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Current-Density Approximation for Efficient
Computation of the Electrostatic Field

in Wire-Plate Precipitators
François Beux, Angelo Iollo, Maria-Vittoria Salvetti, and Alfredo Soldati

Abstract—In this paper, numerical computation of ionic space
charge and electric field produced by corona discharge in an elec-
trostatic precipitator is addressed. The problem is defined by a re-
duced set of the Maxwell equations. The efficiency of numerical
iterative computations is significantly improved by deriving an ini-
tial field as close as possible to the final solution from an approx-
imation of the current-density field . Different techniques to ap-
proximate are proposed. A first analytic approximation ~ is de-
rived, which verifies by construction the boundary conditions of
the problem and, in particular, gives the correct average value at
the plate. A second approximation is also considered, which con-
tains a free parameter that can be computed by an optimization
procedure based on the known value of the potential at the wire.
Finally, Karhunen–Loève (KL) decomposition is used and the cur-
rent-density field is expressed as the sum of~and of a linear com-
bination of few KL basis functions. The coefficients can be deter-
mined again by an optimization algorithm. Starting from these ap-
proximated fields, a procedure is proposed to obtain, at negli-
gible computational cost, an estimate of the complete electrostatic
field. It is shown that this estimate is in all cases much closer to
the exact solution than guesses typically employed in the litera-
ture. Hence, when it is used as initialization for standard numerical
solvers, this significantly improves the efficiency of the numerical
algorithm. In particular, the initialization based on the second ap-
proximation gives a significant efficiency gain without any notice-
able additional cost.

Index Terms—Efficient computation, initial field from cur-
rent-density approximation, reduced Maxwell equations,
wire-plate precipitators.

I. INTRODUCTION

E LECTROSTATIC precipitators (ESPs) are used to collect
airborne particles from process or waste dust-laden gases.

The most widespread configuration for industrial use is the wire
plate. In this configuration, the gas flows through grounded par-
allel plates in the middle of which wire electrodes are kept at a
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voltage high enough to ensure corona discharge. The ions dis-
charged at the wires charge the dust particles, which are thus
driven toward the collecting plates. A further effect of the dis-
charged ions is to release momentum to the fluid and generate
flows of electrohydrodynamic (EHD) origin [1], [2]. In turn,
EHD flows influence particle collection and the overall pres-
sure drop through the duct. Numerical computation is certainly a
useful tool in ESP design. As an example, in our previous work,
we considered one specific geometry and few operating condi-
tions for the ESP, by solving the reduced Maxwell equations for
the electrostatic field coupled with both particle dynamics and
Navier–Stokes equations, and we found that the distribution of
the electrostatic field might have an optimum for particle collec-
tion [3] and for drag reduction [2]. However, the computational
effort required by those calculations is important, and, seriously
limiting the number of configurations which can be analyzed in
practice. Thus, efficient numerical strategies should be devised
to reduce the cost of each part of the simulations (electrostatics,
fluid dynamics and particle dynamics). Specifically, a strategy
to reduce the cost of numerical computation of the electrostatic
problem is proposed here.

In the past, several numerical methods have been applied to
solve accurately both the elliptic Poisson equation for potential
and the charge continuity equation, namely, finite elements, fi-
nite volumes, finite differences, the method of characteristics,
the charge simulation method, or some hybrid or derivative of
these (see, e.g., [4] for a review). All these solvers use an it-
erative procedure to obtain the self-consistent solution: starting
from an initial guess of the charge density and electric potential
fields, and , the Poisson equation for potential and the charge
continuity equation are numerically solved, adjusting the value
of (as, for instance, in [5]–[7]) or at the wire ([8]–[12]).
This leads to quite time-consuming calculations. Different nu-
merical techniques, such as multigrid [11] or implicit schemes
[13], have been used in the literature to accelerate the conver-
gence of the iterative procedure.

