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Abstract

Particle tracking in turbulent flows in complex domains requires accurate interpolation of the fluid velocity field. If grids are non-
orthogonal and curvilinear, the most accurate available interpolation methods fail. We propose an accurate interpolation scheme based
on Taylor series expansion of the local fluid velocity about the grid point nearest to the desired location. The scheme is best suited for
curvilinear grids with non-orthogonal computational cells. We present the scheme with second-order accuracy, yet the order of accuracy
of the method can be adapted to that of the Navier–Stokes solver.

An application to particle dispersion in a turbulent wavy channel is presented, for which the scheme is tested against standard linear
interpolation. Results show that significant discrepancies can arise in the particle displacement produced by the two schemes, particularly
in the near-wall region which is often discretized with highly-distorted computational cells.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The interpolation of a field computed over a discrete
grid is required to know the field values in physical points
not coinciding with the grid nodes. In the specific case of
applications which involve flows with dispersed species,
solid particles, droplets or bubbles, best-suited simulations
are those based on the Eulerian–Lagrangian approach
which, at the ever-decreasing price of a larger computa-
tional effort, grants easy coding and reliable representation
of the physics. In this approach, accurate Lagrangian
tracking of the dispersed phase requires accurate interpola-
tion of the Eulerian carrier flow field.
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In previous papers focused on dispersed flows, several
interpolation methods (among others: hybrid Lagrange/
Chebyshev polynomials; cubic splines and quadratic inter-
polation) were used by many researchers [1–6] in simple
geometries such as channels, pipes and boundary layers,
in which the Eulerian grid was Cartesian and uniform in
two directions (for further details see the review by Soldati
[7]).

However, if the physical problem is such to require non-
uniform and non-Cartesian grids for discretization of com-
plex and irregular flow domains, interpolation may not be
straightforward and may lead to inaccuracies. Recently, we
had to face this issue in the frame of our work on particle/
droplet deposition and entrainment over a wavy interface
[8], which mimics the dynamics of the droplets sprayed
over capillary waves at the ocean/atmosphere interface.

While literature interpolation techniques (viz. spectral,
partial Hermite, Lagrangian, shape function methods,
cubic splines, etc.) have been extensively studied and
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applied on Cartesian grids [1,9,10], less effort has been
devoted to development of interpolation methods for
non-Cartesian grids with boundary-fitted curvilinear coor-
dinates. Typically, these methods are linear and use differ-
ent geometrical weighting procedures [11–14] and produce
similar interpolation functions in terms of performance and
accuracy. Some of these procedures make use of geometry-
based algorithms which may be applicable only in
two-dimensional meshes or may become impractical in
Eulerian–Lagrangian simulations due to significant loss
in accuracy when highly-distorted computational grids
are used [13]. Other procedures are based on iterative meth-
ods which require properly defined residuals to check the
convergence of the solution [13].

To overcome these restrictions, in this work we propose
an interpolation scheme based on Taylor series expansion
of fluid velocities in computational space, best suited for
structured curvilinear grids characterized by cells of arbi-
trary shape and regular topology. The main aspects consid-
ered are accuracy, performance and simplicity of the
scheme. Specifically, we will focus on the second-order
version of the method since current state-of-the-art fully
conservative numerical codes working with curvilinear
coordinates are second-order accurate: see the Finite Dif-
ference (FD) multigrid method by Zang et al. [15,16] or
the Finite Volume (FV) method by Patankar and Joseph
[17] among others. However, one of the most interesting
features of the present interpolation scheme is that its order
of accuracy can be easily adapted to that of the Navier–
Stokes solver. For instance, the order of accuracy can be
increased by including higher-order derivatives in the Tay-
lor expansion, thus producing schemes beyond linear
interpolation.

The choice of an interpolation scheme depends also on
computational cost, which is of crucial importance when
tracking large swarms of particles in Eulerian flow fields.
Calculations involved in particle tracking may become cost
effective if the interpolation scheme requires reduced com-
putational overhead with respect to standard techniques
(for instance, trilinear interpolation). This is one of the rea-
sons that led us to develop the scheme proposed in this
paper, which we have used to study the abovementioned
dispersed turbulent flow over wavy interfaces [8]. As an
example of possible application of the interpolation
scheme, some results from this study are briefly outlined
in Section 3. However, we believe that the proposed scheme
could be used to investigate a large variety of problems in
the context of Eulerian–Lagrangian simulations of dis-
persed flows in three-dimensional curvilinear grids.

2. Velocity evaluation method

Most smooth functions f(x) can be approximated in the
form of a Taylor series expansion about a point x0 where
exact values of f(x) and of its derivatives are known. Fol-
lowing this approach, the interpolation problem can be
addressed within an Eulerian carrier scheme in which the
fluid velocity components, Ui, are available at spatially dis-
crete grid nodes.

First, the host cell has to be identified. This inclusion
problem is solved (i) by orienting counter-clockwise the cell
nodes belonging to the same face and (ii) by computing the
cross product between the vector connecting one of the face
nodes to the particle and the vector connecting the same
node to its counter-clockwise neighbor. If the product is
negative for all faces the point is inside the cell. Further
details can be found in works by Chen [18] and by Zhou
and Leschnizer [19], which focus on the inclusion problem
and provide efficient particle-locating algorithms.

