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Current-Density Approximation for Efficient
Computation of the Electrostatic Field
In Wire-Plate Precipitators

Frangois Beux, Angelo lollo, Maria-Vittoria Salvetti, and Alfredo Soldati

Abstract—n this paper, numerical computation of ionic space
charge and electric field produced by corona discharge in an elec-
trostatic precipitator is addressed. The problem is defined by a re-
duced set of the Maxwell equations. The efficiency of numerical
iterative computations is significantly improved by deriving an ini-
tial field as close as possible to the final solution from an approx-
imation of the current-density field J. Different techniques to ap-
proximate J are proposed. A first analytic approximation JJ is de-
rived, which verifies by construction the boundary conditions of
the problem and, in particular, gives the correct average value at

the plate. A second approximation is also considered, which con-

tains a free parameter that can be computed by an optimization
procedure based on the known value of the potential at the wire.
Finally, Karhunen—Loéve (KL) decomposition is used and the cur-
rent-density field is expressed as the sum af and of a linear com-

bination of few KL basis functions. The coefficients can be deter-
mined again by an optimization algorithm. Starting from these ap-

proximated J fields, a procedure is proposed to obtain, at negli-

voltage high enough to ensure corona discharge. The ions dis-
charged at the wires charge the dust particles, which are thus
driven toward the collecting plates. A further effect of the dis-
charged ions is to release momentum to the fluid and generate
flows of electrohydrodynamic (EHD) origin [1], [2]. In turn,
EHD flows influence particle collection and the overall pres-
sure drop through the duct. Numerical computation is certainly a
useful tool in ESP design. As an example, in our previous work,
we considered one specific geometry and few operating condi-
tions for the ESP, by solving the reduced Maxwell equations for
the electrostatic field coupled with both particle dynamics and
Navier—Stokes equations, and we found that the distribution of
the electrostatic field might have an optimum for particle collec-
tion [3] and for drag reduction [2]. However, the computational
effort required by those calculations is important, and, seriously

gible computational cost, an estimate of the complete electrostatic limiting the number of configurations which can be analyzed in

field. It is shown that this estimate is in all cases much closer to
the exact solution than guesses typically employed in the litera-
ture. Hence, when itis used as initialization for standard numerical
solvers, this significantly improves the efficiency of the numerical
algorithm. In particular, the initialization based on the second ap-
proximation gives a significant efficiency gain without any notice-
able additional cost.

Index Terms—Efficient computation, initial field from cur-
rent-density approximation, reduced Maxwell equations,
wire-plate precipitators.

. INTRODUCTION

LECTROSTATIC precipitators (ESPs) are used to colle
airborne particles from process or waste dust-laden ga:
The most widespread configuration for industrial use is the wire
plate. In this configuration, the gas flows through grounded p

allel plates in the middle of which wire electrodes are kept at‘Iﬁhis leads to quite time-consuming calculations. Different nu-
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S(;’%S], have been used in the literature to accelerate the conver-

practice. Thus, efficient numerical strategies should be devised
to reduce the cost of each part of the simulations (electrostatics,
fluid dynamics and particle dynamics). Specifically, a strategy
to reduce the cost of numerical computation of the electrostatic
problem is proposed here.

In the past, several numerical methods have been applied to
solve accurately both the elliptic Poisson equation for potential
and the charge continuity equation, namely, finite elements, fi-
nite volumes, finite differences, the method of characteristics,
the charge simulation method, or some hybrid or derivative of
these (see, e.g., [4] for a review). All these solvers use an it-
etrative procedure to obtain the self-consistent solution: starting

S(1;rom an initial guess of the charge density and electric potential
.ﬁéslds,p andV, the Poisson equation for potential and the charge

continuity equation are numerically solved, adjusting the value

alz

of V (as, for instance, in [5]-[7]) op at the wire ([8]-[12]).
merical techniques, such as multigrid [11] or implicit schemes

gence of the iterative procedure.
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corona onset field as given by the semi-empirical Peek formula,
modified for wire-plate precipitators (see, e.g., [16]).

