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ldentif ication of two phase flow regimes via diffusional analysis
of experimental t ime series

A. Soldati, A. Paglianti, M. Giona
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Abstract The problem of identifying different two phase flow

regimes from experimental time series by employing the

method of diffusional analysis is addressed. This technique,

recently applied to the multiphase flow field, is described and

compared with other techniques used to characterize mult i-

phase flow regimes. Diffusional analysis is applied to experi-

mental t ime-series obtained from both a ; ' -densitometer and

capacitance probes. The choice of the appropriate experi-

mental signal to be processed is also discussed. The experi-

mental time series were obtained from a rig with air and light

oil. The results obtained confirm the advantages of the method

proposed in identifying the features of different flow regimes.

The advantages are particularly evident when comparing

diffusional analysis with the widely applied Rescaled Range

technique.

1

lntroduction
The posit ive assessment of the actual f low regime occurring

when gas and l iquid f low together in a pipel ine is a chal lenging

problem in multiphase fluid dynamics. A number of different

flow patterns, with very different fluid dynamics features, may

arise depending on the incl ination of the pipe and on the

specif ic mass f low rate of each phase. Considering a gas and

a liquid flowing concurrently into a horizontal pipe, the two

phases may flow separated (stratified, and annular flow), in-

termittent (elongated bubbles and slug flow) or dispersed
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(mist and dispersed bubbles flow). Since different flow
patterns correspond to different flow features, the correct
determination of al l  transport characterist ics is bound to

depend on the unambiguous identifìcation of the flow regime.

Customary, the identification of flow regimes is performed
by visual observation (Mandhane et al. I974) and results are
reported in the form of f low regime maps (Mandhane et al.
1974; Weisman et al.  1979).In these maps, the coordinates are
the phase superficial velocities, j, andjr. Transition lines are

drawn by means of visual observation or by examination

of pressure drop signals (Weisman et al. 1979). Physically,

the features of a transition region between two regimes are
not unique and do not belong to either of the two. The
use of standard stat ist ical methods to identi fy transit ion
l ines leads to lack of objectivi ty in the determination of the

boundaries.
Several researchers attempted to obtain a more rel iable tool

to identi fy two phase f low regimes. For instance, wall  pressure
fluctuations were used by Tutu (1982) and Matsui (1984), while
Vince and Lahey (1982) used void fract ion f luctuations. Lin

and Hanratty (1986) presented an analysis of pressure drop

signals suitable to distinguish slug flow from large amplitude

waves in stratified flow. However, it appears that conventional

analysis of experimental data is not capable to discriminate

between different flow regimes. Subsequently, Franca et al.
(1991) attempted to develop a new analyt ical technicue for

identification and classification of flow regimes. They pro-

cessed pressure drop time series relative to different flow

regimes using the method proposed by Grassberger and
Procaccia (1983a, b) to est imate the correlat ion dimension, and

evaluated the Hurst exponent by means of the Rescaled Range
(R/S) analysis. The estimation of the Hurst exponent (Hurst

1951; Mandelbrot and Van Ness 1968; Mandelbrot and Wall is

1969) is a means of obtaining information about anomalous
characterisf ics presented by the experimental t ime series, such

as, for instance, long term correlat ions. Rescaled Range ana-

lysis has been used in the field of multiphase flow also by Fan

et al. (1990, 1993), to examine the features of particle behavior

in three phase f luidized beds, by Srether et al.  (1990), who used

it to draw information on the slug flow regime, and by

Bernicot et al. (1993), who extended the analysis performed by

Sather et al.  (1990) including stat ist ics relat ive to the f low of

large bubbles as well.
In a previous paper (Giona et aI.  I994b), i t  was shown that

diffusional analysis can provide a thorough characterization of

the structure of time series, also coming from two phase flow

measurements. In this paper, dif fusional analysis is described
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and compared to other analytical methods such as R/S analysis,
and then applied to experimental time series of light oil and air
flowing in a horizontal rig. Since different flow variables were
recorded during the experiments (void fraction, holdup, and
pressure drop), a discussion on the choice of the appropriate
time series is presented. The diffusional analysis is evalu-
ated by comparison Rescaled Range analysis and Fourier
decomposit ion and i t  is used to obtain parameters which can
univocally characterize the different flow regimes.

