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Abstract The basin of the River Arno is a flood-prone area where flooding events 
have caused damage valued at more than 100 billion euro in the last 40 years. At 
present, the occurrence of an event similar to the 1966 flood of Firenze (Florence) 
would result in damage costing over 15.5 billion euro. Therefore, the use of flood 
forecasting and early warning systems is mandatory to reduce the economic losses and 
the risk for people. In this work, a flood forecasting model is presented that exploits 
the real-time information available for the basin (rainfall data, hydrometric data and 
information on dam operation) to predict the water-level evolution. The model is 
based on artificial neural networks, which were successfully used in previous works to 
predict floods in an unregulated basin and to predict water-level evolution in the Arno 
basin under low flow conditions. Accurate predictions are obtained using a two-year 
data set and a special treatment of input data; which allows a balance to be found 
between the spatial and temporal resolution of rainfall information and the model 
complexity. The prediction of water-level evolution remains accurate within a forecast 
time ahead of 6 h, which is the minimum time lag for the river to respond to dam 
releases under saturated conditions of the basin. The predicted flow rate percentage 
error ranges from 7 to 15% from the 1-h ahead to 6-h ahead predictions, and the 
accuracy of prediction increases for each time ahead of prediction, as the flow rate 
increases, suggesting that the model is particularly suited for flood forecasting 
purposes. 
Key words flood forecasting; artificial neural network; system response identification; 
nonlinear modelling; rainfall–runoff; River Arno, Italy 

Une approche à base de réseau de neurones artificiels pour la 
prévision des crues du fleuve Arno 
Résumé Le bassin du fleuve Arno est une zone sujette au phénomène des inondations, 
où le coût des dégâts dus aux inondations durant les 40 dernières années se chiffre à 
plus de 100 milliards d’euros. De nos jours, un événement aussi grave que 
l’inondation de 1966 à Florence produirait des dommages pour plus de 15.5 milliards 
d’euros. C’est pourquoi l’utilisation de systèmes de prévision et d’annonce précoce de 
crues s’avère nécessaire en vue d’une réduction des pertes économiques et du risque 
pour les personnes. Nous présentons dans ce travail un modèle de prévision de crues 
exploitant les informations en temps réel disponibles pour le bassin (données de 
précipitations, enregistrements hydrométriques et opérations de barrage), dans le but 
de prévoir l’évolution du niveau de l’eau. Le modèle est basé sur des réseaux de 
neurones artificiels qui ont été employés avec succès dans des travaux développés 
précédemment pour prévoir les crues dans un bassin non-régulé et pour prévoir 

mailto:soldati@uniud.it


Marina Campolo et al.  
 
 

 

382 

l’évolution du niveau de l’eau dans le bassin de l’Arno en conditions d’écoulement 
réduit. Des prévisions précises sont obtenues à partir d’un jeu de données de deux ans 
et d’un traitement spécial des données d’entrée, qui permet de trouver un équilibre 
entre la résolution spatiale et temporelle des informations de précipitation et la 
complexité du modèle. La prévision de l’évolution du niveau de l’eau reste précise 
pour une durée de six heures, ce qui est le délai minimum pour que le fleuve réagisse à 
l’ouverture des barrages quand le bassin est en condition de saturation. L’erreur de 
prévision du débit est comprise entre 7 et 15% pour les anticipations de une à six 
heures. D’autre part, la précision des prévisions augmente quand le débit croît, ce qui 
laisse penser que le modèle est particulièrement approprié pour être utilisé en 
prévision de crues. 
Mots clefs prévision de crues; réseau de neurones artificiels; identification de la réponse du 
système; modélisation non-linéaire; pluie–débit; fleuve Arno, Italie 

 
 