The wire charge densify, is not knowna priori and, thus, an
iterative algorithm is needed to numerically solve the problem.
An algorithm close to the one proposed in [8] is adopted here.
An initial estimate ofp, is obtained by using the wire condition
po = Jp/(BE1) [5]. Hence, starting from an initial guess of
p andV fields, (2) can be solved, and then, using the updated
p field, (1) is discretized to obtain a new potential field. The
value ofpg is adjusted and the computation@éndV fields is
repeated until the calculated average current density at the plate
is close enough to the desired oAg

As for the numerical discretization of (1) and (2), the present

Fig. 1.  Computational domain. approach is based on a finite-difference (FD) method close to the
one defined in [5], but here a constant valugiaind a nonuni-
II. PROBLEM DESCRIPTION ANDNUMERICAL SOLVER form grid system are used. This method is certainly not the most

) _ ) o _efficient among those proposed in the literature; however, tests

We consider a wire-duct ESP configuration, i.e., a series gf grid independence and comparisons with experimental and

equidistant wires at high voltage placed in the middle plane bggmerical data have shown that accurate solutions can be ob-

tween two parallel grounded plates. The electric phenomenoRdged [17]. On the basis of those tests, all the computations pre-
characterized by ion emission from the corona around the Wiggnted here are carried out on a234 nonuniform grid, with

to the plates, which forms a nonuniform electric field. Undggoints clustered near the wire (point A) in both directions.
certain conditions [14] and specifically under conditions of pos-

itive corona, the ion discharge may be assumed to be uniform
along the wire and the electrostatic problem can be solved in Ill. PROCEDURE FOR THEDERIVATION OF AN INITIAL
two dimensions. Neglecting the magnetic effects and consid- ELECTROSTATIC FIELD

ering the steady state, the governing electrostatic equations CaRs discussed previously,

the computation of the electrostatic
be expressed as follows:

variables in a wire-duct ESP requires initialization of charge
density and electric potential fields, and thus, a firptiori esti-

AV =_ P (1) mation of these two fields. Usually, a uniform distribution of the
) €0 space charge is assumed and a Laplace equation is solved in turn
p~ =eoVpVV (2)  for the potential. The analytic solution of this problem is known

as Cooperman’s formula (it can be found, for instance, in [18]).
in which p is the space-charge density,is the electrical po- However, this initialization furnishes, p, £, and./ fields rather
tential, andey the permittivity of the gas. The electric fieldfar from the exact solution. We propose here to improve the ini-
and the current density are obtained fréfrand p as follows: tjalization in order to increase the computational efficiency of
E = -VV andJ = pSE whereg is the ionic mobility. the reduced Maxwell solver. This is done working on the cur-

Due to symmetry considerations, the computational domaignt-density field/. Three different techniques to approximate
can be reduced to the rectangle ABCD of dimensibns< 2. are considered. First, an analytic approximatids obtained,
shown in Fig. 1, with the Neumann boundary conditiéhs= 0  which verifies by construction the boundary conditions of the
along AB andE,, = 0 along BC and DA. To close the previousproblem, and, in particular, gives the correct average value at
system of equations, Dirichlet conditions are also applied by sgife plate. A second approximation is also derived, which con-
ting to zero the potential at the grounded plate, i.e., along CRiins a free parameter that can be computed by an optimization
and by imposing both potential and charge density at the wiseocedure based on the known value of the potential at the wire.
(point A). A desired average current density is specified at Finally, a parameterization of the homogenedus .J field is
the plate fromVj, the wire potential value, ang the wire ra- defined through a Karhunen—Loéve (KL) decomposition [19].
dius, using a current-voltage formula defined in [15]. More pré=ollowing this technique and using the good properties at
cisely, the following equation is numerically solved by means @he boundaries/ can be expressed as the sumJoéind of a

a Newton algorithm: linear combination of few KL functions, which can be obtained
from a set of snapshots, i.e., from somédields calculated for
Iy (Vo — Ve + h.E) different configurations (for instance, different values of the po-