Once the host cell is known, the algorithm uses the fluid
velocity at the cell node nearest to the particle, NðxjÞ ¼
Nðx; y; zÞ, to estimate the local fluid velocity at the instanta-
neous particle position, PðX jÞ ¼ P ðX ; Y ; ZÞ. Henceforth xj

and Xj represent the coordinates of the Eulerian grid points
and those of the Lagrangian particle, respectively. In scalar
form, we obtain:

UijP ¼
Xs1
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With specific reference to a second-order accurate FD/FV
code, the above equation can be rewritten in terms of
Cartesian coordinates as follows:

UijP � UijN þ
oUi
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oy

����
N

ðY � yÞ þ oUi
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Only first-order terms are considered, so that the trunca-
tion error is O½ðX j � xjÞ2�, consistent with that of the
numerical scheme. Recall that, in an mth-order Taylor ser-
ies scheme, the interpolation error decreases as ðDxÞm as the
grid spacing Dx tends to zero.

In curvilinear structured grids, the Navier–Stokes equa-
tions are usually solved in a computational space, whose
coordinates we denote with n, g and f. Derivatives are thus
transformed as follows:

oUi

oxj
¼ oUi
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oxj

¼ oUi
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oxj
þ oU i
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og
oxj
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of
of
oxj

; i; j; k ¼ 1; 2; 3: ð3Þ

No additional metric calculation is required since the terms
onk=oxj are readily available once the computational grid
has been generated and only the terms oUi=onk have to
be computed. In principle, these terms could be discretized
by a 2-point finite-difference formula. This choice would be
self-consistent with the second-order truncation error and
should allow to obtain an interpolation scheme with C0

continuity, i.e. the interpolated function is continuous
across the interfaces of neighboring interpolation cells [9],
without sacrificing the order of accuracy. However, discon-
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tinuous interpolation on conservative schemes has impor-
tant implications especially for particulate solvers. To ad-
dress the issue of discontinuous interpolation, we decided
to use the 3-point symmetric formula centered around N

for the first-order derivatives. In this case, the explicit equa-
tion for the interpolated fluid velocities reads:
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U lþ1
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Index space Lðl;m; nÞ identifies the cell node N in the cur-
vilinear coordinate system, whereas the 3D index space
Iði; j; kÞ is used in the Cartesian coordinate system (see
Fig. 1).

Eq. (4) requires the values of the three components of
velocity and their first-order spatial derivatives at N, 12
scalars in total. For M particles 12M scalars are thus
required for the evaluation of U ijP . Trilinear interpolation
would require 24M scalars [10].

Eq. (4) has been applied not only to the cell node N

nearest to the particle but also to each node Nr of the host
cell, to check whether the use of more grid points would
improve the accuracy of the interpolation. For the three-
dimensional cases, eight estimates ðUijP ÞNr

have been
P

v

u

y,j

x,iO

N (l,m)

ξ
η

Physical space

(l+1,m)

(l,m+1)

(l+1,m+1)

Fig. 1. Control volume of the curvilinear grid and the coordinate mapping
in two dimensions.
obtained and then averaged to calculate the final fluid
velocity. We tested both simple arithmetic average of
ðUijP ÞNr

and weighted average of ðUijP ÞNr
, which yields:

UijP ¼
X8

r¼1

wr � ðU ijP ÞNr
; wr ¼

1=d2
rP8

r¼11=d2
r

; ð5Þ

where dr is the Eulerian distance between particle position
and node Nr [12]. Upon substitution of Eq. (2) into Eq. (5),
one obtains:
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where i ¼ 1; 2; 3. The terms on the right-hand side of
Eq. (6) can be rewritten as:

UijP � U ijN þ
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where i ¼ 1; 2; 3 and the overbar denotes averaging over
the eight corners of the host cell, Nr. Second-order terms
have the following general form:

o

oxj

oUi

oxk

����
N

ðX j � xjÞðX k � xkÞ;

where j; k ¼ 1; 2; 3. Neglecting these terms, the truncation
error is O½ðX j � xjÞðX k � xkÞ�, consistent with that of the
numerical scheme for the flow solver.

For sake of completeness, the overall second-order accu-
racy Eqs. (2) and (5) will be also proved through bench-
mark numerical simulations of a particle tracker in the
following sections. For such benchmarks, results (not
shown) obtained using either arithmetic or weighted aver-
age are slightly less accurate than those obtained using
interpolation about the nearest node, at the cost of a com-
putational effort increased by more than a factor of eight.
Considering also that the weighted-average procedure
requires approximately 96M operations to evaluate UijP
[10], the most suitable choice is to apply Eq. (4) to the near-
est Eulerian grid point only.

