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Abstract

Turbulent dispersion of inertial particles in a flat-bottom stirred-tank reactor equipped with an eight-blade Rushton impeller is investigated
using accurate numerical techniques (Verzicco et al., 2004, Flow in an impeller-stirred tank using an immersed-boundary method. A.I.Ch.E.
Journal, 50(6), 1109–1118.). Direct Numerical Simulation of the turbulent flow field in the vessel is obtained using a second-order finite-
difference scheme coded in a cylindrical reference frame, and an immersed-boundary approach is used to simulate the motion of the impeller.
The flow scales are resolved explicitly down to the Kolmogorov scale. To give a comprehensive picture of the turbulence structure in the vessel,
angle-resolved averages of turbulent kinetic energy, turbulent energy dissipation rate and Kolmogorov time-scales are evaluated in vertical
planes aligned with the blade and mid-way between two blades. The dispersion of heavy particles of different diameter is then investigated
by Lagrangian tracking. The particle-to-fluid mass loading ratio is low enough to assume one-way coupling momentum transfer between
continuous and dispersed phase. Three sets of particles, characterized by different response time, are investigated and, for each set, two equal,
randomly distributed swarms are initially released above and below the impeller, which is placed mid-way between top and bottom of the
tank. Statistics calculated after 3 impeller revolutions are used to evaluate the evolution of particle dispersion in the flow and to quantify their
preferential accumulation into specific regions of the tank.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In a number of industrial applications such as polymeriza-
tion, solid suspensions, particle coating processes and biotech-
nologies, solid particles must be dispersed homogeneously in a
liquid phase so that optimal process parameters can be met. In
many cases, mixing is achieved in vessels—stirred-tank reactor
(STR)—in which an impeller generates a flow field character-
ized by high turbulence levels.

Flow circulation and turbulence in the vessel control trans-
port, dispersion and segregation of particles in the fluid deter-
mining the homogeneity of the mixing between phases achieved
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in the stirring process. Despite the key role of local particle
dynamics in the dispersion process, a full understanding of the
interaction between turbulence structures and different size par-
ticles dispersed in an STR is still lacking. The dispersion pro-
cess is strongly time-dependent and characterized by a number
of mutually interacting, yet different flow scales, which are not
equally effective in advecting and dispersing particles. Iden-
tifying the scales which produce the largest dispersion within
the STR is a crucial information for industrial design, and it is
not clear whether the smaller Kolmogorov scales play or not a
significant role in the dispersion process.

Particle dispersion in STRs was investigated adopting a
Lagrangian approach in the limit of the point-wise particle
model by Campolo et al. (2003) and by Derksen (2003). In
Campolo et al. (2003) the flow field was computed using
time-dependent Reynolds averaged Navier–Stokes simula-
tions (RANS), whereas in Derksen (2003) the flow field was
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computed by large eddy simulation (LES). In both RANS and
LES approaches, turbulent fluctuations at scales smaller than
the grid size are filtered out and models are used to reproduce
their effect. Thus, in both works, results for particle disper-
sion are limited to the analysis of influence of the larger scale
structures. To obtain a more faithful representation of the in-
fluence of the smaller scales on particle dispersion, sub-grid
models for particle dynamics should be used. These sub-grid
models, however, have not been developed or used broadly so
far (Kuerten and Vreeman, 2005; Shotorban and Mashayek,
2005).

A numerical approach which requires no model in the limit
of the point-wise particle approximation is based on direct nu-
merical simulation (DNS) of the turbulence which is currently
applied only to simple geometries (Rouson and Eaton, 2001;
Marchioli and Soldati, 2002; Soldati, 2005). Recently, one DNS
of the turbulent flow field in a STR has been published by
Verzicco et al. (2004). The authors have shown that, due to the
low Reynolds number and to the strongly unsteady and inhomo-
geneous nature of the flow, RANS perform poorly not achieving
accurate estimates of turbulence related quantities—turbulent
kinetic energy, turbulent energy dissipation rate and stresses.
According to previous works in simplified geometries (Rouson
and Eaton, 2001; Marchioli and Soldati, 2002; Picciotto et al.,
2005), these quantities play a very important role in particle dy-
namics, since particles are known to accumulate preferentially
into high strain, low-vorticity regions, especially when the par-
ticle time-scale and the flow time-scale are of the same order
(Wang and Maxey, 1993; Eaton and Fessler, 1994). Therefore,
to obtain accurate information on local phenomena like parti-
cle segregation, we must rely on numerical approaches which
are able to reproduce precisely turbulence related quantities.