tential at the wire). The unknown coefficients of the KL modes
-0 (3 are computed by an optimization procedure again based on the
assigned value of the potential at the wire.
Then, starting from the approximatddfield, a procedure is
in which V3® is the corona starting voltage, i.ek, corre- proposed, which permits us to obtain an estimate of the complete
sponding toJ/, = 0, and £y, defined byE, = wa/(2h,)E., electrostatic field at a very low computational cost. A flowchart
is an average electric field. is the strength of the idealizedof the entire procedure is shown in Fig. 2.
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NUMERICAL COMPUTATION OF ANALYTIC APPROXIMATION
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Fig.2. Flowchart of the different proposed procedures for the initialization of the electrostatic field. THerbibve figure corresponds to the procedure described
in Section IlI-A.

Although the derivation of the electrostatic field from a givefror a givenJ,,, the charge-density field is totally determined
J is the last step of the proposed initialization process, it willy (5) and by the charge-density wire condition, i@.; =
be described first (Section IlI-A), because parts of it are useg/(GE,).
in two of the techniques for approximation #f(Sections I11-C From the knowledge gf and.J, the electric field is immedi-

and D). ately derived from&l = .J/(3p) and, thus, the potenti®l can
also be obtained fromy = —VV.

A. Electrostatic Field Construction From a Given Afirstway to reconstrucY is to use an upwind first-order FD

Current-Density Field schemeV; ,_; = Vi, + AXE*. This appears a natural way

We search here to define potential, electric, and charge-déhour formulation because it is exactly the inverse procedure of
sity fields using the knowledge of a current-density figld and  that used in the reduced Maxwell solver to obtalnfrom V.
of the parameters,,, a, andV;. As a first step, the charge den-Remembering that the potential is equal to zero at the plaje,
sity can be obtained by solving the following equation, whickan simply be expressed as follows:
can easily be derived from (2):

3
é—p:” +VpJ =0. (4)
0

nk

Vik= Y AEN (6)
s=k+1

Equation (4) is discretized similarly to (2), i.e., by using an FD One possible drawback of this construction is that informa-

approach. The following expression for the charge-density fielén from only the second component of the electric field has

is, thus, obtained: been used. Moreover, in this way we have an accumulation of
1/3 approximation errors moving away from the plate, i.e., when

‘ 1/3 ‘
Pig = <_ B;,k + Qk) — <% + 4 /ci,k> (5) decreases (see also [17]).
As an alternative approach, tie, field can be used to re-

in which late the potential evaluated in two points in thedirection.
. - This is done by integrating with respect tobetweenz; and
Aip=5% (" + JA—A) x; and, using a trapezium formula, the following reconstruction
AR = =z, AL =g — 2 is found:
B (I s 4
ik = T3 \ AL Pi—1,k + AF Pik—1 i—1

2]

3 2 a=J

Cor = (Ai,k):% N (Bi,k)2. Vie=Vjr— %Z (E2F 4 BIHLF) AT @)
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However, in this case a Dirichlet boundary condition is nd€. Semi-Analytic Approximation of the Current-Density Field

available forV in the z direction to initialize the procedure. Remembering that/,, the potential field defined by the

Nevertheless, a mixed approach using hbthand £, can be  cqgnerman formula [18], is obtained by solving a Laplace
envisaged, using (6) in the left part of the domain and (7) in ”é%uation, the corresponding electric field, = —VV, is

right part. More precisely, if, is ans index larger than one, for divergence free. Thus, the current-density fidld = 3poE,

@ smaller or equal ta,, (6) is used, whereas for> o, (7) IS satisfies the governing (8). Moreover, the boundary con-

employed withj = 4. ditions J. = 0 on AB andJ, = 0 on BC, CD and DA,

are satisfied byJ,. The field J, is used here to perturb

J in order to find a corresponding potential field which
A suitable approximation of the current-density field shouldas a wire value close t&,. More precisely, we consider

satisfy the following governing equation fdt which represents j* = J + «.J,, in which the parametex is chosen in order