Once the interpolated fluid velocity at particle location is
obtained, the trajectory of a fluid particle is calculated by
numerical integration of the particle equation of motion,
oXðx; tÞ=ot ¼ Uðx; tÞ, subject to the initial condition
Xðx0; t0Þ ¼ X0. In this study, an explicit second-order
Adams–Bashforth time advancement scheme is used for
the integration. With this choice, time-differencing errors
can be assumed negligible even for lower temporal resolu-
tion [1]. However, the largest tracking time step permissible
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is bound by stability requirements, which are fulfilled by
monitoring the Courant number, Co, over all grid points
in physical space. In our work, we computed the Courant
number at Eulerian grid points as Co ¼ ui

Dt
Dxi

, where ui is
the fluid velocity component in the ith direction, Dt is the
tracking time step size and Dxi is the grid spacing.

For finite-difference methods, numerical stability
requires Co < 0:5 to have negligible time step dependence
of the results [9]. This requirement becomes more severe
when the grid spacing Dxi is small, i.e. when refined grids
are used.

Particle velocities Uðx; tÞ and positions Xðx; tÞ at
selected sampling times are stored on Cartesian grid points
and on curvilinear grid points for statistical post-process-
ing and comparison purposes. The curvilinear grid is gen-
erated from the Cartesian grid (of the same resolution)
by taking a wave shape in each direction as X j;curv ¼
X j;cart þ 0:25LX j � sinðp � X j;cartÞ where LX j is the dimension
of the domain along the jth direction. This simple analyti-
cal formula allowed us to evaluate the performance of the
interpolation scheme under severe cell deformation. In this
condition, the off-diagonal elements of the transformation
tensor onk=oxj are comparable to the diagonal ones and
the interpolation procedure is much more complicated with
respect to the case of Cartesian grids, in which the off-diag-
onal elements of onk=oxj are absent. Fig. 2 shows an exam-
ple of Cartesian and curvilinear grids used for tests.
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Fig. 2. Example of grids used for test simulations: (a) Cartesian, (b)
curvilinear.
2.1. Test 1: sinusoidal flow

The performance of the scheme is assessed by comparing
the error made when interpolating a prescribed velocity
field for which particle paths are known analytically. Such
a simple 2D test case is provided by the following velocity
field:

Uðx; y; z; tÞ ¼ dX=dt ¼ U 0;

V ðx; y; z; tÞ ¼ dY =dt ¼ 0;

W ðx; y; z; tÞ ¼ dZ=dt ¼ A � sinðp � X Þ:
ð8Þ

One fluid particle, representing a mathematical point mov-
ing with the local velocity of the fluid continuum, is intro-
duced in this periodic, time-frozen (i.e. steady) flow: it is
uniformly translated in the x-direction and moves sinusoi-
dally in the horizontal plane x–z. The solution in terms of
particle coordinates ðX ; Y ;ZÞ at time t is given by:

X ðtÞ ¼ X 0 þ U 0 � t;
Y ðtÞ ¼ Y 0;

ZðtÞ ¼ Z0 þ
A

p � U 0

½cosðp � X 0Þ � cosðp � X 0 þ p � U 0 � tÞ�;

ð9Þ
ðX 0; Y 0; Z0Þ being the initial particle position. The para-
meters of the prescribed flow are chosen as U 0 ¼
A ¼ 0:025 and the particle is initially placed at point
ð�0:8; 0:0; 0:75Þ. The computational box has dimensions
LX j ¼ 2 in each direction, discretized on both Cartesian
and curvilinear grids made of 93, 173, 333, 653 and 1293

nodes, respectively. The total tracking time is ttr ¼ 100,
long enough for the particle to cover a distance equal to
one wavelength (k ¼ 2 length units). The time step used
is Dt ¼ 0:1 and the corresponding Courant number ranges
from Comax ¼ 0:181 for the 1293 grid to Comax ¼ 0:01165
for the 93 grid. We point out here that, due to the low com-
putational cost of the test case simulations, the Courant
number is not a concern. Rather, Dt is the controlling
parameter. Thus, we chose values of Dt small enough to
ensure (i) numerical stability at all times even for the small-
est Dxi considered and (ii) negligible time-stepping error
with respect to the interpolation error. Once the optimum

value of Dt had been chosen, it was maintained for all
simulations. This explains why Co decreases to very small
values2 when coarser grids are used.

A similar test was run by Kontomaris et al. [1] to test a
mixed polynomial-spectral scheme for fluid velocity inter-
polation in a spectral simulation of turbulent channel flow.
2 The behavior of Adams–Bashforth methods, like the one used here to
integrate Eq. (8), can become weakly unstable for periodic convection-
dominated problems. We expect that present results for sinusoidal flow,
obtained for rather small values of the Courant number, may be slightly
affected by numerical diffusion introduced by the interpolation scheme.
However, the error caused by instability should be relatively unimportant
due to the small time step size adopted in the simulations.
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The interpolation error affecting particle velocity is cal-
culated by comparing the exact values of the velocity field
against the interpolated values, both evaluated at the
instantaneous position of the fluid particle. Thus, at each
time step, the absolute local interpolation error is com-
puted as ep;Ui ¼ jU i;int � Ui;exactj [1]. As a measure of the
overall interpolation error the Root Mean Square (RMS)
value of ep;Ui is also computed:

�p;Ui ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN ts

s¼1

ðep;UiÞ
2
s

vuut ; ð10Þ

where N ts is the total number of time steps covered by the
simulation. The interpolation error on particle displace-
ment, �p;X i , is calculated in a similar way.