2
Experiments
The experiments were performed in the facilityr depicted in
Fig. 1. The loop consists of acryl ic pipes with internal diameter
of 31.7 mm placed on an incl inable bench l3 m long. Data were
obtained in a horizontal set-up at atmospheric condit ions,
using air and light oil. The density of the oil was 800 kg/m3, its
viscosity was 1.6 x 10 t Pas, and i ts surface tension was
0.027 N/m. The superficial velocities of gas and liquid were
varied in order to span all the different flow patterns: stratified,
intermittent, dispersed bubbles and annular f1ow. In Fig. 2, the
investigated area is plotted in color over the map obtained by
Mandhane et al.  (1974) for oi l  and air2. The l iquid superf icial
velocity was varied in the range [0.06 4.12 mls], whi le the gas
superf icial velocity was varied in the range [0.47 16 m/s]. An
overall number of 70 experimental runs allowed to investigate
over the area which overlapped the dispersed bubbles flow (14

experiments), the intermittent flow (slug and elongated bubble
f low, 35 experiments), the annular f low (14 experiments), and
the stratified flow (stratified and wave flow,7 experiments).

For each experiment, three dif ferent signals could be re-
corded from four measuring stations, and for all types of signal
a time history of 8000 points was recorded at a frequency of
1000 Hz. A dif ferential pressure transducer (DP cel l)  recorded
the pressure drop, two capacitance probes recorded the l iquid

holdup, and a ; ' -densitometer recorded the void fract ion. The
test section, containing the measuring devices, was located 8 m
downstream from the inlet to reduce entrance disturbances.
This distance is equivalent to 250 pipe diameters, which is
sufficient to obtain a fully developed regime (Nydal et al.1992).
The differential pressure transducer provided the pressure

drop measurement in the range [0 0.1] bar. The ; ' -den-
sitometer was centered between the two pressure taps of the
pressure transducer (see Fig. 1). The pressure taps were 2.06 m
far apart, while the distance between the two capacitance
probes was i .04 m. The distance between the pressure taps was
chosen in order to both minimize the volume over which
measurements had to be performed and to guarantee adequate
accuracy while recording pressure drop data. The distance
between capacitance probes was set as small as possible to

'The experimental facil ity is assembled at the Institutt for En-
ergyteknikk (IFE), Kjeller, Norway.

'In their work, Mandhane et al. (I974) presented the air and water
map. However, they also proposed correlations to plot maps for

different working fluids (i.e. air and oil, as in the present case) and
different pipe geometry.
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Fig. 1. The experimental setup
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Fig,2. The flow regime map by Mandhane et aL. (1974) for oil and air
and the investigated area (gray region)

minimize the pressure drop between the two sampling points.
As a matter of fact, the gas expansion caused by the pressure
drop would change the superficial gas velocity, which, in turn,
could induce changes in the flow pattern.

The ; '-densitometer, with a source of Am"t, is a one-shot
col l imator ray densitometer developed at IFE. The col l imator is
such that ;'-rays are distributed over the entire cross section.
Since air does not attenuate ; ' -rays, their attenuation can be
directly related to the oil presence and the void fraction may be
obtained. More detai ls of the col l imator design may be found
in Gardner et al.  (1970).

Capacitance probes have been developed at the University of
Pisa and their detaileci description can be found in the work by
Andreussi et al.  (1988). These probes measure the capacitance
of the flowing mixture between two conducting rings 0.1
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diameters apart. The experimental device measures the poten-
tial difference between two metal rings mounted flush with the
pipe wall. Since the current is controlled, the total impedance is
measured, and, the flowing fluids being not conductive, the
impedance is just the capacitance of the flowing mixture. The
volume fraction of the oil (liquid holdup) may be obtained
considering that the capacitance of air is negligible compared
to the capacitance of the oil. The signal refers to the volume
contained between the two measuring rings, which are 6.3 mm
apart (corresponding to 0.2 diameters). The control volume is
considered to be sufficiently small to assume that the measure-
ments are cross section averaged rather than volume averaged;
this is because the flow velocity was sufficiently high to ensure
that no modification of the flow regime occurred over the small
distance between the rings.

The cal ibrat ion of both ; ' -densitometer and capacitance
probes was performed for dispersed bubbles flow and for
stratified flow employing quick closing valves, following the
method described by Andreussi et al.  (1988) and by Nydal
(1991) .  Andreuss i  e t  a l .  (1988)  proposed corre la t ions to  ca l -
culate the liquid holdup for stratified, annular and dispersed
bubbles flow. The liquid holdup in intermittent flow may be
calculated with the same correlations if the slug unit is
considered as the superposition of a stratified flow region (in

the long bubble zone), and of a dispersed bubbles flow region
(in the slug body). In this work, the same correlations were
used and the calibration results obtained were in good ag-
reement with the ones presented by Andreussi et al.  (1988) and
by Nydal  ( lee l ) .