In this paper, we restrict to the case of uniform discharge
along the wires, which leads to a two-dimensional electrostatic
problem. Our aim is to improve the efficiency of numerical iter-
ative computations of coupled space charge and electric field by
deriving an initial field as close as possible to the final solution.
This initialization is done working on the current density field.
More precisely, an original procedure is proposed based on three
different approximations of the current-density field and the re-
construction of the entire electrostatic fields from a given.

0093-9994/02$17.00 © 2002 IEEE
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Fig. 1. Computational domain.

II. PROBLEM DESCRIPTION ANDNUMERICAL SOLVER

We consider a wire-duct ESP configuration, i.e., a series of
equidistant wires at high voltage placed in the middle plane be-
tween two parallel grounded plates. The electric phenomenon is
characterized by ion emission from the corona around the wire
to the plates, which forms a nonuniform electric field. Under
certain conditions [14] and specifically under conditions of pos-
itive corona, the ion discharge may be assumed to be uniform
along the wire and the electrostatic problem can be solved in
two dimensions. Neglecting the magnetic effects and consid-
ering the steady state, the governing electrostatic equations can
be expressed as follows:

(1)

(2)

in which is the space-charge density, is the electrical po-
tential, and the permittivity of the gas. The electric field
and the current density are obtained fromand as follows:

and where is the ionic mobility.
Due to symmetry considerations, the computational domain

can be reduced to the rectangle ABCD of dimensions
shown in Fig. 1, with the Neumann boundary conditions
along AB and along BC and DA. To close the previous
system of equations, Dirichlet conditions are also applied by set-
ting to zero the potential at the grounded plate, i.e., along CD,
and by imposing both potential and charge density at the wire
(point A). A desired average current density is specified at
the plate from , the wire potential value, and, the wire ra-
dius, using a current–voltage formula defined in [15]. More pre-
cisely, the following equation is numerically solved by means of
a Newton algorithm:

(3)

in which is the corona starting voltage, i.e., corre-
sponding to , and , defined by ,
is an average electric field. is the strength of the idealized

corona onset field as given by the semi-empirical Peek formula,
modified for wire-plate precipitators (see, e.g., [16]).

The wire charge density is not knowna priori and, thus, an
iterative algorithm is needed to numerically solve the problem.
An algorithm close to the one proposed in [8] is adopted here.
An initial estimate of is obtained by using the wire condition

[5]. Hence, starting from an initial guess of
and fields, (2) can be solved, and then, using the updated
field, (1) is discretized to obtain a new potential field. The

value of is adjusted and the computation ofand fields is
repeated until the calculated average current density at the plate
is close enough to the desired one.

As for the numerical discretization of (1) and (2), the present
approach is based on a finite-difference (FD) method close to the
one defined in [5], but here a constant value ofand a nonuni-
form grid system are used. This method is certainly not the most
efficient among those proposed in the literature; however, tests
on grid independence and comparisons with experimental and
numerical data have shown that accurate solutions can be ob-
tained [17]. On the basis of those tests, all the computations pre-
sented here are carried out on a 2334 nonuniform grid, with
points clustered near the wire (point A) in both directions.

III. PROCEDURE FOR THEDERIVATION OF AN INITIAL

ELECTROSTATICFIELD

As discussed previously, the computation of the electrostatic
variables in a wire-duct ESP requires initialization of charge
density and electric potential fields, and thus, a firsta priori esti-
mation of these two fields. Usually, a uniform distribution of the
space charge is assumed and a Laplace equation is solved in turn
for the potential. The analytic solution of this problem is known
as Cooperman’s formula (it can be found, for instance, in [18]).
However, this initialization furnishes, , , and fields rather
far from the exact solution. We propose here to improve the ini-
tialization in order to increase the computational efficiency of
the reduced Maxwell solver. This is done working on the cur-
rent-density field . Three different techniques to approximate

are considered. First, an analytic approximationis obtained,
which verifies by construction the boundary conditions of the
problem, and, in particular, gives the correct average value at
the plate. A second approximation is also derived, which con-
tains a free parameter that can be computed by an optimization
procedure based on the known value of the potential at the wire.
Finally, a parameterization of the homogeneous field is
defined through a Karhunen–Loève (KL) decomposition [19].
Following this technique and using the good properties ofat
the boundaries, can be expressed as the sum ofand of a
linear combination of few KL functions, which can be obtained
from a set of snapshots, i.e., from somefields calculated for
different configurations (for instance, different values of the po-
tential at the wire). The unknown coefficients of the KL modes
are computed by an optimization procedure again based on the
assigned value of the potential at the wire.