In this work, we investigated numerically particle disper-
sion by (i) solving accurately the balance equation for the
fluid up to the Kolmogorov scale and (ii) using a Lagrangian
approach to track swarms of particles in the calculated flow
field.

Basing on the methodology and on the results of Verzicco
et al. (2004), the objects of our research are (i) to build a
database which may be useful to test LES and RANS com-
putations, including turbulent quantities modeled by these ap-
proaches, i.e., turbulent kinetic energy, turbulent energy dissi-
pation rate and turbulence time-scales; (ii) to identify the role
of different size and time-scale flow structures in dispersing
particles within the reactor.

We use the finite-difference second-order accurate code de-
scribed in Verzicco et al. (2004) to solve the Navier–Stokes
equations and we model the impeller rotation using the
immersed-boundaries approach (Fadlun et al., 2000). Disper-
sion of particles of 30, 50 and 100 �m diameter is simulated
by means of Lagrangian tracking. Although computationally
expensive—calculation of particle position and velocity is
made for each particle, at each time-step—this is an easy to
code and natural approach to understand dispersion processes.
Furthermore, since we solve explicitly all the flow scales down
to the Kolmogorov scale, no sub-grid model is required to
simulate accurately particle dynamics.
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Fig. 1. Geometric dimensions and computational grid used for flow field
simulation. Only one grid line for every four is shown in this figure.

2. Methodology

2.1. Fluid flow

Navier–Stokes equations are solved in a cylindrical reference
frame for the reactor geometry shown in Fig. 1. The compu-
tational domain is discretized into 97 × 102 × 192 (about two
millions) grid points in the azimuthal, radial and axial direc-
tions, respectively. The mesh (see the left side of Fig. 1) is
non-uniform in the radial and axial directions, and is refined
selectively in the regions where higher velocity gradients are
expected. Specifically, refinements are made in the blade re-
gion and close to the shaft (see Verzicco et al., 2004 for a more
detailed description).

Dimensions of vessel/impeller—shown in the right side of
Fig. 1—made dimensionless using the impeller radius Lr =
1.25 cm are: Lr = 1, LB = 0.8, LA = 0.32, LR = 4, LZ = 4
and LH = 8. Impeller rotation velocity � is equal to 100 rpm.
Reference time-scale and velocity are the rotation time, 1/�,
and the blade tip velocity, UT = �Lr . Fluid is water, with
density �= 103 kg/m3 and kinematic viscosity �= 10−6 m2/s.
The Reynolds number, based on blade radius and blade tip
velocity, Re = �L2

r /�, is 1636. Boundary conditions are (i)
no-slip at impeller blades and at external walls (enforced us-
ing the immersed boundary method) and (ii) free-slip at the
top surface to mimic the presence of a flat free surface be-
tween water and upper air. As estimated by Verzicco et al.
(2004), the free surface deformation is small and should not
influence the overall (and local) evolution of the flow field
justifying the assumption of a flat, stress-free upper boundary
condition.
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2.2. Kolmogorov scales