3
ldentification methods

3.1
Time-series analysis of multiphase flows
Experimental analyses of multiphase flows are based on the
examination of time series of some measurable variable (which

in the following will be called observable). The variable may be
pressure, pressure drop, density or any other variable charac-
teristic of the phenomenon. The fundamental underlying
concept is that the fluctuations of characteristic physical
quantities, which are measured instantaneously along the duct,
may contain information about the f low condit ions, i .e.,

fluctuations bring the signature of the flow regime.
To perform multiphase flow characterization, two main

approaches may be fol lowed: chaotic and stochastic. The
analysis of chaotic t ime series is based on the assumption that
f luctuations have a determinist ic low-dimensional explanation.
This implies that mult iphase f low dynamics can be described
by a deterministic chaotic system of differential equations.

Classical methods of chaotic data analysis are then used to
characterizethe condit ions of f low (see, e.g., Hao 1989; Daw et
al.  1990; Van den Bleek and Schouten 1993). The attract iveness

of chaotic methods lies in the chance of a low-dimensional
reconstruction of the fluid dynamics. However, conclusive
results are yet to be obtained with chaotic methods. On the
other hand, stochastic methods, as for instance diffusional

analysis or R/S techniques, allow the quantitative characteriza-
tion of the correlation properties of time series. Since no
hypothesis on the character of the phenomenon is required,

these methods can be applied to both deterministic and
stochastic processesr.

All stochastic methods applied Io analyze time series can
supply global information about the signal. In particular,
a wide class of stochastic processes can be identified by the
Hurst exponent (see Feder 1988) that can be determined by R/S
analysis (Fan et al. 1990; Srether et al. 1990) and by diffusional
analysis (Giona et al. 1994b). The Hurst exponent gives in-
formation on the long range properties of the signal. If a
process is random, and the process variable is totally uncor-
related, the value of the Hurst exponent is H:1. tf ttre signal is
persistent (posit ive correlat ion) H>1, while for antipersistent
signals (negative correlat ion) H< j .

3.2
Diffusional analysis
The fundamental assumption on which the analysis of fluid
dynamics time series (turbulent flow, dispersion in random
porous media, multiphase flow) is based, is that the fluctu-
ations associated with a characteristic physical observable
(such as local density, pressure drop across a given length,
liquid holdup) are characteristic of the flow regime. Therefore,
from the statistical analysis of these fluctuations, it is possible
to achieve a detailed characterization of the macroscopic
properties of the flow. Such result cannot be obtained from
purely averaged quantities (such as average liquid holdup,
average density, etc.)

More precisely, the statistical analysis (and, in this case,
diffusional analysis) is aimed at obtaining the correlation
propert ies (second order quanti t ies). Indeed, these are the
fundamental quantities describing interaction between fluid
elements and transport coeff icientsa.

Diffusional analysis of time-series as a statistical method
has been introduced by Suzuki (1982,1984) to characterize the
fine structure of turbulence. It is therefore natural to extend
a similar analysis to the study of multiphase flow systems
(Giona et aL l994a, b), and there is no physical reason why
should it not provide significant results in such flows. There is
a strong analogy between the description of fluctuations and
diffusion processes (Kac and Logan 1979).

In this subsection, a brief descript ion of the stat ist ical
formulation of diffusional analysis is presented, while physical
implications relative to two phase flow are analyzed in the
subsequent section.

Le t  l x , ] ,  f o r  i : 1 ,  . . . ,N ,  be  a  t ime  se r i es  o f  a  gene r i c  f l ow
observable sampled at a constant time interval, zlr. Diffusional
analysis studies the dif fusion process generated by Ix,] .  For
this reason. it is convenient to consider the normalized time

'  Chaotic time series may possess very complex statistical properties
depending on the structure of the invariant measure (if any)
associated with the dynamical system generating the time series. See,
for instance, Lasota and Mackey Q99a).