Our aims are (i) to prove that the interpolation scheme is
second-order accurate on curvilinear grids; and (ii) to iso-
late and characterize the effect of interpolation errors (i.e.
the effects of grid spacing) on overall errors. We will not
analyze the time-stepping error in detail, since it is much
less significant than the interpolation error [1,9].

In Fig. 3, the interpolation RMS errors �p;Ui and �p;X i

(averaged over time) are plotted versus the grid size M.
Error profiles for Cartesian grids (black squares) and cur-
vilinear grids (empty squares) are considered. The behavior
of the overall RMS error on particle velocity, �p;U , provides
evidence of the second-order accuracy of the Taylor-based
velocity interpolation procedure. Similarly, the behavior of
the overall RMS error on particle displacement, �p;X , con-
firms the expected second-order accuracy of the particle
tracking scheme.

In Fig. 4, we compare numerical and analytical predic-
tion of the fluid particle trajectory. For clarity, a close-up
in the range �0:2 < X < 0:2 is also shown (Fig. 4c and
d). All different grid sizes are considered. With Cartesian
grids (Fig. 4a and c), the scheme fails to follow the sinusoi-
dal variation of the particle trajectory if the grid is coarse
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Fig. 3. Overall interpolation error (�p) versus grid size (M) for interpo-
lation of sinusoidal velocity field. Symbols: (j) Cartesian grid, (h)
curvilinear grid. Line: ––– slope �2.
(93 and 173 grids, dashed lines) while the analytic solution,
represented by the solid line, is reproduced almost exactly
with more refined grids (333 and up, dash-dotted lines).
Similar considerations apply for the curvilinear grid
(Fig. 4b and d).

Local interpolation errors in particle displacements have
been quantified as e%

p;X j
¼ 100 � ep;X j=LX j . For sinusoidal

flow, we find errors for the Z-component of particle trajec-
tory (i.e. e%

p;X j
� e%

p;Z) only. Fig. 5 shows the effect of differ-
ent grid resolutions on the time behavior of e%

p;Z . As
expected, the largest errors appear in the low resolution
simulation (93 grid) and the accuracy of the interpolation
is significantly improved by increasing the resolution of
the simulation: e%

p;Z , which is always less than 1% for the
93 grid, decreases by roughly three-orders of magnitude
when the 1293 grid is used. For Cartesian grids (lines in
Fig. 5), e%

p;Z exhibits a periodic behavior which repeats itself
over time intervals of 64 time units, required for the parti-
cle to move horizontally from the initial X = �0.8 location
to the X = 0.8 location with constant advection velocity U0

(see Fig. 4a and b). The percentage error e%
p;Z increases as

the particle moves towards the X = 0 location (i.e. as the
slope of particle trajectory decreases), where a maximum
is reached. Conversely, e%

p;Z decreases as the particle moves
away from the X = 0 location (i.e. as the slope of particle
trajectory increases). With curvilinear grids (symbols in
Fig. 5), overall e%

p;Z is slightly smaller even though, with
adequate spatial resolution, e%

p;Z profiles for Cartesian and
curvilinear grid deviate only negligibly from each other
even after a long integration time. Note also that error pro-
files are characterized by strong oscillations which are
damped when the grid resolution is increased.

A careful examination of Eq. (4) reveals that the result-
ing approximating velocity function U ijP does not possess
the C0 continuity property, i.e. the function is not continu-
ous across the interfaces of neighboring interpolation cells
[9]. This is confirmed by Fig. 6, in which the time behavior
of particle velocity along the Z-direction, W, is shown for
different resolutions of the curvilinear grid. When a coarse
grid is used (93 grid, solid line), the calculated particle
velocity does not change smoothly as the particle crosses
an interface. Small jumps occur which contribute to numer-
ical noise. Yet, they become significant only for poorly
resolved velocity field (e.g. when a coarse grid is used)
and can be damped if more than one corner node of the
host cell is used for interpolation. For such reason, we con-
sider this a tolerable, minor drawback. Similar conclusions
on the C0 continuity property of U ijP apply to the analysis
of local velocity interpolation errors (not shown).

2.2. Test 2: helical flow

As done by Yeung and Pope [9] to test the third-order
Taylor series 13-point scheme on Cartesian grids, we
benchmark our interpolation scheme on the steady 3D heli-
cal flow. In this flow, a given particle moves on a cylinder
of radius r (measured from the axis of the cylinder), with
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angular velocity xðrÞ. Particles lying within the cylinder
move in axisymmetric circular motion in the y–z plane
and in sinusoidal translational motion in the x-direction.
The equations of motion are:

Uðx; y; z; tÞ ¼ dX=dt ¼ U 0 þ 0:5 � A � sin
p
4

X
� 	

;

V ðx; y; z; tÞ ¼ dY =dt ¼ �ðZ � Z0Þ � x;
W ðx; y; z; tÞ ¼ dZ=dt ¼ ðY � Y 0Þ � x:

ð11Þ

The solution trajectory in terms of particle coordinates
(X ; Y ; Z) at time t is given by

X ðtÞ¼X 0þ
8

p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2

0�ð0:5 �AÞ
2

q
� tanða � tþbÞ�0:5 �A
U 0

2
4

3
5;

