflow (Fig. 7),

there is no difference between the Eulerian flow field (solid line)
and the flow field seen by the 110 lm (smaller) bubbles. A signifi-
cant difference between the two fields is obtained for the larger
bubbles in the region 2 < z+ < 15, where uþx

� �
@p < hu

þ
x i and the con-

centration profile develops the bulge shown in Fig. 6. This behavior
agrees with the observation that there is little or no bubble segre-
gation in the core flow region and in the very-near wall region, but
it may also indicate that large enough bubbles can produce strong
turbulence modifications just across the viscous sublayer by col-
lecting preferentially in low-speed zones. Examining the bubble
velocity hvþp;xi, we find (as expected) that bubbles lead the fluid
and the slip velocity deficit, nearly constant in the wall-normal
direction, is that required for the drag force to counterbalance
the buoyancy force in the streamwise direction. This deficit is lar-
ger for larger bubbles, but is reduced in the near-wall region due to
the wall correction which increases the drag force.

In downflow (Fig. 8), we first observe that velocity profiles end
at z+ ’ 3 for the 110 lm bubbles and at z+ ’ 5 for the 220 lm bub-
bles because no bubbles are found beyond these points. Second,
the similarity between the fluid velocity profiles is lost when bub-
bles approach the wall: the fluid velocity seen becomes higher than
the Eulerian velocity in the range 3 < z+ < 15 for the 110 lm bub-
bles, and (by larger amounts) in the range 5 < z+ < 30 for the
220 lm bubbles. Besides confirming that no preferential bubble
distribution occurs in the center of the channel, this result also re-
veals that bubbles sample high-speed regions associated to coher-
ent wallward fluxes of high-momentum fluid (sweep events).
These events, however, are not able to carry the entrained bubbles
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right at the wall their action being contrasted by the lift force push,
which becomes dominant in the vicinity of the wall (see Section
3.5). In this region, bubble preferential sampling is thus induced
by lift rather than by inertia as it occurs for heavy particles. Finally,
we observe that bubble velocity is always smaller than the fluid
velocity seen and that this nearly-constant velocity gap increases
with the size of bubbles so that larger bubbles lag the fluid every-
where. Present findings resemble those reported in Giusti et al.
(2005) and indicate minor two-way coupling effects on the mean
velocity fields.

Two-way coupling effects are more evident on turbulent fluctu-
ations, as demonstrated by the higher-order velocity statistics.
Here, we limit our analysis to the Root Mean Square (RMS) statis-
tics, shown in Fig. 9 for upflow and in Fig. 10 for downflow. The
RMS of bubble velocity fluctuations, RMS(v0p;i) (open squares), is
compared against the RMS of the Eulerian fluid velocity fluctua-
tions, RMS(u0i) (solid line), and the RMS of the fluid velocity fluctu-
ations seen, RMS u0i

� 
@p (dashed line), for three different cases:

two-way coupled simulations with 110 lm bubbles (left-hand col-
umn), two-way coupled simulations with 220 lm bubbles (middle
column), and one-way coupled simulations with 220 lm bubbles
(right-hand column). In two-way coupled upflow, the different
RMS profiles do not change much with bubble diameter and over-
lap almost perfectly except in the streamwise direction (Fig. 9b).
Due to bubble preferential distribution in low-speed regions
(where turbulent fluctuations are lower), the streamwise velocity
fluctuations of both bubbles and fluid seen are smaller than the
Eulerian counterpart in the viscous sublayer, but reach a higher
peak at z+ ’ 10. This behavior is observed also in one-way coupling
simulations, yet it is enhanced by momentum exchange. In agree-
ment with the observed increase of flowrate, the RMS values
resulting from two-way coupling simulations are always higher
than those obtained from one-way coupling simulations. Note that
the bulge in the RMS(v0p;x) profile of the 220 lm bubbles corre-
sponds to that found in the concentration profile.

Differences between the RMS for bubbles (open symbols) and
for fluid seen (dashed line) are very small if not negligible also in
downflow (Fig. 10). Away from the wall, profiles superpose very
closely to the profile of the Eulerian RMS along each flow direction
and regardless of the bubble-fluid coupling (with the exception of
the streamwise component for the 220 lm bubbles, Fig. 10b and c.
Near the wall deviations become large. This may be attributed to
bubble preferential segregation in high-speed zones, where the
intensity of turbulent fluctuations is higher than the mean. How-
ever, the presence of spikes in the RMS profiles suggests that
downflow statistics might be affected by the small number of bub-
bles in the very near-wall region.