' The correlation function of velocity fluctuations is associated, for
instance, with the definition of Reynolds stresses, with the expression
of the convective contribution to dispersion in random packings and
porous media (Bhattacharya and Gupta 1990), with the representation

of transport coefficients by means of correlation integrals,
Green Kubo formal ism, see Boon and Yip (1980).
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series [(, ]  derived from Ix,]  upon normalization, i .e.,  i , :
(x,- (x) )/o,,  so that l i ;  I  has zero mean and unit variance
((x) is the average of lx, i ,  and o'.  i ts variance).

Start ing from I i '  ] ,  i t  is possible to generate a dif fusion
process (random walk) on the real axis, which is linearly driven

by l( ,  ) .  Let z; be the posit ion at t ime i  of the walk, then the
diffusion process is described by the dynamic equation

Z i + t : z i l  - ( i + t  ( 1 )

with the init ial  condit ion zo:0 (the random walk starts from

the origin)t.  As in al l  di f fusion phenomena, the correlat ion
propert ies of the random walk (and ult imately the correlat ion
propert ies of the driving signal l( ' l )  can be obtained from the
analysis of the mean square displacement, Rj(n), defined as

R i @ ) :  ( ( z r +  n -  z k ) ' )  : :  i  ( z r * , , -  z t ) ' ,  ( 2 )
N,r , 'pT1

where N,,, is the number of averaging points.
The scaling behavior of Rl(n) with n allows information

about the short-term and long-term propert ies of [*,  ]  ,  and on

the crossover (if any) between different scaling regimes to be
obtained.

As an example, if the signal [;, ì ir a reahzatton of a
fractional Brownian motion (fBm) process characterized by the

Hurst exponent H, then (Feder 1988)

R2fu) - n2tl

zero. This happens because the motion described by Eq. (1) in

the presence of a determinist ic signal I i , ]  with mean equal to

zero is always bounded.
A similar si tuation arises in the analysis of a signal I i ,  ì

which can be regarded as a superposit ion of determinist ic

oscillating modes and random fluctuations. In multiphase flow,
this situation occurs for Intermittent flow. In this case, the
mean square displacement R:(n ) is characterizedby a cross-

over behavior

n  < n ,
f l ))  f i ,

The crossover instant, n,., is related to the fundamental period

of osci l lat ions, I , ,  by the relat ion T,:4n,,4ú, where z1r is the

sampling t ime. For practical purposes, the meaning of the
relat ion /t)) f t ,  should be interpreted as n larger than 1.5n,.

For the physical situations occurring in two phase flow

analysis, the mean square displacement can be characterized

by the two exponents, /' and f 2, and by the crossover instant,

n,, in the case í1, * []t The exponents fl, and f 2 are related to

short-term and long-term correlat ion propert ies of Ic; ]  re-

spectively, and the crossover instant, n,., is linked to the time
scale which discriminates the quali tat ive notion of short-term
and long-term behavior in a quantitative way.

3.3
ldentification of two phase flow regimes
In the application of diffusional analysis to fluctuations of two

phase flow variables, the exponents lì1 and lì2 appearing in

Eq. (4) depend on the superf icial gas and l iquid velocit iesTr, jr .

This dependence enables one to attempt a regime identification

which is based on the stat ist ical propert ies of Ri(ru). I t  should

be noted that, to identif' different flow regimes successfully,

diffusional analysis may be applied to an experimental time

series only under the hypothesis that the series itself is

stationary: this implies that time series have to refer to fully

established flow regimes.
Diffusional analysis has been applied to data relative to

different two phase flow regimes, which are characterized by

different gas and liquid superficial velocities. The flow patterns

have been identified examining the correlation exponents

[J iG:1,2)  and the crossover  t ime,  n , ,  ( i f  any) .  In  Table  1 ,  the
results obtained from the analysis of all the experimental time

series from the ; ' -densitometer are presented. These results

have been obtained applying diffusional analysis to raw data,

without any form of filtering. Each signal is affected by a noise

which is characteristic of the particular device employed.
However, the noise is filtered out since diffusional analysis
itself  provide some form of f i l ter ing (see also note 5).