Y ðtÞ¼ Y 0þ
r
x

cosðx � tÞ;

ZðtÞ¼Z0þ
r
x

sinðx � tÞ

ð12Þ

with ðX 0; Y 0; Z0Þ ¼ ð0; 0; 0Þ in the present case. Constants a
and b are defined as follows:

a ¼ 8

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2

0 � ð0:5 � AÞ
2

q
;

b ¼ arctan
U 0 tan p

8
X 0


 �
þ 0:5 � Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U 2
0 � ð0:5 � AÞ

2
q

2
64

3
75: ð13Þ

Flow parameters are chosen as U 0 ¼ A ¼ 0:02 and the par-
ticle is initially placed at point ð�0:8; 0:0; 0:75Þ. Grid sizes
are the same as those for sinusoidal flow whereas the time
step size is Dt ¼ 0:01, with the corresponding Courant
number ranging from Co ¼ 0:02 for the 93 grid to
Co ¼ 0:32 for the 1293 grid. The total tracking time is
ttr ¼ 150, long enough to cover more than 20 particle
revolutions (time interval for one revolution: Dtrev ¼ 2p).
This choice brings out all evolutionary features of particle
motion and allows for the RMS particle displacements to
reach a steady behavior.

Overall interpolation RMS errors �p;Ui and �p;X i for heli-
cal flow, not shown, are roughly one-order of magnitude
smaller than those for sinusoidal flow (see Fig. 3) and con-
firm the second-order accuracy of the velocity interpolation
procedure and of the particle tracking scheme, respectively.

In Fig. 7, the numerically computed trajectory of the
fluid particle on the coarse curvilinear grid (black circles)
is compared to the exact trajectory predicted analytically
(dashed line). For clarity, only few particle revolutions
are shown. It is apparent that the interpolation scheme is
able to reproduce the spiraling motion of the fluid particle
accurately, even for low resolution simulations with very
distorted cells.

To quantify further the accuracy of the scheme, in
Fig. 8a we show a log–log plot of the time behavior of
the local interpolation error e%

p;X for the axial component
of particle trajectory. Also shown is a close-up view
(Fig. 8b) relative to a smaller time window (0 < t < 150).
Lines refer to simulations with Cartesian grids, symbols
refer to simulations with curvilinear grids. Several observa-
tions can be drawn from this figure, where the effect of dif-
ferent grid resolutions is considered.

First, percentage errors show a significant accumulation
over time. In particular, the error grows roughly with the
cube of time for the lower resolutions (93 and 173 grid
points) when a Cartesian grid is used. However, this
growth is limited to the initial stage of the simulation; at
later times e%

p;X is seen to increase linearly, which is to be
expected. The increase of e%

p;X with time appears to be linear
for Cartesian grids with higher resolution and for all curvi-
linear grids tested in this study. As shown by the close-up
of Fig. 8b, error profiles start to level off at the final stage
of the simulation and seem to reach a saturation value (rep-
resented by the straight solid line). The rate of accumula-
tion is higher for lower grid resolution, this being more
evident for curvilinear grids.

Second, errors incurred in simulations with Cartesian
grids are initially smaller than those incurred in simulations



1e-06

1e-05

1e-04

0.001

0.01

0.1

0 10 100

e% p,
X

t

Linear Slope

Cubic Slope 93

173

333

653

1293

1e-04

0.001

0.01

0.1

100 110 120 130 140 150

e% p,
X

t

93

173

333

653

1293

Fig. 8. Helical flow: local interpolation error e%
p;X on particle trajectory versus time, t, for different grid resolutions. Lines refer to Cartesian grid, symbols

refer to curvilinear grid.

0.01075

0.0108

0.01085

0.0109

0.01095

0.011

0.01105

0.0111

2 4 6 8 10
t

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0 20 40 60 80 100 120 140

U

t

Analytic
93 -0.4

-0.2

0

0.2 V

W

0.4

0 2 4 6 8 10

V
,W

t

Fig. 9. Helical flow: (a) translational velocity, U, as a function of time, t, (b) components of particle tangential velocity, V and W, as a function of time, t.
Symbols refer to analytic velocity, lines refer to interpolated velocity on the coarse grid (93).

1194 C. Marchioli et al. / Computers & Fluids 36 (2007) 1187–1198
with curvilinear grids, which appear to be more sensitive to
the initial condition for integration of the equation of par-
ticle motion. For larger integration times and fixed number
of grid points, error profiles deviate only negligibly from
each other.

Third, it is confirmed that higher grid resolution is
required to improve the interpolation accuracy. The local
interpolation errors, e%

p;Y and e%
p;Z (not shown), also accumu-

late over time but remain lower than 0.1% at the end of the
simulation.