B. Analytic Approximation of the Current-Density Field

the continuity of steady currents: to minimize the function/(«) = (Vi1(a) — V0)?/(2V§),
V1.1(e) being the potential at the wire obtained frosf.
V-J=0. ® 1o estimateVy ; from J*, we apply the procedure pre-

viously described in Section IlI-A, [(5) and (6)], with

The boundary conditions for the considered problem are (555) — J*. More precisely, from (6)V1.; can be expressed

Fig. 1):.J. = 0on AB, .J, = 00on BC, CD, and DA, and,. = ne ak [ Lk Th ]

2.J,h/(7a) at the wire, whereJ, is the radial component of 8 V1.1(a) = 2531, A7 (‘]z’ +a(Ja)z )/(ﬁpl:k(o‘))’ In

the current density vector. However, it is clear that (8) and thew®ich p1 x(«) is defined by (5). A first estimation ofv is

boundary conditions are not sufficient to uniquely determine obtained by considering the charge density field independent
Nevertheless, we wish to obtain here an approximatign, of «, i.e., by taking

of the actual current-density field, which satisfies (8) and the - 2
boundary conditions above. In order to be able to obtain an an- <Z %(J*)Q’“(a) - VO>
alytic expression of, the following assumption is made: I(a) = k=2 5 (11)
2V
VxJ=0. (9)

I is simply a second-order polynomial function dnand the
This implies that a functior® exists such thaf = V&; ¢ Minimum value is obtained for the following value of

can be determined from a Laplace equation with Neumann e L\ L s -

boundary conc_iitions der.ived from those fér 'I_'his problem g =— ZAIE(?H—L ZAI; ;]z7 “V . (12)
now has a unigue solution that can be obtained by classical o BoLk = Bruk

tools used for hydrodynamic problems, such as singularl%en starting frormx, an optimuma value is obtained ap-

distributions and elliptic functions. In particular, using the lassical univariate minimizati the funciti
reflection technique, it can be shown that the Laplace equatiB Ing a classica umvarla*e minimization on the func ibfa).
ote that, fora # 0, J* does not give the correct average

for & and the corresponding boundary conditions are satisfiedI tthe plate. b th \ug, aft the plat
by an infinite sequence of sources of intensity, s, in the vajue at Ihe plate, because he average vaius, © plate

x direction located af{+2kh,,0), & = 1,...,00, and by an ![‘;’] '? glalengral, no?equtal tto_tz_ero. Hfowi\lleré 'thW'” be shown T

infinite row of alternating sources and sinks of intendity, /.. € Toflowing section that I IS preferable 1o have an accurate
along = at (0,+2jh.), j = 0,...,00 (evenjs correspond guess of_the potentlal at the wire, since _th_ls permits us to obtain
to sources, while odds to sinks). Finally,/, and.J. can be & larger increase in the computation efficiency.

obtained as the real and the imaginary part of the following | Decomposition

complex function:

In this section, we try to obtain an approximation of the
U(z,2) = 4dphs (C(x + 12) = C(z + 12 — 2h.)) (10) J field involving different unknown parameters; they are
then computed by an optimization procedure, which is a
in which ¢ denotes a Weierstragsfunction (see, for instance, generalization of that devised to obtaiff. To this aim, we
[20]) and: = /—1. consider the KL decomposition, classically used in probability
Since assumption (9) is not, in general, satisfied by the exaloseory [19], which has been also utilized in fluid dynamics
solution of (1) and (2), the/ field obtained in this way can as a reduced-order model. In that context, it is usually called
be considered only as an approximation of the exact curreptoper orthogonal decomposition (see e.g., [21] and [22]) and
density field. It can be easily verified, however, thatespects is employed to describe the dynamical behavior of the flow by
the boundary condition of the original nonlinear problem. lnonsidering only a finite number of modes. This technique is
particular, we have the correct average valyeat the plates.  employed here for the parameterization of the homogeneous
However,.J only depends od, and, thus, the wire potential part of the current-density field, i.e/, — J.
Vo has not been used explicitly in the construction of the ini- For a fixed configuration of wire-plate precipitator, i.e.,
tial estimated electrostatic fields. Thus, the obtained initial fiefdr given h, and h., the current density depends on the
may be characterized by a value & significantly different particular space positioX = (z,z) and on the particular
from the exact one. To solve this problem, a second approgiectric configuratiorii” = (V4,a) (J, can be obtained from
mate.J field is considered in Section IlI-C. T using a current—voltage formula [15]). Thus, starting from
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a set ofn, discrete./ fields obtained for different” config- 0.0007 .
urations, a KL decomposition can be defined which gives