To investigate accurately particle–turbulence interactions,
turbulent fluctuations should be explicitly resolved down to
the Kolmogorov scales. This implies that space and time res-
olution for the flow must be chosen accordingly. Following
Kolmogorov assumptions (Kolmogorov, 1941), the order of
magnitude of space and time-scales for statistically steady
turbulence at a given Reynolds number can be evaluated
as a function of the fluid kinematic viscosity, �, and of the
turbulence-energy dissipation rate, ε. As discussed in Derksen
(2003), we assume that the relevant scales at which energy
is introduced in the flow are the blade radius, Lr and the
blade tip velocity, �R. Therefore, the Kolmogorov length
scale can be calculated as �/Lr = Re−3/4 = 48.5 �m and the
Kolmogorov time-scale as � = 1/�Re−0.5 = 2.35 × 10−3 s.
These values have been used in this work (i) to assess the
grid resolution and (ii) to evaluate time resolution required for
the flow field calculations. Specifically, in our computational
domain, minimum values of grid spacing are �r = 144 �m,
�� = 416 �m, and �z = 169 �m. These values are 3, 8 and
3.5 times larger than the estimated Kolmogorov spatial scale,
respectively. These values would reduce further if other refer-
ences are used (Pope, 2000) thus confirming our choice for the
grid resolution. The time step used for flow field calculation is
�t = 1.25 × 10−4 s, i.e., about 1/18 of the Kolmogorov time
scale. We started our calculation from the flow field obtained
by Verzicco et al. (2004), corresponding to a fully developed
turbulent flow. The flow field was seeded with particles, ran-
domly dispersed and initially moving at the same velocity of
the fluid, and Lagrangian tracking was performed for a time
window corresponding to three impeller revolutions. Current
computational capabilities did not allow us to extend the sim-
ulation time further, and a posteriori analysis showed that this
time window is not long enough to obtain a fully developed
dispersion field for particles. Therefore, the preliminary results
currently available are used to derive information on the tran-
sient of dispersion dynamics. Long-term evaluation of particle
dispersion will be the object of further investigations.

2.3. Lagrangian tracking

We simulate the dispersion of solid particles considering a
swarm made of O(104) particles. We calculate the trajectory
of each particle by integrating explicitly over time the equation
of motion. The assumptions for particle modeling are: (i) all
particles are point-wise, non-interacting, non-deformable solid
spheres; (ii) particle density is large compared to fluid density;
(iii) the effect of the particles on the flow is neglected. As
discussed in Section 2.2, the minimum grid spacing is large
enough to assume that the point-wise particle approximation is
valid.

Particle dynamics is controlled by the Stokes number, St,
which is defined as the ratio between the particle response
time and the relevant flow time-scale. According to many pre-
vious works (see, for instance, Chung and Troutt, 1988; Loth,

Table 1
Particle characteristic time �p , dimensionless characteristic time �∗

p and Stokes

number (referred to the estimated Kolmogorov time-scale, �k = 2.35 × 10−3)
for three particle diameters used in Lagrangian tracking

Particle diameter �p(s) �∗
p Stk

dp(�m)

30 2.50 × 10−4 2.62 × 10−3 0.106
50 6.94 × 10−4 7.27 × 10−3 0.295

100 2.78 × 10−3 2.91 × 10−2 1.183

2000; Campolo et al., 2005), the study of the order of mag-
nitude of the forces acting on particles based on the equation
of motion derived by Maxey and Riley (1983) reveals that the
drag force is O(St−1), the virtual mass and the pressure gra-
dient are O(�/�p) and the Basset force is O(�/�p)1/2, where
� and �p are fluid density and particle density, respectively.
In our work, �/�p = 0.2 = O(10−1) and, as shown in Table
1, Stk = �p/�—that is the Stokes number based on the ref-
erence Kolmogorov time-scale for the fluid—is in the range
[10−1 −101]. Therefore, for the specific flow system examined
here, the equation of motion reduces to a balance of Stokes
drag, gravity forces and particle inertia and can be written as

mp

d�vp

dt
= �FD + �Fg , (1)

where �FD and �Fg are drag and gravity forces, respectively. Eq.
(1) was integrated using a time-step sufficiently small to follow
accurately curved trajectories. Specifically, the time resolution
of the flow field was chosen equal to one half of the character-
istic time of the smallest particle.

3. Results

3.1. Fluid flow

Figs. 2(a) and (b) show the instantaneous flow field in two
vertical sections of the reactor, taken mid-way between and one
degree behind the impeller blades (i.e., the plane containing the
backward face of the impeller blade). Vectors represent radial
and axial components of velocity in the plane. We observe
that the discharge jet is issued radially from the impeller blade
tip. The jet is strong in the close vicinity of the impeller with
its momentum decreasing within r�2Lr due to the presence
of the side wall. At this location, the jet splits into two axial
streams, respectively upward and downward, which form two
main circulations corresponding to the upper and lower toroidal
vortices. Observing Fig. 2(b), we can further notice that, when
it leaves the blade, the axis of the jet is slightly inclined upward
due to the different boundary conditions imposed at the bottom
(no-slip wall) and at the top (free-slip wall) of the vessel.