Fig. 9 shows the time behavior of particle translational
velocity, U, along the X-direction (Fig. 9a) and of particle
tangential velocity components, V along the Y-direction,
and W along the Z-direction (Fig. 9b) in the case of 93 cur-
vilinear grid (from a visual viewpoint, negligible difference
exists with profiles obtained using the corresponding Carte-
sian grid). Components V and W vary sinusoidally: for
clarity of presentation, we show their behavior during the
first 10 time units of the simulation only. In Fig. 9, lines
and symbols refer to analytic and interpolated velocity,
respectively. The three velocities are reproduced with good
accuracy even for low grid resolution. Yet, an inadequate
number of grid points yields an approximated velocity
which is not C0 continuous (see close-up in Fig. 9a). The
local interpolation errors on particle velocities are e%

p;U ¼
100 � ep;U=U 0, e%

p;V ¼ 100 � ep;V =V tan and e%
p;W ¼ 100 � ep;W =

V tan. During the simulations, e%
p;U oscillates reaching a

maximum value approximately equal to 0.2% for the 93

grid and to 0.0009% for the 1293 grid. The approximated
particle tangential velocity, V tan ¼ ðV 2 þ W 2Þ0:5, coincides
with the exact analytic value and the test particle follows
exactly the analytical trajectory. Yet, a small, but finite,
error is incurred in the calculation of its components, which
accumulates over time: at the end of the simulation, e%

p;V

and e%
p;W are lower than 0.6%.

3. Application to particle dispersion in turbulence over waves

To the best of our knowledge, interpolation of fluid
velocity was not performed on curvilinear grids in previous
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studies dealing with Lagrangian tracking of particles dis-
persed in turbulent flows over wavy walls [20,21]. Boersma
[20] tracked particles in the computational rectangular
space using quadratic interpolation of 27 neighboring
velocity points. More recently, Chang and Scotti [21] dis-
cretized the flow domain on a rectangular grid exploiting
the immersed boundary technique and used sixth-order
Lagrangian polynomials.

Problem formulation and numerical method are briefly
described in the following. Attention is paid only to aspects
relevant to the present work: more details can be found
elsewhere [8,15,16]. A statistically stationary and fully
developed turbulent flow over fixed 2D sinusoidal waves
laden with large swarms of heavy particles is considered.
The fluid is air, entering the domain with bulk velocity
(namely, the average velocity computed along the height
of the channel) Ub ¼ 1:22 m s�1. The corresponding bulk
Reynolds number is Reb ¼ U bH=m ¼ 3108 where H ¼
0:04 m is the channel height and m is the fluid kinematic vis-
cosity. The flow is driven by a constant mean streamwise
pressure gradient. The domain size is 2k� 4

3
pH � H along

the streamwise, x, the spanwise, y, and the vertical direc-
tion, z, respectively. The wave shape is taken as zðxÞ ¼
a cosðkxÞ where a ¼ 0:005 m is the wave amplitude,
k ¼ 2p=k is the wave number and k ¼ 0:06 m is the wave
length. The corresponding slope is ak ’ 0:5236, high
enough to ensure flow separation in the trough of the wave.

For the incompressible flow considered here, the govern-
ing equations (Navier–Stokes and continuity) are solved
using the finite-difference solver by Zang et al. [15], impos-
ing free-slip stress-free conditions at the upper boundary,
periodic boundary condition at the box sides, no-slip con-
dition at the lower wavy wall. Equations are transformed
into a general curvilinear coordinate system and discretized
on a co-located grid using a finite volume approach [16].
The Navier–Stokes solver uses two sets of variables, defin-
ing velocities and pressure at cell centers and contravariant
volume fluxes at the cell faces. In the present study, fluid
velocities at cell centers are used directly to track particles:
no additional interpolation is required and no further
smoothing of the velocity signal is introduced. Overall,
the algorithm is second-order accurate both in space and
time.

The computational grid has 64� 64� 48 nodes in x, y

and z, respectively. It is uniform in x and y while, in the
vertical direction, nodes are clustered near the wavy wall.
The grid discretization corresponds to a resolution
Dxþ ¼ 7:9, Dyþ ¼ 11:0 and Dzþ ranging from 1.6 to 7.9 in
non-dimensional wall units (represented by the superscript
+). Note that the non-dimensional length of the wavy
channel is Lþx ¼ 510: this length is longer than a minimal
channel flow [22] and adequate to capture the dynamical
trends of the flow; yet it is short for simulating a developed
flow. There will be several levels of sub-harmonic compo-
nents to the flow relative to the wavelength which allow
investigation of particle dynamics in connection with
coherent flow structures of different temporal and spatial
scales. This is precisely the purpose of our study. In partic-
ular, we focused on the geometry-dependent long-lived
flow structures located in the wave trough, and on the
quasi-streamwise vortices, which grow up on the upslope
side of the wave and affect particle dynamics on smaller
scales [8].

Calculation of the Eulerian flow field is coupled with
Lagrangian tracking of individual particle trajectories.
We simulated heavy particles characterized by different
Stokes numbers (St = 0.5, 1 and 2). In this work, St is
equal to the non-dimensional particle response time, sþp ,
defined as the ratio of the dimensional particle response
time, sp ¼ qpd2

p=18l, to the fluid time scale, sf ¼ m=u2
s .

Here, qp and dp are particle density and diameter, m is the
fluid kinematic viscosity, us ¼ ðsw=qÞ0:5 is the shear fluid
velocity, based on the shear stress at the wall, sw, and on
fluid density, q.