Finally, we examine bubble preferential distribution in the low-
speed/high-speed regions of the flow, and in Fig. 11 we show the
Probability Density Function (PDF) of the streamwise fluid velocity
fluctuation, u0x

� 
@p, evaluated at the location of bubbles in the wall

region (5 < z+ < 15). To obtain the PDF (i) we subdivided this region
into 10 equally-spaced wall-parallel slabs and we calculated the
space-averaged streamwise fluid velocity, �us, in each slab s; (ii)
we determined the slab containing the bubble; (iii) we computed
u0x
� 

@p ¼ ðuxÞ@p � �us; (iv) we counted the number of bubbles associ-
ated with each value of u0x

� 
@p and we normalized this number by

the total number of bubbles located in the slab. In Fig. 11 an effect
of bubble size is apparent. In upflow larger bubbles distribute pref-
erentially in the regions of lower-than-mean fluid velocity whereas
smaller bubbles appear more evenly distributed across the thresh-
old value u0x

� 
@p ¼ 0. In downflow, the PDF of the smaller bubbles is

positively skewed indicating that these bubbles sample regions of
higher-than-mean fluid velocity more often. The PDF of the larger
bubbles is more symmetric and develops a peak exactly at
u0x
� 

@p ¼ 0, indicating no preferential distribution. These results
are in agreement with those of Section 3.3.1.

3.4. Spectral analysis of energy modulation

In Fig. 12 we show the one-dimensional streamwise and span-
wise dissipative spectra of the fluid, D(k) with k the non-dimen-
sional wavenumber, computed in the near-wall region (z+ = 3.4)
and in the center of the channel (z+ = 150). We plot D(k) = k2E(k)
rather than the energy spectrum E(k) to emphasize the modulation
of turbulent energy induced by the bubbles. For ease of discussion,
we consider the spectra relative to the 220 lm bubbles and re-
scaled by the upflow/downflow shear velocities of Table 2. We
examine first the streamwise dissipative spectra for the upflow
case (Fig. 12a), which show interesting modifications due to com-
bined effect of two-way coupling and lift. It is important to observe
that, in the unladen flow case, the spectrum in the central region
(open squares) crosses over the spectrum in the wall-region (open
circles) at wavenumbers k ’ 2 � 3. Differences are small (and over
amplified) at the low wavenumbers, but there is an obvious indica-
tion that (as expected) smaller scales possess much more energy in
the central part of the channel. If we now consider the spectra in
the bubble-laden case, we first observe that there is relatively little
difference between the spectra computed in the center of the chan-
nel (open squares versus full squares), but we remark that the
spectrum in the vicinity of the wall now has much more energy
at the larger scales and crosses over the spectrum in the central
part of the channel only at a wavenumber k ’ 7 � 8. Compared
to unladen flow (open symbols), the cross-over between the
near-wall profile (circles) and the centerline profile (squares) shifts
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toward larger wavenumbers. Another relevant feature, which is
peculiar of the centerline spectra, is the energy increase (resp.
decrease) at dimensionless wavenumbers smaller (resp. larger)
than kxh = 2 when two-way coupling is applied (black symbols).
A similar behavior has been observed in microbubble-laden homo-
geneous isotropic flow by van den Berg et al. (2006) and by Mazzi-
telli et al. (2003a,b), even though at larger scales: In their work,
energy modulation is attributed to upward transfer of momentum
associated to lift-induced accumulation of bubbles on the down-
flow side of vortices. Spectra do not cross each other in the near-
wall region, indicating that the effect of bubbles mimics an energy
source at all scales, especially the smallest. This behavior can be as-
cribed to a twofold effect of lift: first, lift favors stronger energy in-
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put by accumulating bubbles at the wall; second, lift induces an
increase of drag (as discussed in Section 3.5) which generates high-
er momentum transfer and in turn higher energy exchange. This
mechanism can explain also why spanwise spectra (shown
Fig. 12b) attain higher values in two-way coupled upflow regard-
less of the distance from the wall at which they are computed.
An opposite reasoning applies to the downflow case (Fig. 12c and
d), where bubbles back-reacting on the flow can be regarded as a
sink of energy: bubbles drain and dissipate energy from the flow,
damping turbulence at all scales and along all homogeneous direc-
tions (no cross-over). Accordingly, the location at which the near-
wall and the centerline streamwise spectra cross each other in
Fig. 12c occurs at larger scales. The spectral analysis of energy
 μm 220μm (One-way coupling)
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d of fluid velocity at bubble location, RMS(u0x)@p (- - -) in upflow. Rows–Panels (a–c):
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(c), (f), and (i): one-way coupled upflow with 220 lm bubbles.
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modulation in upflow (resp. downflow) is in agreement with the
increase (resp. decrease) of all fluid RMS components observed in
Fig. 4 (symbols versus thin dashed lines). We remark here that
the predicted levels of energy enhancement or attenuation are
influenced not only by the two-way coupling model, but also by
the model of the lift force (Eqs. (4) and (9)) and in particular by
the value of the lift coefficient adopted in the calculations: inaccu-
racies in the choice of this coefficient will produce wrong energy
input, leading to erroneous and even qualitatively different results
(van den Berg et al., 2006). Clearly, this rises issues concerning the
specific lift force model used.
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3.5. Is it the correct lift force model?