INTRODUCTION  
 
Flooding of the River Arno has caused serious damage to the city of Firenze 
(Florence), Italy, which is the first large city the river crosses as it leaves the mountain 
region. To reduce damage from flood events, a net of telemetered raingauges and river 
gauges has been installed and is operating in the basin, making real-time data available 
at the Ufficio Idrografico and Mareografico of Pisa; a meteorological radar has been 
installed in the area of Pisa to allow quantitative prediction of rainfall; and several 
studies have been performed to identify the areas mostly exposed to the risk of floods. 
For the successful implementation of policies for flood mitigation and risk reduction, 
information from these different sources should be integrated and used to obtain an 
accurate and timely prediction of the river-level rise. 
 Rain falling on the mountains and reservoir operations are the two inputs that 
cause the river-level rise at the basin closing section. The state of saturation of the 
basin is an additional variable, which determines the velocity of this process. These 
variables are generally used in traditional hydrological models to evaluate the amount 
of water available in the basin. In the Arno basin, this information is essential in order 
to set up a basin-scale water management system with the following objectives: 
(a) flood control and risk mitigation, (b) water supply for municipal and industrial 
uses, (c) water quality control, and (d) power production optimization. 
 An extensive review of traditional physically-based models may be found in 
WMO (1992). Following a less traditional system approach, the basin may be 
considered as a complex, nonlinear system, and the modelling of the rainfall–runoff 
process can be stated as a system-response identification problem. Predictability of 
future behaviour is a consequence of the correct identification of the system transfer 
function. Among the different approaches proposed and discussed in the literature, the 
phase-state reconstruction method, based on univariate (Porporato & Ridolfi, 1997; 
Liu et al., 1998; Sivakumar et al., 2001a,b), or multivariate nonlinear prediction 
(Porporato & Ridolfi, 2001), and artificial neural networks (Hsu et al., 1995; Smith & 
Eli, 1995; Minns & Hall, 1996; Shamseldin, 1997; Dawson & Wilby, 1998; Fernando 
& Jayawardena, 1998; Thirumalaiah & Deo, 1998; Campolo et al., 1999a,b; Imrie et 
al., 2000; Maier & Dandy, 2000; Hu et al., 2001; Xiong & O’Connor, 2002; Rajurkar 
et al., 2002) are receiving the greatest attention. The interest in these models is due to 
their ability to produce reasonably accurate results in a very short computation time, 
exploiting a reduced set of data that may be readily available in real time. For these 
reasons, they are optimal candidates for an easy and successful integration into flood 
forecasting and early warning systems (Kim & Barros, 2001). 
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 The object of this work is to present and discuss an artificial neural network-based 
model developed for the real-time forecasting of floods in the River Arno. A similar 
model was successfully used in a previous work to forecast floods in a different basin 
(Campolo et al., 1999a) and to forecast river flow rate in the Arno basin during low-
flow periods (Campolo et al., 1999b). These models may be eventually used as input 
for river basin management (Campolo et al., 2002). 
 In the previous flood forecasting application (Campolo et al., 1999a,b), an un-
regulated basin, smaller (1950 km2) than the Arno basin (4000 km2) was considered. In 
the present work, the larger basin makes it necessary to evaluate carefully the effect of 
the spatial distribution of rainfall, at least on a sub-basin scale. Therefore, in order to 
adjust the need for distributed rainfall information against the growing complexity of 
the neural network model, a special procedure is proposed for the aggregation in time 
and space of rainfall data. In the previous application on the Arno basin the water-level 
evolution during low flow periods was predicted. In those conditions, mechanisms 
determining runoff are completely different, the variation in time of water level is 
smooth and predictions may be issued on a daily basis. In this work, the water-level 
evolution is predicted hourly for medium–high flow periods, when the water level of 
the river exceeds a threshold value such that heavy rainfall can produce floods. 
 Experimental data made available for the work include rainfall, hydrometric and 
power production data collected in the basin during 1992 and 1993. Due to the kind of 
data exploited for prediction, it was found that model performances remain satisfactory 
up to 6 h ahead, which is too short for operational flood forecasting. The availability of 
new data, mainly radar data, should allow the time of prediction of the model to be 
extended to operationally useful values. 
 
 
SITE AND DATA 
 
Figure 1 shows the River Arno basin, Italy. In this study, only the upper part of the 
basin, closed by the section of Nave di Rosano, a few kilometres upstream of Firenze, 
is considered. This part covers about 4000 km2 and can be divided into five sub-basins  
 
 