the current-density field as a function @f. More precisely, 0.0006 I,X"“‘n
from a set ofn, snapshot$.Jr)!, the KL technique generates I

ns modesy; = >, ay (JIT - j{'p) which give an optimal e
representation of J%. — J4) in the L? norm, as explained, 0.0004
for example, in [22]. The coefficients;; are obtained as the
components of theth eigenvector of the correlation matrix
K (ICU = (Jb— JL, T~ i})/ns), in which {-) denotes

Jz

analytic J field —— |
KL parameterization of J ----
FD reference figld - ]

0.0003

00002}

the inner product inC2. Then, usingr,,, of n, KL modes, an ’ Jcorrected by Ja -
approximation/® of J field is derived as follows: 0.0001 |4
. (a)
. A 0 : ) . . .
TRz, 2) = J(z,2) + Z api(z, 2). (13) 0002 00F 006 008 01 012
— zaxis

@
For the problem under consideration, it has been showa by

priori tests [17] that only three or four modes are typically oozl ' '/‘*-4'\ C T anaytic Jfield —
needed to obtain an accurate representatioh of ' Vi “x,_ KL paramelerization of J -

The coefficientsc; are determined here by an optimization * \ FD reference field -
algorithm aimed to obtain a wire potential value closelto oounis | ; \\ Jcorrected by Ja —-

i.e., as previously, by minimizing the functich = (V11 —
Vo)?/ (2Vi§). Thus, starting with all the coefficients equal to
zero, i.e.,J® equal to.J, the following iterative procedure is
carried out:

» computation ofl: charge-density and potential fields are

Jx

0.0001 L

obtained using (5) and (6); Se-051
« updating of the mode coefficients using a gradient descent
method Ny
I ot O » R N B 008
=1,...,nm 7 =G —wa—cl ( ) X axis

(b)
in which the_denvatlves af can be ?XplICItly_Obtalned by using Fig. 3. Comparison of current density fields (configuratiéh (a) /. atx =
the expression of; ; from (6) and introducing thd field and  .0234 m. (b) J. atz = 0.0387 m.

its parameterization, i.eJ1* = JLk 4+ 3 ¢ (0.)F [17].

algorithm presented in Section Il and six KL modes have been
used to construcf* from (13).

We present now some numerical examples to evaluate the adn Fig. 3(a) and (b), for configuratiod, the J, and.J,, com-
curacy of the initial fields reconstructed as described previougigpnents of the current-density field, obtained with the three dif-
starting from the different approximations gf Three config- ferent approximations described previously, are compared with
urations have been considered for a classical wire-plate predipe reference ones. The reference fields are, here, the fully con-
itator geometry k. = 0.1143 m andk, = 0.0762 m). The verged solutions of the reduced Maxwell problem computed by
first one, referred to as configuratiofy is characterized by = the FD solver. It can be seen that the estimate obtained by KL
0.152mm, J, = 3.77x10™* Alm?, 3 = 1.9x10~*m?/Vs,and decomposition is rather close to the FD solution, while more sig-
Vo = 25.415 kV. This configuration has been studied numemificant differences are observed for the approximatidred
ically (e.g., [6]) as well as experimentally [23]. The followingJ*. However, all those approximations lead to estimates of the
parameter values characterize configurattor: = 0.85 mm, potential field much closer to the FD ones than guesses based
J, =133 x 1073 Alm?, 3 = 1.6 x 107* m?/Vs andV, = on the Cooperman analytic formula, which are classically used
55 kV. ConfigurationC is defined bya = 0.3 mm, J, ~ as initialization for numerical computations. This is shown, for
5.94 x 107 A/Im?, 3 = 1.6 x 10~* m?/Vs, andV;, = 35 kV. instance, in Fig. 4(a) and (b), in which the potential along lines
The data base of snapshots for the KL decomposition has bédhand AD is plotted for configuratio@. The best agreement
constructed by considering ten different configurations, whidk again obtained by the KL-based approximation; however, the
are defined by varying the wire radius between 0.1-1.016 mpntential field given byJ/* is significantly more accurate than
the plate current density betweex30~°-1.557x 10~2 A/m?  that derived from/J. In particular, note that, as described pre-
and the ionic mobility between 1610 *~1.9x 10-*m?/V-s.  viously, J does not give the correct potential value at the wire.
In all cases, the snapshots are obtained numerically using Bimilar considerations can be done for the charge-density field.