Then, starting from the approximatedfield, a procedure is
proposed, which permits us to obtain an estimate of the complete
electrostatic field at a very low computational cost. A flowchart
of the entire procedure is shown in Fig. 2.
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Fig. 2. Flowchart of the different proposed procedures for the initialization of the electrostatic field. The box� in the figure corresponds to the procedure described
in Section III-A.

Although the derivation of the electrostatic field from a given
is the last step of the proposed initialization process, it will

be described first (Section III-A), because parts of it are used
in two of the techniques for approximation of(Sections III-C
and D).

A. Electrostatic Field Construction From a Given
Current-Density Field

We search here to define potential, electric, and charge-den-
sity fields using the knowledge of a current-density field and
of the parameters , , and . As a first step, the charge den-
sity can be obtained by solving the following equation, which
can easily be derived from (2):

(4)

Equation (4) is discretized similarly to (2), i.e., by using an FD
approach. The following expression for the charge-density field
is, thus, obtained:

(5)

in which

For a given , the charge-density field is totally determined
by (5) and by the charge-density wire condition, i.e.,

.
From the knowledge of and , the electric field is immedi-

ately derived from and, thus, the potential can
also be obtained from .

A first way to reconstruct is to use an upwind first-order FD
scheme: . This appears a natural way
in our formulation because it is exactly the inverse procedure of
that used in the reduced Maxwell solver to obtain from .
Remembering that the potential is equal to zero at the plate,
can simply be expressed as follows:

(6)

One possible drawback of this construction is that informa-
tion from only the second component of the electric field has
been used. Moreover, in this way we have an accumulation of
approximation errors moving away from the plate, i.e., when
decreases (see also [17]).

As an alternative approach, the field can be used to re-
late the potential evaluated in two points in thedirection.
This is done by integrating with respect tobetween and

and, using a trapezium formula, the following reconstruction
is found:

(7)
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However, in this case a Dirichlet boundary condition is not
available for in the direction to initialize the procedure.
Nevertheless, a mixed approach using bothand can be
envisaged, using (6) in the left part of the domain and (7) in the
right part. More precisely, if is an index larger than one, for

smaller or equal to , (6) is used, whereas for , (7) is
employed with .

B. Analytic Approximation of the Current-Density Field

A suitable approximation of the current-density field should
satisfy the following governing equation for, which represents
the continuity of steady currents:

(8)

The boundary conditions for the considered problem are (see
Fig. 1): on AB, on BC, CD, and DA, and

at the wire, where is the radial component of
the current density vector. However, it is clear that (8) and these
boundary conditions are not sufficient to uniquely determine.

Nevertheless, we wish to obtain here an approximation,,
of the actual current-density field, which satisfies (8) and the
boundary conditions above. In order to be able to obtain an an-
alytic expression of , the following assumption is made:

(9)

This implies that a function exists such that ;
can be determined from a Laplace equation with Neumann
boundary conditions derived from those for. This problem
now has a unique solution that can be obtained by classical
tools used for hydrodynamic problems, such as singularity
distributions and elliptic functions. In particular, using the
reflection technique, it can be shown that the Laplace equation
for and the corresponding boundary conditions are satisfied
by an infinite sequence of sources of intensity in the

direction located at , , and by an
infinite row of alternating sources and sinks of intensity
along at , (even s correspond
to sources, while odds to sinks). Finally, and can be
obtained as the real and the imaginary part of the following
complex function:

(10)

in which denotes a Weierstrassfunction (see, for instance,
[20]) and .