Table 1. Behavior of /, and /l, in two phase flow regimes

Flow-regime lJt

Dispersed bubbles

Stratif ied
Intermittent
Annular

(3 )

and, in particular, if the driving signal is a regular Brownian
mot ion process,  H: ! ,  R! (n)  -  n .  The exponent  H in  Eq.  (3)

completely describes the scal ing propert ies of tr ials of fBm. For

H <+, two subsequent displacements of fBm show, on average,

a negat ive cor re la t ion [ ( i ' ( ( ' * i -  i ' ) )  <0]  (ant ipers is tent

character), whi le, for H>1, two subsequent displacements
(; and -Í i t i -( i  tend to have, on average, the same sign (per-

sistent character). The separation value between persistent and

antipersistent behavior, H:j  (regular Brownian motion), is

characterizedby the absence of correlat ion between two

arbitrary increments of the process.
The opposite case is represented by determinist ic osci l lat ing

signals. Here, the mean square displacement exhibits a cross-

over behavior: at short t ime scales, f t{n,,  the signal is strongly

corre la ted in  a  determin is t ic  way,  and therefore R! (n)  -  n : .

This behavior is a typical universal feature of deterministic
signals, corresponding, in the theory of transport processes, to

the effect of a biasing velocity field6. At long time scales, the

behavior of Rl(n) is oscillating with an average slope equal to

'The def in i t ion of  random walk represented by Eq. ( t )  can be

regarded as a fi ltering of the signal with a linear fìlter having a pole at
) " :  l .

t-In convection/diffusion, phenomena such that the flux I of the

transported entity, the concentration of which be c, is made by the

contribution of a diffusive and a convective part I:vc D [, where

v is the biasing velocity field, and D the corresponding diffusion

coeffi.cient, the mean square displacement of a tracer particle Rj(r)

scales wi th t ime r  as R' ] ( r )  -  v t t t  +2Dt.  An exponent 2 in the scal ing of

the mean square displacement is always a signature of the presence of

a deterministic contribution in the random motion of transported
particles.

l l t

-  1 .0
-  2 .0
>>  1 .0 ,  [ 1 .5  2 .0 ]
>  1 .0

-  1 . 0
>> 1.0 ,  [1 .5  2 .0 ]
< < l . o ( - o )
<  1 .0



The results reported in Table 1 can be physically interpreted

in terms of the fluid dynamic properties of the regime. Let us

examine each case separately, bearing in mind the qualitative

behavior of the void fraction in the various regimes. Also, it

should be remembered that the exponents /; span the interval

[ 0 .0  2 .0 ] .
Dispersed bubbles flow is characterizedby a random

distribution of gas bubbles flowing in a liquid stream. It is

natural to hypothesize that the motion of a generic gas bubble

is not correlated to the motion of other bubbles. This implies

that bubble-bubble interactions are negligible and therefore

bubbles evolve as a system of noninteracting Brownian par-

ticles. Therefore, the density signal exhibits a linear scaling

with time, ll1 = f, - 1, as in the case of purely Brownian
mot ion ( l l , :  l ì r :11.

In Stratified flow, there is a clear cut separation between the

two phases. Fluctuations of stochastic nature at the interface

separating the two phases may occur. However, the void

fraction signal has a strongly persistent character with the

fol lowing values l l1 = 2, lJr>>t ( lJ, = 1.5 - 2.0). The f luctu-

ations at the gas-liquid interface depend on the superficial

velocities and in general increase with the total superficial

velocity jr . :  j r- l  jL.For low superf icial velocit ies, the determin-

istic contribution to interface oscillations is dominant and,

therefore, the mean square displacement R;(r i)  behaves as in

the case of a determinist ic signal (discussed in the previous

subsection). The highly correlated nature of interface fluctu-

ations in stratified flow makes the behavior of the diffusion

process associated with I i '  )  highty persistent. This observation

explains why the long-term exponent / ,  is greater than 1.5 (this

value is, however, empirical and comes from the present

analyses, since theoretical considerations only indicate f,  to be

larger than unity). I t  should be pointed out also that the

experimental values found for l ì1vary between 1.85 and 2.0,

and decrease with increasing jr .

Intermittent f low can be interpreted as a superposit ion of

an almost periodic propagation of aerated liquid slugs followed

by long gas bubbles. Owing to the mixed nature of this flow,

the resulting signal exhibits a high value of /1 in the range

[1.5 2.0] which is associated with the determinist ic and

coherent component of the f luctuations. The long-t ime expo-

nent, f2, accounts for the persistent, almost periodic, oc-

currence of liquid slugst, and therefore it should be close to 0.0
(in practice f2 = 0.0 - 0.2). The stochastic component of the

oscillations of the slugs may be retrieved when observing the

value of the short-term exponent / /r  which is less than 2.0. The

more coherent the slug dynamics, the closer is / '  to 2.0. The

value of the crossover point, ru.,  is related to the main

frequency of slug osci l lat ions (see Sect. 5 below).