 
Fig. 1 Map of the River Arno basin. (Nave di Rosano closes the upper part of the 
basin; two dams contribute to flow regulation.) 
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(Casentino, valley of Valdarno Superiore and sub-basins of the tributaries Chiana, 
Ambra and Sieve). The sub-basins are characterized by differences in topography, 
climate and vegetation. Slopes range from 20% in the hilly and mountainous zones to 
3% in the plain areas around the main river valleys. This complex topography deter-
mines a high variability in the distribution of rainfall and mean temperature. The 
change in climate generated by the altitudinal gradients and distances from the sea 
determines high variability in vegetation types and land cover. As a consequence, the 
response of each sub-basin to a rainfall event must be considered separately, since lag 
time and soil permeability to rainfall are different. 
 A network of raingauges and river gauges collects rainfall and water-level data 
with a time interval of 15 min and these are automatically available at the Ufficio 
Idrografico and Mareografico of Pisa; meteorological data (temperature, relative air 
moisture) are available at the same gauging stations. In the present study, a set of 31 
raingauges, located in the upper part of the basin, and the gauge at Nave di Rosano 
were selected. A stage–discharge relationship available at Nave di Rosano allows the 
water level to be converted into the corresponding flow rate. 
 The flow rate of the River Arno is highly variable during the year and is regulated 
by two artificial water reservoirs, La Penna and Levane, holding 13 and 3 × 106 m3, 
and located 40 and 30 km upstream of Firenze, respectively. At the section of Nave di 
Rosano the yearly averaged flow rate is about 50 m3 s-1 (a minimum flow rate of  
0.560 m3 s-1 was recorded on 29 August 1958, and a maximum flow rate of 3540 m3 s-1 
was recorded on 4 November 1966). 
 There are two main contributions to the river flow rate at Nave di Rosano: rainfall 
production and storage regulation. Snowmelt contribution to runoff may be significant 
only during spring. The La Penna Reservoir does not contribute directly to flow rate 
during high flow periods since its large volume allows water storage for flood 
mitigation. The Levane Reservoir modifies the flow rate in the Arno, discharging the 
water through turbines for power production. Data on the hydroelectric power produc-
tion of the Levane Dam with a time interval of 1 h were provided by the National 
Power Agency (ENEL). Hydropower production is directly related to the water 
discharged from dam by the relationship: 

H
QkP ⋅=   (1) 

where P is the power, Q is the flow rate and H is the height of the waterfall, being the 
difference between the level of water in the reservoir and that of the tail water. 
 The level of the reservoir is not continuously recorded and the discharged flow rate 
may be estimated only with some uncertainty. Nevertheless, since artificial neural 
network models may use multivariate time series for flood prediction, it was decided to 
use the raw power data as input to the model. 
 
 
METHODOLOGY 
 
Artificial neural networks (ANN) are nonlinear, multi-dimensional interpolating 
functions. The functional form of the ANN model developed herein is extrapolated 
using a best-fit procedure from pairs of input–output data, each one representing an 
example of the transformation to be modelled. Transformation of the input array of 
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data, { }Ii NixI ,1, == , consisting of NI components including rainfall, water level and 

power data, into the output array, { }Ok NkoO ,1, == , consisting of NO components 
representing the water-level evolution in the next hours, is obtained by combining a 
sequence of simple computations performed in parallel by a number of elementary 
processing units, or nodes. Components of the input array, xi, are weighted, summed 
up and then transformed by each node using a nonlinear activation function, f: 
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The result of this operation is an array, { }Hj NjhH ,1, == , where the number of 
components NH is equal to the number of processing internal nodes that can be 
processed by a subsequent layer of nodes in the same way as the input array: 
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The array calculated by the last layer of nodes, { }O
c
kc NkoO ,1, == , is the output array, 

O . The weighting parameters, wi,j and wj,k, the thresholds, σj and σk, and the number of 
processing units of internal layers, NH, are the adjustable parameters of the model 
which are modified during the model building phase—training (see Haykin, 1995, for 
details) and finally fixed in order to make the calculated output, cO , as close as 
possible to the target, O , thus minimizing the error of the model. Generally, and in this 
work, the correction of the weights is made proportional to the actual error of the 
model (standard back-propagation error algorithm). When the error of the model 
decreases below a specified threshold, the building phase is over and the model can be 
used to compute transformation of new series of input data. 
 In this study, a standard methodology based on feedforward neural networks, 
trained with the standard back-propagation algorithm was used (see Haykin, 1995, 
for details). Feedforward neural networks are widely used for hydrological 
applications because they are simple, accurate and allow high processing speeds. 
Other configurations, for example recurrent neural networks, do not provide clear 
practical advantage (Maier & Dandy, 2000). The neural model was implemented and 
calibrated using the software Stuttgart Neural Network Simulator (SNNS), developed 
by the University of Stuttgart, Germany, and available as free software from the 
Internet (SNNS, 1995). 
 Analytical methods and hydrological expertise helped to determine the inputs for 
the ANN model in order to reduce the network size and training time (Maier & Dandy, 
1996, 1997). 
 For the present application, the efficient use of input data is a critical issue. Given 
the basin topography and climate variability, the distributed contribution of rainfall to 
runoff needs to be accounted for. Nevertheless, the use of distributed rainfall informa-
tion adds to the complexity of the model, to the training time and, in the absence of 
extensive data sets, to the possibility of overfitting. Therefore, during the model 
building phase, the input data were carefully analysed to achieve an optimum balance 
between input data information and model complexity.  
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DATA ANALYSIS AND MODEL SET-UP 
 