The trajectory of each particle (treated as a non-interact-
ing, non-deformable solid sphere) is computed under the
assumption of dilute flow system conditions by integrating
over time the following equation of particle motion in vec-
tor form:

dvp

dt
¼ 3

4

q̂
dp

CDðv� vpÞjv� vpj þ ð1� q̂Þg

� nð�Þ 6:46

12p
dp

sp

ov

ox

����
����
0:5

sign
ov

ox

� �
ðv� vpÞ � n; ð14Þ

where vp is particle velocity, q̂ is the ratio of fluid density to
particle density, v is fluid velocity, g is gravity, n is the unit
vector in wall-normal direction. CD ¼ f ðRepÞ is the Stokes
coefficient for drag, which depends on the particle Rey-
nolds number, Rep ¼ qdpjv� vpj=l. We use the following
nonlinear correction for CD [23] when Rep > 1:

CDðRepÞ ¼
24

Rep

1þ 0:15 � Re0:687
p

� 	
: ð15Þ

For the simulation parameters considered in the present
study, only particle inertia, Stokes drag, buoyancy and lift
have been taken into account. The lift force, represented by
the third term on the right-hand side of Eq. (14), is formu-
lated here according to the model proposed by Saffman [24]
and corrected by McLaughlin [25,26] for a small spherical
particle in linear shear flows including an additional correc-
tion factor that becomes important when the relative
velocity between the particle and the fluid is large. This
expression requires less restrictive assumptions with respect
to the original Saffman formulation but still neglects wall
effects: when the distance of the particle from the bottom
wall becomes small compared to particle radius, the actual
mechanism of deposition is complicated by the possible rise
of surface related phenomena and the formulation without
wall effects is not very accurate [26].

Eq. (14) is integrated with an explicit second-order
modified Euler method and the integration time step for
all particles is one tenth of the characteristic time of the
smallest particles (St = 0.5). Particles are elastically
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reflected away from the wall when their center is less than a
distance dp=2 from the boundary. The elastic collision of
particles with the lower wall will produce physical effects
of its own and discontinuities to the motion. During the
particle tracking, however, we recorded particle position
and velocity after each impact with the lower wall: this
way, a sub-set of data relative to the condition of
perfectly-absorbing wall can be extracted from the data
base relative to the condition of perfectly-reflecting wall.

Here, we will discuss some relevant results on the disper-
sion of heavy particles to highlight how this phenomenon is
affected by the choice of the interpolation scheme, in terms
of individual particle trajectories and Lagrangian statistical
quantities. Comparison will be made between results
obtained using the proposed interpolation scheme and
results obtained using trilinear interpolation to highlight
the most relevant performance and sensitivity issues. Trilin-
ear interpolation requires the cell indices ðl;m; nÞ and the
offsets ð�; g; cÞ obtained through point location. Let the
basis function W be defined as W0ð�Þ ¼ ð1� �Þ and
W1ð�Þ ¼ �. Then, for a point in a cell ðl;m; nÞ with offsets
ð�; g; cÞ, as point P shown in Fig. 1 for the 2D case, the
function U determines the interpolated value from the eight
corner velocities vl;m;n; . . . ; vlþ1;mþ1;nþ1:

v ¼ Uðv; �; g; cÞ

¼
X1

L;M ;N¼0

vlþL;mþM ;nþN �WNð�ÞWMðgÞWN ðcÞ; ð16Þ

where indices L;M ;N 2 f0; 1g.
Fig. 10 shows the trajectory of three sample St = 1.0

particles (labeled A, B and C) originating from different
locations of the channel. These trajectories represent worst
case results and are indicative of an upper limit for the par-
ticle displacement produced by the two schemes we are
comparing. Particles were tracked for a time span equal
to 510t+ (superscript + indicates non-dimensional wall
–20

0

100

80

60

20

40

120

0 200 400 600 800 10

C

B

A

X

Z
+

+

Fig. 10. Displacement errors on the trajectory of three sample particles A, B
schemes: —– present, – Æ– Æ– linear interpolation.
units), assuming they are absorbed at the wall upon impact.
The solid lines in Fig. 10 represent trajectories calculated
using the present Taylor-based interpolation scheme; the
dash-dotted lines represent trajectories calculated using
standard trilinear interpolation. It is apparent that the
choice of a specific interpolation scheme may have an
important effect on individual particle trajectories: for all
three particles, trajectories are identical initially and virtu-
ally collapse onto each other as long as the particle is rela-
tively far from the bottom wall. As particles approach the
wall, where the grid is more distorted, differences in particle
displacements become non-negligible and accumulate over
time, producing different trajectories. For instance, particle
A will deposit on the upslope part of the wave before the
fifth crest, roughly at a non-dimensional streamwise loca-
tion Xþ ’ 1000, if the present scheme is used (solid line).
When trilinear interpolation is used, the same particle will
not deposit at Xþ ’ 1000: it will be re-entrained by the
boundary layer which develops on the upslope part of the
wave and then lifts away as a free-shear layer, eventually
re-ejecting the particle towards the outer flow (dash-dotted
trajectory). Particles B and C follow a similar destiny.
Trilinear interpolation is more diffusive and can produce
less accurate estimates of particle trajectories. Yet, large
discrepancies in particle displacements are found only for
a relatively small number of tracked particles: individual
particle trajectories remain reasonably close in most of
the cases. Also, the location of particle deposition
computed with either scheme is comparable in the majority
of the cases.