Since assumption (9) is not, in general, satisfied by the exact
solution of (1) and (2), the field obtained in this way can
be considered only as an approximation of the exact current-
density field. It can be easily verified, however, thatrespects
the boundary condition of the original nonlinear problem. In
particular, we have the correct average valueat the plates.

However, only depends on and, thus, the wire potential
has not been used explicitly in the construction of the ini-

tial estimated electrostatic fields. Thus, the obtained initial field
may be characterized by a value of significantly different
from the exact one. To solve this problem, a second approxi-
mate field is considered in Section III-C.

C. Semi-Analytic Approximation of the Current-Density Field

Remembering that , the potential field defined by the
Cooperman formula [18], is obtained by solving a Laplace
equation, the corresponding electric field is
divergence free. Thus, the current-density field
satisfies the governing (8). Moreover, the boundary con-
ditions on AB and on BC, CD and DA,
are satisfied by . The field is used here to perturb

in order to find a corresponding potential field which
has a wire value close to . More precisely, we consider

, in which the parameter is chosen in order
to minimize the function ,

being the potential at the wire obtained from .
To estimate from , we apply the procedure pre-
viously described in Section III-A, [(5) and (6)], with

. More precisely, from (6), can be expressed

as , in

which is defined by (5). A first estimation of is
obtained by considering the charge density field independent
of , i.e., by taking

(11)

is simply a second-order polynomial function inand the
minimum value is obtained for the following value of:

(12)

Then, starting from , an optimum value is obtained ap-
plying a classical univariate minimization on the function .

Note that, for , does not give the correct average
value at the plate, because the average value ofat the plate
is, in general, nonequal to zero. However, it will be shown in
the following section that it is preferable to have an accurate
guess of the potential at the wire, since this permits us to obtain
a larger increase in the computation efficiency.

D. KL Decomposition

In this section, we try to obtain an approximation of the
field involving different unknown parameters; they are

then computed by an optimization procedure, which is a
generalization of that devised to obtain . To this aim, we
consider the KL decomposition, classically used in probability
theory [19], which has been also utilized in fluid dynamics
as a reduced-order model. In that context, it is usually called
proper orthogonal decomposition (see e.g., [21] and [22]) and
is employed to describe the dynamical behavior of the flow by
considering only a finite number of modes. This technique is
employed here for the parameterization of the homogeneous
part of the current-density field, i.e., .

For a fixed configuration of wire-plate precipitator, i.e.,
for given and , the current density depends on the
particular space position and on the particular
electric configuration ( can be obtained from

using a current–voltage formula [15]). Thus, starting from
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a set of discrete fields obtained for different config-
urations, a KL decomposition can be defined which gives
the current-density field as a function of. More precisely,
from a set of snapshots , the KL technique generates

modes which give an optimal

representation of in the norm, as explained,
for example, in [22]. The coefficients are obtained as the
components of the th eigenvector of the correlation matrix

, in which denotes

the inner product in . Then, using of KL modes, an
approximation of field is derived as follows:

(13)

For the problem under consideration, it has been shown bya
priori tests [17] that only three or four modes are typically
needed to obtain an accurate representation of.

The coefficients are determined here by an optimization
algorithm aimed to obtain a wire potential value close to,
i.e., as previously, by minimizing the function

. Thus, starting with all the coefficients equal to
zero, i.e., equal to , the following iterative procedure is
carried out:

• computation of : charge-density and potential fields are
obtained using (5) and (6);

• updating of the mode coefficients using a gradient descent
method

(14)

in which the derivatives of can be explicitly obtained by using
the expression of from (6) and introducing the field and
its parameterization, i.e., [17].