The region around the impeller, i.e., the near-field of the
discharge jet, is characterized by large velocity fluctuations
(figure not shown here). These are crucial features for analysis
of dispersion, since velocity fluctuations control the flow at
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Fig. 2. Instantaneous velocity flow field: (a) 1◦ behind the impeller blade and (b) vertical plane between two blades.
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Fig. 3. Isocontours of angle-resolved averages of turbulent kinetic energy. Values are made dimensionless using the reference velocity scale k∗ = k/(�Lr)
2.

Vertical sections are taken (a) 1◦ behind the impeller blade, and (b) mid-way between two blades.

the micro-scale, contribute to energy dissipation and to many
rate-limiting phenomena acting at the same scale (Derksen and
Van den Akker, 1999). In this paper, we chose to focus the
discussion of results on turbulent kinetic energy and turbulent
dissipation rate, since these quantities may represent a useful
benchmark for RANS and LES calculations. We refer to the
paper by Verzicco et al. (2004) for different statistics.

Fig. 3 shows the angle-resolved averages of the spatial dis-
tribution of turbulent kinetic energy obtained for two merid-
ional planes taken (a) one degree behind the impeller blade

and (b) 22.5◦ behind the impeller blade, i.e., mid-way be-
tween two blades. Dimensionless values of k were calculated
as k∗ = k/(�2L2

r ). The highest values of turbulent kinetic en-
ergy are found at the blade tip, 1◦ behind the blade. Values of
k∗ reduce progressively in the impeller region moving toward
the side wall (see Fig. 3(a) and (b)) and, in the region above
and below the impeller, values of k∗ are at least one order of
magnitude lower than the maximum. Larger values of k∗ are
found in the lower half of the vessel, close to the shaft, where
the velocity (see Figs. 2(a) and (b)) is larger.
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Fig. 4. Isocontours of angle-resolved averages of turbulent energy dissipation rate. Values are made dimensionless using the reference time and velocity scales
(ε∗ = ε/(�3L2

r )). Vertical sections are taken (a) 1◦ behind the impeller blade, and (b) mid-way between two blades.
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Fig. 5. Isocontours of dimensionless, angle-resolved averages of the dissipation relevant time-scale, �∗ = ��. Vertical sections aree taken (a) 1◦ behind the
impeller blade, and (b) mid-way between two blades.

Comparison of Figs. 3(a) and (b) indicates no significant vari-
ations of turbulent kinetic energy distribution in the azimuthal
direction. This was expected, since the number of blades is rel-
atively high (8).

Fig. 4 shows the distribution of turbulent energy dissipation
rate, ε, calculated as

� = 2�SijSji , (2)

where, Sij is the strain tensor, i.e., the symmetric part of the
velocity gradient tensor, and values are made dimensionless

using ε∗ =ε/(�3L2
r ). The vertical sections are the same shown

in Figs. 3(a) and (b). The spatial distributions of k∗ and ε∗
are qualitatively similar, with peak values at the blade tip. We
then used the values of k∗ and ε∗ to calculate the spatial dis-
tribution of the relevant time-scale of the dissipative scales as
� = (�/ε)1/2. This will be the smallest flow time-scale and will
be significant to determine particle behavior. Fig. 5 shows val-
ues of �, made dimensionless using 1/�, (�∗ = ��). Similarly
to Figs. 3 and 4, values of �∗ are angle-resolved averages ob-
tained for (a) a vertical plane one degree behind the blades,
(b) a vertical plane mid-way between two blades. The smallest
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Fig. 6. Snapshots of instantaneous particle position after three impeller revolutions for particles released above (red) and below (blue) the impeller mid-plane:
(a) 30 �m particles, (b) 50 �m and (c) 100 �m. Vertical profile of particle concentration for (d) 30 �m, (e) 50 �m and (f) 100 �m particles released above and
below the impeller.

values of �∗ are found near the blade tip where the larger
dissipation rate is also observed in Fig. 4. Values of �∗ increase
progressively moving outward, along the radial direction. The
dimensionless isocontours near the blade tip correspond to a
time-scale � < 5×10−2 s which is one order of magnitude larger
than the value calculated a priori in the Methodology section
(2.35 × 10−3 s). These results will be useful to comment on
particle segregation data.