Performance of neural networks, as any data-driven model, is extremely sensitive to 
the data used during model set-up and calibration: (a) data must be adequate and 
specific for the modelling task, (b) input data must be selected according to their 
relevance for the modelling, and (c) input data must be as limited as possible to reduce 
the training time and the possibility of overfitting.  
 With these basic rules in mind, it was first decided to make the database problem-
specific by removing very low flow periods that may lead to model performance 
degradation. In these conditions, the probability of flood is negligible and the mechan-
isms controlling runoff production are considerably different. Campolo et al. (1999b) 
chose a threshold value equal to 1.5 m relative to the position of the recording gauge to 
identify low flow conditions and predict the daily water-level evolution. In this work, 
since the object is to predict hourly water-level variations, which may produce floods, a 
different threshold value was chosen for the water level (–0.25 m) and for prediction 
only those periods were chosen during which the water level is higher than the threshold. 
This lower threshold value allows floods generated by heavy rainfall falling on the basin 
initially in unsaturated conditions to be included in the data set. 
 Second, to determine the input of the neural model, the data available to establish a 
causality relationship and time-lags between input and output data were analysed. The 
sampling rate of available data is one hour, as fixed by power data on dam regulation. 
Figure 2 shows a typical time series of water-level variation following a rainfall event 
and reservoir regulations. The main peak in the water-level time series is due to the 
rainfall, whereas the number of subsequent peaks are due to dam releases that may 
sensibly modify the falling limb of the hydrograph. Using cross-correlation between 
segments of power data and water level and between rainfall and water level, the lag 
time necessary for the system to respond to these different perturbations was evaluated, 
providing valuable information about the rainfall–runoff dynamics. The lag was identi-
fied as the value producing a peak in the cross-correlation diagram. As expected, the 
lag is influenced, first, by the distance of the raingauge or the power production site 
from the gauge and, second, by the state of the basin, i.e. the lag is smaller in a 
saturated basin. In the Arno basin, maximum and minimum lags, corresponding to 
unsaturated and saturated conditions, are of the order of 16–8 h for the rainfall and  
10–6 h for the power data, respectively. From this analysis, the segment of rainfall and 
power data relevant for water-level prediction on a hourly basis was identified. Yet, the 
use of relevant hourly data for each of the 31 raingauges poses a crucial problem of 
high number of inputs. Then, distributed rainfall information (in space and time) needs 
to be used to account for rainfall variability and its effect in floods production, and the 
number of inputs needs to be kept small because the data set is small. 
 Therefore, it was decided to group the data based on the results of the correlation 
analysis as follows. First, groups of raingauges were identified for which the time lag 
was similar. These data, corresponding to raingauges belonging to the same sub-basin, 
were averaged on an hourly basis. Sub-basin averaged rainfall data given as input to 
the neural model for a time period equal to the maximum time lag should represent the 
forcing input for water-level variation (input from I5 to I39 in Fig. 3). Next, when the 
time lag becomes larger than the maximum correlation value, it was found that the 
contribution of rainfall from each raingauge to flow rate variation could not be  
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Fig. 2 Time series of (a) rainfall, (b) power production, and (c) water-level variation at 
Nave di Rosano. Rainfall and power production are forcing functions determining 
system response. 