A prel iminary analysis of Annular f low indicates that R.(n)

presents a crossover behavior between the values f1> I and

0 . l l t< 1 ( in most of the analyzed cases, i t  was found / lr  > 1.5).

A possible physical interpretat ion of this behavior is related to

the biasing effect of liquid oscillations at the liquid layer near

the walls (/ t ,  > 1) and of complex (non-Brownian) f luctuations

of the inner gas stream (l lr<l).  However, the identi f icat ion of
the Annular regime can be further improved by analyzing the
temporal behavior of the relative mean square displacements.

The results obtained and gathered in Table I can be used as
a predictive tool to identify the regimes directly from the
behavior of the mean square displacement of the diffusion
process generated by the analyzed time-series. The exponents

f , and p, depend continuously on the superficial velocity of gas
and liquid. It is just this dependence which allows the iden-
tification of the various regimes and the localization of the
boundary associated with regime transitions in the j, j,plane.

Finally, it is important to stress that the prediction of the
scal ing behavior of Rl(n) (summarized in Table 1) is direct ly
related to the physical interpretation of the nature of the
density signal fluctuations. This phenomenological connection
with the physics of multiphase flow evolution makes diffu-
sional analysis a simple but powerful tool to understand the
dynamics of the flow from a macroscopic point of view.

3.4
Comparison with R/5 analysis
The most popular method applied to fluid dynamic problems
is certainly rescaled-range analysis (Feder 1988; Srether et al.
1990; Fan et al.  1990, 1993). The key quanti tyin this analysis is
the ratio between the maximal cumulative variation (cumulat-

ive range)  in  the t ime in terva l  1< i  ( rz ,  R(n)and the square
root of the variance up to t ime n, S(n). Given the t ime series

l r , ì ,  R(n)  and S(n)  can be eva luated by the set  o f  equat ions

( i ) , , ) '
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\ i ) , , :1  i  : , ,  s 'Z( r ) : l  i  t : , -
11 ,- , 17 ,-,

c ( n ,  m )

R ( n ) :

Ì t

--  
7 -  \ S r  \ ! / r i l r

I -  |

max c(n,  m) -  min c(n,  m)
l { r i r { n  l < n r < . . t l

( ) /

The quanti ty R(n)lS(n) scales with t ime. For a wide class of
stochastic processes R/S follows a power law with time:

R  (n ) /S  (n )  -  n t l  ( 6 )

which allows for the evaluation of the Hurst exponent, H. The

R/S approach has been used by Fan et al.  (1990, 1993) in

f luidized bed dynamics, by Drahos et al.  (1992) in bubble
columns (considering pressure drop signals) and in some
modif ied form by Srether et al.  (1990) who described slug-
length stat ist ics in terms of f iact ional Brownian motion.

An examination of the results presented by these authors
leads to the conclusion that R/S analyses of pressure drop
fluctuations in fluidized beds and bubble columns are charac-

terized by a persistent character ( i .e.,  by a Hurst exponent

larger than i).  I t  is not clear, though, how this might be used to

obtain a clear regime identification. More specifically, Fan et al.
(1990) show experimental ly that the Hurst exponent for the

'At this point, it should be clarified that
oscillations lead fi, toward 0 (intermittent
random drif t  in the motion implies lJ.>>1.

persistent periodic
flow), while a persistent

8 The scaling of the relative mean square displacement
(  [x .  ( r )  -  x . ( t )  ] r )  was considered by Suzuki  (1984) in connect ion wi th

chaotic maps. It has been applied to multiphase flow problems by

Giona et  a l .  (1994b).
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considered (narrow) range of liquid and velocity fluctuations

spans in the range [0.7 1.0], and that this exponent increases

with the gas velocity. However, no clear indication is gathered
about the way to pursue the identification of flow regimes. On
the contrary, by applying diffusional analysis to two phase

flow, it was shown (see also Giona et al. 1994a, b) that regime

identification can be achieved. This is because there is a
quantitative, and physically grounded, difference for the

values attained by the exponents f ,for different flow regimes.
There are several reasons why results obtained by applying

diffusional analysis of density fluctuations are clearer than

those of the R/S approach and pressure drop f luctuations. First,

most of the authors consider fluidized bed dynamics (in which

three phase, gas, liquid and solid, are involved) which exhibit

a more complex physical phenomenology than two phase flow
in pipes. Moreover, attention of most authors is focused almost