IV. RESULTS AND DISCUSSION

We present now some numerical examples to evaluate the ac-
curacy of the initial fields reconstructed as described previously
starting from the different approximations of. Three config-
urations have been considered for a classical wire-plate precip-
itator geometry ( m and m). The
first one, referred to as configuration, is characterized by

mm, A/m , m /Vs, and
kV. This configuration has been studied numer-

ically (e.g., [6]) as well as experimentally [23]. The following
parameter values characterize configuration: mm,

A/m , m /Vs and
kV. Configuration is defined by mm,

A/m , m Vs, and kV.
The data base of snapshots for the KL decomposition has been
constructed by considering ten different configurations, which
are defined by varying the wire radius between 0.1–1.016 mm,
the plate current density between 510 –1.557 10 A/m
and the ionic mobility between 1.610 –1.9 10 m V s.
In all cases, the snapshots are obtained numerically using the

(a)

(b)

Fig. 3. Comparison of current density fields (configurationA). (a)J atx =
0:0234 m. (b)J at z = 0:0387 m.

algorithm presented in Section II and six KL modes have been
used to construct from (13).

In Fig. 3(a) and (b), for configuration , the and com-
ponents of the current-density field, obtained with the three dif-
ferent approximations described previously, are compared with
the reference ones. The reference fields are, here, the fully con-
verged solutions of the reduced Maxwell problem computed by
the FD solver. It can be seen that the estimate obtained by KL
decomposition is rather close to the FD solution, while more sig-
nificant differences are observed for the approximationsand

. However, all those approximations lead to estimates of the
potential field much closer to the FD ones than guesses based
on the Cooperman analytic formula, which are classically used
as initialization for numerical computations. This is shown, for
instance, in Fig. 4(a) and (b), in which the potential along lines
AB and AD is plotted for configuration . The best agreement
is again obtained by the KL-based approximation; however, the
potential field given by is significantly more accurate than
that derived from . In particular, note that, as described pre-
viously, does not give the correct potential value at the wire.
Similar considerations can be done for the charge-density field.
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(a)

(b)

Fig. 4. Comparisons of electric potential fields (configurationC). (a) Potential
along AB. (b) Potential along AD.

These estimates of the and fields can be used as ini-
tialization for standard algorithms of solution of the reduced
Maxwell problem, such as the solver described in Section II.
In Fig. 5(a)–(c), the convergence histories obtained with our ap-
proach are compared to those given by the classical initialization
[18] for all three considered configurations. As expected on the
basis of previous considerations, the initialization based on
gives the largest reduction in the number of iterations required
to reach the convergence of the numerical solution. Indeed, if
we consider the number of iterations needed to obtain a residual
of 0.001, i.e., an agreement between computed and specified
values of within 0.1%, this is reduced by 80%, 40%, and
85% for configurations , , and respectively. Note that the
gain in convergence rate is obtained mostly in the initial itera-
tions, and this is due to the fact that the initialization fields are
closer to the exact ones, as shown in Fig. 4. Fig. 6, in which the
evolution of is plotted for configuration , also illustrates the
convergence improvement in the early iterations. Indeed, even
if the initial estimate of is close to the converged one, a large
variation in the first 1000/2000 iterations is observed for the
Cooperman initialization. This is reduced usingand almost

(a)

(b)

(c)

Fig. 5. Convergence histories for different initializations. Plot ofjJ �J j=J
(J : desiredJ ). Configurations (a)A, (b)B, and (c)C.

disappears with and . Indeed, also gives a significant
reduction in the number of iterations needed to reach conver-
gence, up to 65% for configuration. Conversely, if only is
used, a more limited gain is obtained: the best case is shown in
Fig. 5 for configuration with an improvement of only 10%.
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Fig. 6. Evolution of charge density at the wire (configurationC).

Note that the whole initialization procedure, i.e., bothap-
proximation and derivation of and fields (seeFig.2), requires
approximately 0.1–0.2 s CPU on a PC, while the numerical solu-
tionof thereducedMaxwellequationsbytheFDsolvertakestypi-
callyabout1hCPU.Thus, thegain inefficiencyobtainedwith the
procedures based both onand is not decreased by the cost of
the computation of these electrostatic field initializations. When
theKLdecompositionisusedtoapproximate,sincepreliminary
computations must be carried out in order to construct the snap-
shotbasis, theproposedprocedureremainsinteresting,onlywhen
several different configurations have to be studied.