 
 
identified. Yet, these rainfall data may give useful information on the state of satura-
tion of the basin. Therefore, it was decided to aggregate over the basin-scale rainfall 
values delayed more than the maximum lag. Furthermore, analysing the trend of basin-
averaged rainfall data only smooth variations over time were found, suggesting that the 
input dimension for the model may be further reduced. It was decided to describe soil 
moisture variation using rainfall cumulated over a fixed time period and the time 
evolution of this variable. The trend of rainfall cumulated over a period of k hours 

(c) 

(b) 

(a) 
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(with k in the range 2–8 h) was considered and the possibility of describing the time 
evolution of this function using a reduced sampling rate was evaluated. It was found 
that using k = 4 and a four-step approximation for the trend, an optimal compromise 
could be found between accurate description of soil moisture variation and number of 
inputs. This procedure is in line with previous analysis by Nalbantis (2000), who found 
that the importance of rainfall resolution decreases moving back in time. 
 As previously observed by Minns & Hall (1996), information about the forcing 
inputs (rainfall and power production) alone is not sufficient to compute the flow rate, 
since the state of the basin plays an important role in determining flow rate behaviour. 
Even though soil moisture content is partially accounted for in this study using basin-
averaged rainfall information, it was decided to also use the gauge recording at certain 
time intervals before the time of prediction as additional input. As reported by 
Porporato & Ridolfi (1997), the high level of autocorrelation for subsequent values in 
the time series indicates that the water level is the best water-level predictor. 
 The correlation analysis also gave a final suggestion as to the maximum time 
advance for accurate prediction. Only ground-truth data were used to make predictions 
and it is clear that accuracy of prediction decreases if these data become incomplete or 
inaccurate. Since the minimum time lag between the Levane Reservoir operations and 
water-level variation is 6 h when the basin is in saturated conditions, it will be difficult 
to extend the time advance of prediction beyond this period. The future scheduling for 
reservoir operations, which influences the water-level rise, should be available in order 
to extend the time advance of the forecast further into the future.  
 Figure 3 shows the structure of the input and output data adopted for the model. To 
predict the water level from time T, i.e. the next hour, to T + 5, i.e. 6 h ahead, the 
following data were used: (a) the rainfall cumulated over 4 h for the entire basin for 
time T – 20, T – 16, T – 12 and T – 8; (b) the rainfall averaged over each sub-basin 
from hour T – 7 to T – 1; (c) the power production data from hour T – 9 to T – 1; and 
(d) the water level from time T – 9 to T – 1. Power production data are given for the 
time period corresponding to the maximum lag time calculated from the correlation 
analysis and up to the present time in order to use all the information available to 
extend the time ahead of prediction. Based on the structure chosen for the input data, 
the time series were divided into two independent sets—calibration and validation. 
 
 

 
Fig. 3 Input data used for water-level prediction up to 6 h ahead. 
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Table 1 Division of data into training, testing and validation sets. Range of variation of water level in 
the data sets. 

Data set Period Water-level range (m) 
Testing 10–22 January 1992 –0.25 to 5.3 
 7 February–7 March 1992  
 23 March–25 April 1992  
 30 April–5 May 1992  
 12–16 June 1992  
 5–10 July 1992  
Training 4 October 1992–1 January 1993 –0.25 to 6.72 
 25 March–5 April 1993  
 10–23 April 1993  
Validation 1–4 October 1993 –0.25 to 5.8 
 6–29 October 1993  
 3–25 November 1993  
 29 November–31 December 1993  
 