3.2. Particle distribution

We performed our Lagrangian simulations considering a
particle-to-fluid density ratio equal to �p/� = 5 and particle
diameters equal to 30, 50 and 100 �m. These particles are ex-
pected to settle down under gravity if the stirring action is not
effective. To get some insight on the influence of the injection
point on the dispersion and settling process, for each diameter

we consider two swarms of 2 × 104 particles randomly dis-
tributed above and below the impeller plane (z = LH /2) at
starting time. Figs. 6(a)–(c) show the instantaneous distribu-
tion of particles after three impeller revolutions. A thin slice
of the reactor taken in correspondence of the blade position is
considered for visualization. Red particles are those released
in the upper half of the vessel, blue particles are those released
in the lower half. After three revolutions, 30 �m particles are
still homogeneously dispersed in the vessel, 50 �m particles
show a mild tendency to move downward under the effect of
gravity and this effect becomes predominant for the 100 �m
particles, which eventually have left the upper part of the ves-
sel. This is shown more clearly in Figs. 6 (d)–(f), showing the
vertical profile of concentration for upper and lower particles.
At starting time, the concentration was N/N0 = 2 in the upper
half of the vessel and 0 in the lower half for red particles, and
N/N0 = 0 in the upper half of the vessel and 2 in the lower
half for blue particles.
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Table 2
Average value and standard deviation of the circulation path lengths, c,
calculated for all particle diameters

Particle diameter Initial Average Standard deviation
(�m) position [Lr ] [Lr ]

30 Upper 13.644 3.509
30 Lower 13.614 4.114
50 Upper 13.370 3.466
50 Lower 12.688 4.726

100 Upper 12.603 3.204
100 Lower 9.483 4.818

Values are made dimensionless using the impeller blade radius Lr .

Consider first 30 �m particles (Fig. 6(d)). After three revo-
lutions, 50% of the red particles has moved in the lower half
and 50% of the blue particles has moved upward. This bal-
ance modifies for larger particles, due to the growing effect of
gravity. For 100 �m particles (Fig. 6(f)), the number of parti-
cles moving downward is larger than the number of particles
moving upward.

Trajectories analysis (figure not shown here) reveals that the
smaller (30 �m) particles tend to circulate over the entire do-
main being easily resuspended by the upward flow, whereas
50 and 100 �m particles gradually move toward the lower part
of the reactor. Specifically, for 50 �m particles settling is de-
layed thanks to a quasi-equilibrium between drag and gravity
obtained some vertical distance apart from the bottom wall. For
100 �m particles, no equilibrium region is observed.

3.3. Circulation time statistics

Analyzing particle distribution in the vessel is useful to iden-
tify high/low dispersion regions. Yet, it gives no information
on dispersion dynamics, i.e., the traveling distance of particles
inside the vessel. To this purpose, we calculate the length of
particle trajectories over the entire Lagrangian tracking sim-
ulation (3 impeller revolutions) for particles initially released
above and below the impeller plane (upper and lower particles,
respectively).

We should recall here that the two macroscopic flow mo-
tions characterizing unbaffled stirred tanks are (i) a circular
bulk rotation of the flow around the axis of the tank and (ii)
a top–bottom recirculation, induced by the impeller discharge
jet. In the 3-D domain, these correspond to two recircula-
tion regions, above and below the impeller plane, having the
shape of toroidal vortices. The circular bulk rotation is most
similar to a solid-body rotation and does not affect mixing,
whereas top–bottom recirculation produces transfer in the
axial direction and is crucial for mixing processes. There-
fore, to eliminate the bulk flow effect from our analysis, we
evaluated the length of the recirculation path integrating the
axial and radial (�r and �z) displacements along the entire
Lagrangian simulation. The probability density functions of
r–z circulation length, c, are shown in Fig. 7 for all parti-
cle diameters. Statistics on 2-D circulation lengths are given
in Table 2.