IV. RESULTS AND DISCUSSION
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Fig. 4. Comparisons of electric potential fields (configuratign(a) Potential
along AB. (b) Potential along AD.

These estimates of th€ and p fields can be used as ini-
tialization for standard algorithms of solution of the reduced
Maxwell problem, such as the solver described in Section II.
In Fig. 5(a)—(c), the convergence histories obtained with our ap-
proach are compared to those given by the classical initialization
[18] for all three considered configurations. As expected on the
basis of previous considerations, the initialization based®n
gives the largest reduction in the number of iterations required
to reach the convergence of the numerical solution. Indeed, if
we consider the number of iterations needed to obtain a residual
of 0.001, i.e., an agreement between computed and specified
values of.J, within 0.1%, this is reduced by 80%, 40%, and
85% for configurations4, B, andC respectively. Note that the
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gain in convergence rate is obtained mostly in the initial iterglg. 5. Convergence histories for differentinitializations. Plqtf—J¢|/ J,

tions, and this is due to the fact that the initialization fields a
closer to the exact ones, as shown in Fig. 4. Fig. 6, in which the

I(é';‘: desired/, ). Configurations (a)4, (b) 3, and (c)C.

evolution ofpg is plotted for configuratio®, also illustrates the disappears wit/® and.J*. Indeed,/* also gives a significant

convergence improvement in the early iterations. Indeed, eveluction in the number of iterations needed to reach conver-

if the initial estimate of, is close to the converged one, a larggence, up to 65% for configuratiagh Conversely, if onlyJ is

variation in the first 1000/2000 iterations is observed for thgsed, a more limited gain is obtained: the best case is shown in

Cooperman initialization. This is reduced usifigand almost Fig. 5 for configuratiorC with an improvement of only 10%.
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Fig. 6. Evolution of charge density at the wire (configuratityn Fig. 7. Convergence histories for different valuesrgf (configurations).

Case 1x;, ~ 0.35h,; case 2w;, ~ 0.46h,; case 3w;, ~ 0.57h,; case 4:
@iy~ 0.690,.

Note that the whole initialization procedure, i.e., bdtlap- ’
proximation and derivation df andp fields (see Fig. 2), requires . . . . .
approximately 0.1-0.2 s CPU on a PC, while the numerical sol KL dechpOS|t|0n and, in pa.rtlcglai, Is approximated as
tion ofthe reduced Maxwell equations by the FD solvertakestyrS 1€ sum oty a”‘?' ,Of alinear combnjlatlon of few K',‘ modgs. The
callyabout1h CPU. Thus, the gainin efficiency obtained withtH@"knc’Wn goefﬂments are determmed by an opt|m|;at|on algp—
procedures based both grand.J* is not decreased by the cost oi“thm’ again based on the prescribed valu_e of the wire poter_mal.
the computation of these electrostatic field initializations. When 't 1as been shown that, for all the considered approximations
the KL decompositionis usedtoapproximatsince preliminary of J, the estimates of the global electrostatic field obtained .by
computations must be carried out in order to construct the sn ¢ proposed procedure are muph closer tc_) t.he .exact solgtlons
shotbasis, the proposed procedure remainsinteresting, onlywhi]! those typically used in the literature to initialize numerical
several different configurations have to be studied. computa_lt_lons. In particular, w_he,ms _denveq from |ts_ KL_de-