 
 The data were grouped carefully in order to ensure that statistical properties of 
each subset—i.e. mean, variance, minimum and maximum value of water level—were 
most similar (see Table 1 for details). Using the same criteria, the calibration ensemble 
was further divided into two portions, the training set and the testing set. The training 
set was used to minimize the error of the model while the testing set was used to check 
generalization capability as calibration proceeds (see Bishop, 1994; Haykin, 1995 for 
details). 
 The procedure for data division was adopted to avoid the problem of extrapolation. 
The inability of neural networks to extrapolate beyond the range of data used for 
training is widely acknowledged (Maier & Dandy, 2000; Minns & Hall, 1996) and 
very few examples of neural network configurations with improved extrapolation 
ability are reported in the literature (Imrie et al., 2000). This is a potential problem for 
flood forecasting models, since the probability of flooding events exceeding the range 
covered by the training data may be low and yet remains different from zero. The 
problem of extrapolation was tackled by standardizing all data with the help of linear 
scaling from the overall range of variation evaluated from available data to the range 
[0.1–0.9], the output of the activation function being bounded between 0 and 1. In 
particular, the water level was scaled from [–0.25 to 6.72] to [0.1 to 0.9]. The reduced 
range selected for the scaling allows output water levels within the range [–1.12 to 
7.59] to be obtained. These values represent physically realistic boundaries for the 
present problem, since the lower value is below the zero flow gauge level and the 
larger value corresponds to a discharge in the river of about 3540 m3 s-1, which is a 
200-year-flood (value recorded in 1966). Similarly, the rainfall time series was scaled 
at each raingauge assuming that greater rainfall may fall on the basin. Greater rainfall 
would result in the calculation of water levels higher than the maximum in the training 
set, and would allow prediction of water levels in the river that are higher than those 
used for training. 
 Based on the structure identified for the input–output transformation and on the 
division of data into training, testing and validation sets, a number of patterns—i.e. 
related pairs of input–output data—was generated, being 2416, 1874 and 1708 for the 
training, testing and validation sets, respectively.  
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 A trial-and-error procedure was used to fix the number of hidden nodes and 
determine the final structure of the neural network model. Five different networks were 
trained with 20, 25, 30, 35 and 40 hidden nodes following the same fixed scheme (four 
epochs of 1000 iterations each, decreasing the learning rate from 0.2 to 0.05 by step 
0.05 at each epoch). For each network configuration, the training procedure was 
repeated 10 times, starting from different random initialization values for the weights. 
The best performing among these nets was considered for further comparison with the 
other configurations. During training, the error in prediction over the entire time 
horizon was checked on the testing set to avoid overfitting. It was found that the net 
with 30 hidden nodes allowed optimal performances—i.e. minimum error in prediction 
—to be obtained. 
 The final structure of the net exploits 57 input nodes, 30 hidden nodes and six 
output nodes. As suggested in many previous works (e.g. Minns & Hall, 1996), the 
number of hidden nodes is roughly half of the number of input nodes. The total 
number of adjustable parameters is 1926 and that of available patterns (training set) is 
2416. This gives a ratio of training sample to weight number of 1.25, which is a small 
value compared to many empirical relationships suggested in the literature (see Maier 
& Dandy, 2000, for discussion). Following Rogers & Dowla (1994), the number of 
weights should not exceed the number of training samples, whereas a ratio of training 
sample to weight number up to 30 is necessary to obtain a good generalization ability. 
To verify the generalization ability of the present model, a cross-validation approach 
(Bishop, 1995) was used. The calibration data were divided into 10 independent sets at 
random, and the network was trained again leaving out one set of data at a time for 
testing. No significant differences were found in network performances by training the 
net using this enhanced data set. 
 The possibility was also considered of reducing the number of inputs by testing the 
performance of an ANN model exploiting basin-averaged rainfall from hour T – 7 to 
T – 1 instead of rainfall averaged over each sub-basin. All the other settings (other 
input data, number of hidden nodes, training procedure) were left unchanged. This 
cheaper model was not able to reproduce the rainfall–runoff transformation accurately, 
and produced 1-h ahead prediction 20% in error for events generated by rainfall falling 
in single sub-basins. 
 
 
RESULTS AND DISCUSSION 
 
To verify the adequacy of information presented to the model and the existence of 
prediction limits, the distribution of the error was plotted against the prediction lead 
time.  
 Figure 4 compares river level predictions and measured data for the 1-h and 6-h 
forecasts on the calibration and validation sets. Dispersion of points increases from the 
1-h to the 6-h ahead prediction but remains satisfactory. For the validation set, points 
corresponding to extreme values of water level are slightly overestimated or under-
estimated in the 6-h ahead prediction, while some points corresponding to medium-
flow conditions are heavily underestimated. 
 Figure 5 shows two segments of the time series of the measured water level 
compared with the 1-h ahead and 6-h ahead prediction. The segments shown from the 
calibration and validation sets are representative of predictions obtained over the entire  
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Fig. 4 Comparison between measured and predicted water level for (top) 1-h ahead 
and (bottom) 6-h ahead prediction on (left) calibration and (right) validation sets. 