Lift force models have been proven adequate in homogeneous iso-
tropic turbulence (Mazzitelli et al., 2003a,b), where lift is determined
uniquely by local velocity gradients. However, their applicability to
non-homogeneous anisotropic shear flows, where local gradients
co-exist with shear-induced mean gradients, is still debatable. This
issue is crucial in the high-shear regions (e.g. near the wall in channel
or pipe flow), where lift is mostly determined by mean velocity
gradients. In these regions, prediction of bubble dynamics will be lar-
gely affected by minimal variations of the model coefficients.
μ0 m 220 μm (One-way coupling)

 10  100

z+
 1  10  100

z+

(b) (c)

(e) (f)

(h) (i)

d of fluid velocity at bubble location, RMS u0x
� 

@p (- - -) in downflow. Rows–Panels (a–
al component. Columns–Panels (a), (d), and (g): two-way coupled downflow with

bles; panels (c), (f), and (i): one-way coupled downflow with 220 lm bubbles.



 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

-8 -6 -4 -2  0  2  4  6  8

PD
F

Fluid velocity fluctuations, (ux)@p’

110 μm
165 μm
220 μm
330 μm

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

-8 -6 -4 -2  0  2  4  6  8

PD
F

Fluid velocity fluctuations, (ux)@p’

110 μm
165 μm
220 μm
330 μm

(a) Upflow (b) Downflow

Fig. 11. Probability distribution function (PDF) of streamwise fluid velocity fluctuations, ðu0xÞ@p . Panels: a) upflow; b) downflow. Lines: (–––) 110 lm bubbles; (--- -) 165 lm
bubbles; (—) 220 lm bubbles; (� � �� � �) 330 lm bubbles.

 0.01

 0.1

 1  10

D
is

si
pa

tiv
e 

sp
ec

tra
, D

(k
)=

k2  E
(k

)
D

is
si

pa
tiv

e 
sp

ec
tra

, D
(k

)=
k2  E

(k
)

Unladen Flow: z+=3.4
z+=150

Upflow: z+=3.4
z+=150

 0.01

 0.1

 1

 10

 1  10

Unladen Flow: z+=3.4
z+=150

Upflow: z+=3.4
z+=150

 0.001

 0.01

 0.1

 1  10
Wavenumber, k=kx h

Unladen Flow: z+=3.4
z+=150

Downflow: z+=3.4
z+=150

 0.01

 0.1

 1

 10

 1  10
Wavenumber, k=ky h

Unladen Flow: z+=3.4
z+=150

Downflow: z+=3.4
z+=150

Fig. 12. One-dimensional dissipative spectra of the fluid, D(k) = k2 E(k), computed at two different wall-normal locations: z+ ’ 3.4 in the near-wall region (circles: 
, 	), and
z+ ’ 150 in the center of the channel (boxes: �;j). Open symbols refer to unladen flow simulations, black symbols refer to two-way coupling simulations with the 220 lm
bubbles. Panels: (a and b) upflow; (c and d) downflow; (a and c) streamwise spectra; (b and d) spanwise spectra.