The performance of the present algorithm depends also on the
choice of in the construction of the initial potential field (see
Section III-A). For this precipitator geometry and this compu-
tational grid, the best results are obtained takingbetween
approximatively and , i.e., for between and

, respectively. In particular, the results, previously shown,
have been obtained with for configurations and

and for configuration . A systematic sensitivity
analysis to the parameter has been carried out for the config-
uration , for the initialization based on . For a sampling of
11 different values of varying between 0.11 and 0.81 ,
efficiency gains of at least 27% have been found. As shown in
Fig. 7, the gain is between 35%–45% for between and

, except for the “optimum” value of , for
which a gain of 62% is obtained.

V. CONCLUSIONS

A procedure has been proposed to derive estimates of the
global electrostatic field (charge density and potential) in
wire-duct precipitators, starting from an approximation of the
current-density field .

Three different approximations have been devised: the first
approximation supplies and is obtained analytically from the
supplementary assumption of irrotationality of; satisfies by
construction the boundary conditions of the problem. A second
approximation, , is considered which contains a free param-
eter. This is determined by an optimization procedure aimed to
obtain a potential value at the wire as close as possible to the pre-
scribed one. Finally, the current density fieldis parameterized

Fig. 7. Convergence histories for different values ofx (configurationB).
Case 1:x ' 0:35h ; case 2:x ' 0:46h ; case 3:x ' 0:57h ; case 4:
x ' 0:69h .

by KL decomposition and, in particular, is approximated as
the sum of and of a linear combination of few KL modes. The
unknown coefficients are determined by an optimization algo-
rithm, again based on the prescribed value of the wire potential.

It has been shown that, for all the considered approximations
of , the estimates of the global electrostatic field obtained by
the proposed procedure are much closer to the exact solutions
than those typically used in the literature to initialize numerical
computations. In particular, whenis derived from its KL de-
composition, an accurate estimate is obtained, which in many
cases could already be considered as a satisfactory approxima-
tion of the desired solution. In all cases, those estimates can
be used to initialize standard numerical algorithms for the dis-
cretization of the reduced Maxwell equations. It has been shown
that, for all the considered approximations of, the efficiency
of the numerical algorithm is improved compared to the case of
initialization by the Cooperman analytic formula, typically used
in this type of calculations. This is not noticeably decreased by
the cost of the computation of the initial and fields, which
is negligible compared to the cost of one iteration in the solu-
tion of the reduced Maxwell problem. The initialization based
on appears to be particularly well suited. Indeed, it improves
significantly the efficiency of the numerical solver, with a re-
duction in the number of iterations needed to reach a residual
of 0.001 up to 65%, and, at the same time, it can be obtained
at a negligible cost. The gain in efficiency is further increased
when the KL-based approximation of is considered. How-
ever, when the KL decomposition is used to approximate, the
construction of a snapshot basis is needed and, thus, prelimi-
nary computations must be carried out, which imply the solu-
tion of the reduced Maxwell problem. Nevertheless, as shown
in [17], a limited number of snapshots and, thus, of preliminary
simulations, is sufficient to obtain an accurate approximation.
Thus, the proposed procedure remains interesting when many
different configurations must be computed, as in optimization
or control applications.

The procedure proposed to estimate theand fields,
starting from a given field, is strictly linked to the numerical
method used to discretize the problem. We have adopted here
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an FD approach similar to that employed in the numerical
solution of the reduced Maxwell equations. Nevertheless, the
adaptation of the whole procedure, i.e., approximations of
and global field reconstruction, to other numerical methods
is straightforward. The use of a more suitable discretization
method, in which the corona boundary conditions are well im-
posed, might probably improve substantially the optimization
algorithm. However, in that case, the explicit extraction of an
exact gradient could be more critical. Nevertheless, thanks to
the low cost of the algorithm, an approximate gradient com-
putation by divided FDs can be envisaged without particular
drawbacks.
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