 
 
set of data. The 1-h ahead prediction reproduces the data accurately. In the 6-h ahead 
prediction, deviations are found for water-level variations due to dam operations 
(peaks on the recession limb) and for the main peak. 
 The overall accuracy of the model was evaluated by calculating RMSE and 
correlation coefficients. Since the water-level height is relative to the gauge position 
and statistics calculated on this variable can falsify the results, the stage–discharge 
relationship was first used to convert water level into flow rate; second, RMSE and 
correlation coefficient were calculated using these transformed values. Figure 6(a) and 
(b) shows the RMSE and the correlation coefficient calculated from the calibration and 
validation sets. The RMSE increases with time ahead of prediction for both sets. The 
value is smaller for the validation set than for the calibration set. The increasing trend 
within the time horizon becomes steeper for the 6-h ahead prediction. As initially 
suggested by the cross-correlation analysis, this proves that the given input information 
becomes progressively insufficient to compute water levels. These results were com-
pared with performances of a neural model exploiting the same set of inputs and 
predicting the water-level evolution for the next 12 h. Figure 6(c) and (d) shows that  

Calibration Validation 
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Fig. 5 Time series of predicted and measured water level for (top) 1-h ahead and 
(bottom) 6-h ahead prediction for (left) calibration and (right) validation sets. 

 
 
RMSE values for T = 1–6 are larger than in the six-output model. Furthermore, a steep 
change is observed for T > 6. For the model presented in this work, the correlation 
coefficient between calculated and measured flow rate, shown in Fig. 6(b), remains 
about 99% for the calibration set and above 95% for the validation set for the entire 
time ahead of prediction. Lower values are found for the 12-h ahead prediction 
(Fig. 6(d)), suggesting that input information is adequate for water-level forecasts up to 
6 h in advance. 
 The final purpose of the model is to predict water-level evolution when water-level 
rise may produce floods. To assess the performance of the model in the prediction of 
the larger values of discharge, the absolute and relative error were calculated for the 
increasing value of water level. Calculations are summarized in Fig. 7. Errors in 
discharge values for each value of water level, h, were calculated considering all the 
forecast values greater than h. Higher water levels and associated errors correspond to 
floods. For the 1-h ahead prediction (Fig. 7(a)), it was found that for each water level 
the absolute error in discharge increases with the stage. The relative percentage error in 
discharge is about 5% for the calibration set, and about 7%, on average, for the  
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Fig. 6 RMSE and correlation coefficient for increasing time advance of prediction for 
ANN model predicting water-level evolution: (a) and (b) 6 h ahead; (c) and (d) 12 h 
ahead. Values for calibration and validation set are calculated on flow rates. 

 
 
validation set. The error increases with the time ahead of prediction (see Fig. 7(b) 
and (c)—up to 15%, on average, for calibration and validation for the 6-h ahead 
forecast), but the increase is more pronounced for the lower levels than for the higher 
ones. This behaviour is regular for the calibration set and more irregular for the 
validation set. The reduced increase in the percentage error for h ≥ 5 m up to the 6-h 
ahead prediction (about 7%) suggests that the model is suitable for flood forecasting, 
and less accurate for medium-flow predictions. The stability of model performance 
for increasing lead time of prediction when the predicted water level is very high 
deserves some physical explanation. In Fig. 8, two different peaks of discharge with 
the same maximum value are presented. As shown in the upper part of the figure, 
these are generated by two different time series of rainfall. The peak on the left is 
generated by rainfall of medium intensity lasting for a time period of 10 h and the 
similar peak on the right is generated by a shorter rainfall event of higher intensity. 
Predictions for the peaks in the two cases are shown in the lower part of Fig. 8: the 
peak (a) is correctly reproduced even for the larger lead time, whereas a shift can be 
observed in the prediction of the peak (b). The time of the rising limb is incorrect, 
even though the peak value is captured. This suggests that the main errors in 
prediction are found for intermediate values of water level because, in these 
conditions, the rising limb can be generated either by rainfalls of medium intensity 
and long duration (that are well reproduced) or by heavy rainfalls of shorter duration 
(that are not well reproduced). Considering the relative frequency of these events in 
the data set, it was found that more frequent events are better reproduced than less 
frequent events. On the other hand, peaks corresponding to larger values of discharge 
(and water level) are always generated by rainfalls that are heavy and of long 
duration, and this explains the reduced error. 