92 D. Molin et al. / International Journal of Multiphase Flow 42 (2012) 80–95
In Figs. 13 and 14 we look at the relative importance of the
forces acting on bubbles. In Fig. 13 the wall-normal components
of these forces are shown for the upflow case. Streamwise compo-
nents are not shown here as they just show perfect balance
between buoyancy and drag, as discussed in Giusti et al. (2005);
spanwise components will not be discussed either, as they are
rather irrelevant to bubble macroscopic behavior in the present
flow configurations. From Fig. 13a, which shows only results for
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the 110 lm bubbles to simplify discussion, it is apparent that there
is no dominant effect as long as bubbles sample the center of the
channel while drag and lift dominate in the near-wall region with
peak values of order Oð103Þ. Compared to drag and lift, all other
forces are negligible in the region 0 < z+ < 40 where their peak val-
ues are of order Oð10Þ as shown by the inset in each panel of
Fig. 13a. This behavior is common to all bubble classes, therefore
only the lift profiles are plotted in Fig. 13b, which we examine to
analyze force behavior at varying bubble size. In this figure, we also
include the result relative to the 250 lm bubbles as it adds to the
discussion. The following observations can be made. First, the or-
der of magnitude of lift (and hence drag) in the present two-way
coupling simulations is lower than that obtained in one-way cou-
pling simulations (Giusti et al., 2005) and agreement with experi-
mental data (see Ogasawara et al., 2004 for instance) is improved.
This can be ascribed to the inclusion of wall effects in the lift force
model, which appears to allow a more realistic representation of
the physics. Second, there is a significant change of shape and even
of sign among the different profiles. For the smallest bubbles
(dp = 110 lm) the lift force is always negative (i.e. directed toward
the wall) and exhibits one minimum at z+ ’ 3. As bubble size in-
creases, the lift force becomes less negative until reversal of the
force occurs and profiles develop a local maximum very near the
wall: this maximum is still negative for the 165 lnm bubbles, is
equal to zero for the 220 lm bubbles and becomes positive for
the 250 lm bubbles. For the largest bubbles (dp = 330 lm), the lift
force is always positive (i.e. directed away from the wall) and
values increase monotonically as the wall is approached. Forces
in downflow are shown in Fig. 14. Results in Fig. 14a lead to the
same observations drawn from Fig. 13a. As expected, values for lift
are smaller than in one-way coupling simulations, always positive
and increasing near the wall. Fig. 14b, however, shows that the
magnitude of the lift force increases for decreasing bubble size.
The rather surprising trends shown in Figs. 13 and 14b are due
to the extra lift force induced by the presence of the wall. Thus
we must expect significant sensitivity of numerical predictions to
the model coefficients (CLW in this case) when evaluating such
figures.

To complete the analysis, in Fig. 15 we show the wall-normal
behavior of the two contributions to the total lift force (which is
indicated as Flift in this figure): fL ¼ CL

q
qp
½ðuzÞ@p � vp;z� �x
n o

and
fLW as defined in Eq. (9). Profiles were computed at the end of
the simulations and refer to the 220 lm bubbles, chosen here as
reference for the discussion (results for the other bubble sets are
qualitatively similar and will not be shown). From Fig. 15 it is
apparent that wall-induced effects on lift are noticeable only for
z+
6 10. In addition, the relative contribution of fL and fLW become

comparable well inside the viscous sublayer-few viscous units
from the wall-in upflow (Fig. 15a), whereas fL appears to be always
significantly larger than fLW in downflow (Fig. 15b).

4. Conclusions

In this paper we have presented results from direct numerical
simulations of turbulent microbubble dispersion in vertical chan-
nel flow for both upflow and downflow conditions. Bubbles inter-
act with the surrounding fluid by exchanging momentum. The
main macroscopic effect produced by bubble collective behavior
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is an increase (resp. decrease) of the liquid flowrate in upflow
(resp. downflow) associated with modifications of the shear stress
at the wall. We have proposed a simple one-dimensional model to
rescale the wall shear stress based on the overall force balance on
the channel, including explicitely the force exerted by the bubbles
on the fluid. This rescaling is applied to examine two-phase flow
statistics and is useful to explain turbulence modifications associ-
ated to wall shear stress modifications.
As in previous one-way coupling simulations of the same flow
domain (Giusti et al., 2005), we observe strong wallward migration
and wall accumulation in upflow, favored by lift effects on the
interaction between bubbles and near-wall turbulent structures.
No accumulation build-up is observed in downflow. Analysis of
the near-wall bubble distribution shows preferential segregation
in low-speed (resp. high-speed) regions, for the upflow (resp.
downflow) case.
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To evaluate bubble-induced flow field modifications, we have
compared two-phase and single-phase dissipation spectra. In
upflow, we find enhancement (resp. attenuation) of energy at small
(resp. large) flow scales in the channel centerline, whereas energy
is always increased by bubbles near the wall. In downflow, no en-
ergy cross-over from large to small scales is observed and bubbles
always drain energy from the fluid. These findings are directly
associated with the specific model of the lift force and with the va-
lue of the lift force coefficient, which is known to affect the energy
input from bubbles (Mazzitelli et al., 2003a,b). We have tried to
underline the impact of the lift force model on present results by
examining its wall-normal behavior. Regardless of the flow config-
uration, in the near-wall region lift dominates over all other un-
steady forces acting on the bubbles and is counter-balanced only
by drag. Because of the extra contribution due to wall effects
(Takemura and Magnaudet, 2003), lift changes sign (from negative,
i.e. directed to the wall, to positive, i.e. directed away from the
wall) in upflow when bubbles with diameter larger than 220 lm
are considered. For these bubbles, reversal of the lift force leads
to uniform wall-normal distribution and negligible preferential
concentration. Wall effects are also responsible for the lift force
reduction that is obtained in downflow when bubble size is
increased.
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