The performance of the present algorithm depends also on fipnposition, an accurate estimate Is Obta"?ed’ which in many
choice ofiy in the construction of the initial potential field (seeCases could alr_e ady be qon5|dered asa sat|sfactory_ approxima-
Section IlI-A). For this precipitator geometry and this comp ion of the Fj‘?s,"_ed solution. In all cases, thqse estimates can
tational grid, the best results are obtained taking between e gseq to initialize standard numerical .algorlthms for the dis-
approximativelyh, /3 and2h. /3, i.e., forio betweem; /2 and cretization of the red_uced Maxwell _equatlons. It has pe_en shown
3n; /4, respectively. In particular, the results, previously showff1at. for all the con5|d_e red_apprommaﬂons.hfthe efficiency
have been obtained with = 3n; /4 for configurationsA4 and _o’l‘_t_he_ nu_mencal algorithm is |mprovec_i compared to_the case of
Bandi, = n;/2 for configurationC. A systematic sensitivity !n|t|qllzat|on by the Copperman a_nalytlc fo_rmula, typically used
analysis to the, parameter has been carried out for the confi n this type of calculatloqs. This is 'nc_)t'notlceab'ly decrea}sed by
uration 3, for the initialization based od*. For a sampling of .he cost ,Of the computation of the initil ar!dp f|§lds_, which
11 different values af;, varying between 0.14,, and 0.81x,,, IS negligible compared to the cost of one lteration in the solu-
efficiency gains of at least 27% have been found. As shown §3" ff the reduced Maxwell problem. The initialization based
Fig. 7, the gain is between 35%-45% fqf betweerh, /3 and on J_ appears to bg partlcularly well sungd. Indeed, it improves
2h, /3, except for the “optimum” value of;, ~ 0.57h,, for S|gn{f|captly the efﬂuency of the numerical solver, with a re-
which a gain of 62% is obtained. duction in the number of iterations needed to reach a residual
of 0.001 up to 65%, and, at the same time, it can be obtained
at a negligible cost. The gain in efficiency is further increased
when the KL-based approximation of is considered. How-

A procedure has been proposed to derive estimates of ther, when the KL decomposition is used to approxinyatie
global electrostatic field (charge density and potential) iconstruction of a snapshot basis is needed and, thus, prelimi-
wire-duct precipitators, starting from an approximation of theary computations must be carried out, which imply the solu-
current-density field/. tion of the reduced Maxwell problem. Nevertheless, as shown

Three different approximations have been devised: the fiist[17], a limited number of snapshots and, thus, of preliminary
approximation supplieg and is obtained analytically from thesimulations, is sufficient to obtain an accurate approximation.
supplementary assumption of irrotationality.bf./ satisfies by Thus, the proposed procedure remains interesting when many
construction the boundary conditions of the problem. A secouiferent configurations must be computed, as in optimization
approximation,J*, is considered which contains a free paranor control applications.
eter. This is determined by an optimization procedure aimed toThe procedure proposed to estimate ghend V' fields,
obtain a potential value at the wire as close as possible to the g&rting from a givery field, is strictly linked to the numerical
scribed one. Finally, the current density fields parameterized method used to discretize the problem. We have adopted here

V. CONCLUSIONS
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an FD approach similar to that employed in the numericaf21]
solution of the reduced Maxwell equations. Nevertheless, the
adaptation of the whole procedure, i.e., approximations of [22]
and global field reconstruction, to other numerical methods
is straightforward. The use of a more suitable discretization
method, in which the corona boundary conditions are well im-
posed, might probably improve substantially the optimization
algorithm. However, in that case, the explicit extraction of an
exact gradient could be more critical. Nevertheless, thanks “~
the low cost of the algorithm, an approximate gradient con
putation by divided FDs can be envisaged without particul.
drawbacks.
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