For the upper particles, the mean value of circulation
length decreases slightly as the particle size increases (see
Figs. 7(a)–(c), top). For the lower particles, the circulation
length distribution is broader and the mean value of circulation
length decreases significantly as the particle size increases.
Differences in the mean value of the circulation length arise
from the joint contribution of gravitational settling and im-
peller pumping action which are in the opposite direction in
the region above the impeller and in the same direction in the
region below the impeller. Differences in the values of the
standard deviation are most likely due to the larger values of
rms velocity fluctuations of the fluid found in the region below
the impeller, which may enhance differences in particle tra-
jectories. Statistics shown in Table 2 indicate that the largest,
100 �m particles are characterized by very low circulation
lengths—the average value is about 9.483Lr , whereas the most
probable value is about 3Lr . In the lower part of the vessel,
heavy particles tend to be trapped into low-velocity circulation
regions which are unable to re-suspend particles toward the
high mixing region around the impeller.

3.4. Particle preferential concentration

The ability of specific flow structures to capture particles and
to form clusters is generally undesired in dispersion processes
and a thorough understanding of this type of segregation is cru-
cial for dispersion optimization (Campolo et al., 2005). There-
fore, we tried to quantify the degree of preferential concen-
tration in different regions of the tank using the same integral
parameter used by Fessler et al. (1994), which quantifies the
maximum deviation from randomness of the particle number
concentration distribution.

In this work, we evaluate the degree of preferential concen-
tration (a) in the impeller region, corresponding to a cylinder
(3Lr high) containing the impeller and (b) in the bottom of the
tank. We divided these regions into small control volumes and
counted the number of particles in each box, Np, to calculate
the particle number concentration. When the particles are ran-
domly distributed, the PDF of Np is Poisson type. If particles
accumulate into specific regions, the PDF of Np deviates from
Poisson. Deviation from Poisson distribution is evaluated as:

D = � − �Poisson

	
, (3)

where � is the variance of the calculated PDF, �Poisson and 	 are
the variance and the mean of the reference Poisson distribution.
The largest is the value of D, the largest is the preferential
accumulation of particles.

Fig. 8 shows results obtained for D when the box size is op-
timized to maximize D. Statistics are shown again for upper
and lower particles. We observe that 100 �m particles exhibit
the largest segregation, both in the impeller region and in the
bottom of the tank, and the absolute value of D is larger in the
bottom region. As observed previously, larger particles seem
to be trapped due to the action of gravity into low flow circu-
lation regions. Fessler et al. (1994) found that the preferential
accumulation is maximum when the particle relaxation time is
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Fig. 7. PDF of 2-D trajectory length for (a) 30 �m, (b) 50 �m and (c) 100 �m particles. Statistics obtained for particle released above (top) and below (bottom)
the impeller.
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Fig. 8. Integral measure of preferential particle concentration for different size
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of the same order as the fluid time-scale which controls disper-
sion. In our case, �p of the 100 �m is closer to the estimated
Kolmogorov time-scale, than �p of the 50 and 30 �m particles
(see Table 1), indicating that this scale may play a significant
role in particle segregation.

4. Conclusions

In this work we investigated the dispersion of small particles
in a stirred tank using DNS to solve the flow balance equations
down to the smallest scales (i.e., the Kolmogorov scales) and a
Lagrangian approach to simulate the behavior of three swarms

of 30, 50 and 100 �m diameter particles randomly dispersed in
the vessel.

Preliminary results show that the structures dominating the
flow are the radial discharge jet issued from the impeller and
the top–bottom recirculation regions. The discharge jet divides
into two opposite streams in correspondence to the wall gen-
erating two counter-rotating toroidal vortices above and below
the impeller, responsible for the top–bottom recirculation and
for the resuspension of settling particles.

Particle dispersion results show that, after three impeller rev-
olutions, smaller (30 �m) particles remain quite randomly dis-
persed, behaving almost as fluid tracers, whereas migration is
observed for 50 and 100 �m particles toward the bottom of
the vessel. Analysis of particle trajectories showed that 50 �m
particles reach an equilibrium region some distance above the
bottom wall from which they can be resuspended in the flow,
whereas 100 �m particles settle at the bottom and remain there.
Measures of the 2-D radial–vertical circulation confirm the ten-
dency of heavier particles to collect in the lower part of the
reactor, accumulating into low velocity flow regions.

Integral measurements of particle preferential distribution
indicate that 100 �m particles have maximum segregation, their
time-scale being closer to the relevant time-scale of the flow
field (Wang and Maxey, 1993; Eaton and Fessler, 1994).
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