In a dispersion process, however, the details of the
Lagrangian trajectories of single particles are not usually
of major significance; the evaluation of the statistical prop-
erties of the process is generally more important. Lagrang-
ian statistical quantities averaged over many particles will
be less sensitive than individual particle trajectories to the
choice of the interpolation scheme. Here, we will restrict
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the comparison to Mean Square Dispersion (MSD) and
Lagrangian particle-velocity autocorrelations, which are
among the one-particle statistics that quantify the charac-
teristics of a particle-laden flow.

In Fig. 11, the time evolution of the MSD in the vertical
direction for particles tracked using the present interpola-
tion scheme (solid line) is compared to that of the MSD
obtained using standard trilinear interpolation (dash-dot-
ted line). All particle sets have been considered here. Fol-
lowing Kontomaris et al. [1], the dispersion tensor is
defined as:

Dijðt � t0Þ ¼ hX 0iðX0; tÞ � X 0jðX0; tÞi; ð17Þ

where brackets are used to indicate averaging over all
tracked particles and X 0iðX0; tÞ ¼ X iðX0; tÞ � hX iðX0; tÞi is
the ith component of the displacement fluctuation vector.
MSD profiles shown in Fig. 11 are identical initially and re-
main reasonably close even after a long simulation time.
Small discrepancies arise which accumulate over time:
linear interpolation seems to overestimate particle disper-
sion with respect to the proposed scheme, especially in
the case of smaller particles.

Fig. 12 compares Lagrangian velocity autocorrelations
for St = 1.0 particles, computed with either scheme. The
Lagrangian velocity autocorrelation is a statistical measure
of the coherent structures encountered by an ensemble of
particles during their motion through the fluid. Here, it is
defined as in Kontomaris et al. [1]:

RL
ijðt0; sÞ ¼

hU 0iðX0; t0Þ � U 0jðX0; t0 þ sÞi
U i;RMSðt0Þ � Uj;RMSðt0 þ sÞ : ð18Þ

Fig. 12 suggests that trilinear interpolation (see dash-dot-
ted lines) overestimates the velocity autocorrelation with
respect to the proposed scheme (see solid lines). Being
based on Taylor series expansion, our scheme uses a larger
number of grid points for interpolation of fluid velocity:
thus, it appears more effective in capturing the decorrelat-
ing effect of the small scales of motion [1], particularly in
the streamwise and vertical directions (compare RL

11 and
RL

33 profiles, respectively).
4. Summary and conclusions

A second-order accurate interpolation scheme based on
Taylor series expansion of the local fluid velocity about the
grid point nearest to the desired location has been devel-
oped. The scheme is best suited for 3D curvilinear grids
(either of the finite-volume or finite-element type) with
non-orthogonal computational cells. In the finite element
terminology, this scheme can be viewed as similar to finite
element interpolation within a piece-wise linear element
using shape functions: in principle, such procedure should
work for any geometry, not limited to the curvilinear sys-
tems. The interpolation scheme attains adequate numerical
accuracy if applied within the framework of highly resolved
Eulerian numerical simulations (DNS or LES) of particle-
laden turbulent flows. The interpolation error, which
appears to be the major source of discrepancy with respect
to the analytic values, can be reduced significantly by
increasing the grid spatial resolution. Higher spatial resolu-
tion is also important when C0 continuous approximations
are a must: as the particle moves across interpolation cell
boundaries, jumps in the approximated velocity occur
which can be dramatically damped using a reasonably ade-
quate number of grid points.

In conclusion, the reasons why we believe that the pro-
posed scheme adds to the state-of-the-art of Eulerian–
Lagrangian computations of turbulent dispersed flows
can be summarized as follows:
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• the present interpolation scheme is formally accurate at
least at the order of accuracy of the Navier–Stokes solver;

• the scheme is conceptually simple and easy to implement;
• the scheme is specifically developed for boundary-fitted

curvilinear coordinates and highly-deformed, non-
orthogonal grid cells;

• the scheme does not use any geometrical algorithm
based on the shape of the computational cell in the phys-
ical domain;

• the use of this scheme in Eulerian–Lagrangian computa-
tions of turbulent dispersed flows over complex geome-
tries, typical of engineering applications, provides
sufficiently accurate results (more accurate than those
obtained using linear interpolation, in our opinion);

• the scheme is not CPU-time expensive (computational
overhead required to evaluate the fluid velocity deriva-
tives and storage allocation are small even when a large
number of particles – O(105) or more – is considered):
this avoids overincreased computational cost of already
expensive simulations, such as DNS or LES.

To test the performance of the proposed scheme, an
application to particle deposition and resuspension in
Large Eddy Simulation of the turbulent wavy channel flow
[8] has been presented. This type of flow boundary imposes
the use of highly-distorted cells to discretize the near-wall
region and, thus, has been chosen to represent benchmark
in the context of Eulerian–Lagrangian simulations of
dispersed flows in three-dimensional curvilinear grids.
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