Calibration Validation Calibration Validation (a) (b) 

(c) (d) 



Marina Campolo et al.  
 
 

 

394 

 

 
Fig. 7 Absolute and relative percentage error on discharge for increasing water-level: 
values calculated for calibration (left) and validation (right) for (a) 1-, (b) 3- and  
(c) 6-h ahead prediction. 

 
 
 Finally, the possibility was considered of improving network performances on the 
6-h ahead prediction by using the same input data and a more specific network, with a  
single output. This is the configuration generally used in the literature to produce 
delayed forecasts (Maier & Dandy, 1996, Dawson & Wilby, 1998). A similar network 
can be obtained from the already trained model eliminating all the weights from the 
hidden layer to the lost output nodes. Nevertheless, the purpose here is to verify if 
embedding of the output time series into the model outputs increases network per-
formances, as suggested by Cheng et al. (1995). To compare single-output and 
multiple-output models, a new neural network model was trained with the same 
number of hidden nodes as before (four epochs of 1000 iterations each, with a learning 
rate decreasing from 0.2 to 0.05). It was found that performance of this simplified 
network was slightly worse than of the multiple-output network, with RMSE of 90 and 
65 m3 s-1 and correlation coefficients of 0.94 and 0.84 for the calibration and validation 
sets, respectively. Figure 9 shows the percentage error computed for the single-output 
net on the calibration and the validation sets, that can be compared with Fig. 7(c). The  
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Fig. 8 Water-level variations produced by different time series of rainfall. (a) Peaks 
generated by long duration rainfall are reproduced correctly even for the larger time 
advance. (b) Peaks generated by rainfall of short duration are not correctly 
reproduced. 

 
 

 
Fig. 9 Relative percentage error on discharge for increasing water level for single-
output neural model. Performances are slightly poorer than for six-output model. 

 
 
error is larger for each class of water level for both the calibration and the validation 
sets. A reduced value is found only for h ≥ 6 m in the validation set. 
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Fig. 10 Distribution of weights from input to hidden nodes for (a) the multiple output 
model, and (b) the single output model. 

 
 
 In order to understand the effect of the output selection (single value or segment of 
water-level time series) on model calibration, the map of the weights of the trained nets 
was studied. In Fig. 10 the values of the weights for each link between input and hidden 
nodes are plotted. The distribution of weights is extremely irregular for the multiple-
output model, while the surface is only slightly deformed for the single-output model. 
Furthermore, a large number of weights is near to zero in the single-output case  
(Fig. 10(b)), indicating that input information from the corresponding input is neglected. 
Obviously, the transfer function to reproduce the water-level evolution for the next six 
hours is more complex than the one reproducing a single future value of water level and 
a less expensive model may be used to predict the water level 6 h in advance. Neverthe-
less, for flood forecasting applications the water-level evolution is as important as the 
peak value, and for this reason the authors prefer to use a multiple-output model. 
 
 
CONCLUSIONS  
 
A neural network model predicting water-level variation up to 6 h in advance is 
presented and discussed. The model, built using data collected on the basin of the 
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River Arno, has the advantages of both low cost and simplicity and can be easily 
integrated with automatic data acquisition systems into a real-time flood forecasting 
system. A methodology is described for the selection of model inputs based on 
analytical procedures (cross-correlation analysis) and hydrological expertise, rather 
than on extensive model sensitivity analysis to input data. This procedure allows the 
identification and calibration of the model to be speeded up because the relevant 
rainfall, power production, and water-level data to be used for prediction and the 
possible limit to the prediction lead time can be identified in advance. Performance 
degradation of the model for the 6-h ahead prediction confirms the limitations in the 
prediction time advance. Furthermore, it was found that the model predicts satis-
factorily the evolution of water levels during floods. The percentage error in flow rate 
is less than 7% for the 6-h ahead prediction when the water level is higher than 5.0 m. 
Intermediate peaks are always predicted in magnitude, but a timing errors exists in the 
prediction when the peak is generated by heavy rainfall of short duration. Finally, 
performances were compared of the 6-h ahead forecast with the help of a multiple-
output model, predicting hourly data for the entire time horizon, and a single-output 
model, making only the 6-h ahead forecast. It was found that predicting the entire time 
horizon gives more useful information, while the accuracy of predictions is not 
significantly improved by a single output model. 
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