exclusively on pressure drop fluctuations. By the nature of the
measurement (which is taken along a given length of the
apparatus), pressure drops are volume averaged quanti t ies
(averaged across the section of the column or pipe and over

a length corresponding to the distance between the probes)

while density signals are local quantities averaged across the

section of the duct. This can be readily observed in the

experimental signal shown in Fig. 3, where the normalized

output (with zero mean value and unit variance) obtained from

;'-densitometer (case i),  from the capacitance probe (case i i  )
and from pressure drop measurements (case i i i  )  in strat i f ied

and intermittent flows are presented. The highly fluctuating

character of the density (void fraction) signals is an intrinsic
feature of the measuring technique employed (, ' -densitometer),

which is very sensitive to the small variations of the void
fraction of the flowing mixture. The ;'-densitometer output is

also affected by noise which is typical of this technique. Such
level of noise, though higher than that shown by other mea-

suring techniques, tloes not influence the interpretation of the
results. As a matter of fact, noise is filtered out by diffusional

analysis (see also note 5). This is confirmed by the fact that diffu-
sional analysis applied to different experimental signals gives
consistent results.

There are also statistical reasons why diffusional techniques

should be preferred in many cases to R/S analysis. From its

definit ion in Eq. (5), the quanti ty R(n)/S(n) is cumulative
since the maximum and minimum values of c(n, m) are taken
in the range l l  {m ( n ] .  As with any cumulative quanti ty, the
sensit ivi ty of R(n)lS(n) with respect to the local f luctuating
nature of the signal is less than that of R1@). In many cases,
such as in fBm, diffusional and R/S analyses supply the same
information about the statistics of the signal. This is usually
true for all the stochastic fluctuations which are homogeneous
in the sense that they are characterized by a unique time-
independent ( i .e.,  with no crossover) scal ing behavior. In the
case of mixed signals, i .e. signals which come from the
superposit ion of stochastic and determinist ic components, R/S
analysis does not supply a clear stat ist ical descript ion as the
one obtained by dif fusional methods. This point has been

developed in Giona et al.  ( I994b), considering simple t ime

series generated by the superposit ion of two periodic signals,
and will not be repeated here.

A comparison between the results from diffusional and R/S

analyses is indeed very interesting and can be made consider-
ing that  f  :2H; ,  w i th  i :1 ,2 .  Both k ind of  ana lys is  were
applied to experimental data relative to the four different
regimes, strat i f ied, intermittent, dispersed bubbles and annu-
lar. The results of such comparison are presented in Table 2.

For the Hurst exponents H, (as in the case of the /,) ,  the

subscript refers to short and long term behavior. In some cases,

the absence of any power law scaling did not allow the
determination of the Hurst exponent (this situation is in-

dicated in the table with the dash sign). While in the case of
dispersed bubbles flow, both diffusional and R/S analysis give

the same results, in intermittent flow it is impossible to obtain

a clear scaling behavior from R/S analysis as discussed above.
In Fig. 4, results from the application of R/S analysis of void

fraction fluctuations in stratified flow. a and intermittent flow,

Table 2. Values of the scaling exponents ll and H for dispersed
bubbles f low ( j" :0.SS mls, j1:2.89 m/s), Strat i f ied f low
(  j r :2 .szs m/s ,71 :0 .07 m/s) ,  In termi t tent  f low (  jg :2 .07 mls ,
j t :2 .07 m/s) ,  and annular  f low (  i ( :  13.0  m/s ,  j7 :0 .19 m/s) .  The dash
sign indicates the absence of any power-law scaling

Flow regime l l '

, \ lL I Hordup (ii) f
J,', 

t=--=j'---'-- -- 
i;".,*,;-

AP ( i i i )

1000 1500

T ime ,  ( x  t o -3  s )

Fig. 3a,b Normalized experimental time series a. stratified flow
(  j r :z .szs m/s ,  j1 :0 .10 m/s) ;  b  in termi t tent  f low (  js :2 .07 mls ,
jr2.07 m/s). Comparison of the different features of experimental
data: i) ;'-densitometric signal (void fraction); ii) capacitance probe
signal (holdup); iii) pressure drop signal (r'lP)

\i-r,,{-\,^tt\ll

H2TfIJ,

Dispersed
bubbles 0.97 + 0.03
Strat i f ied l .B7 + 0.02
Intermittent 1.80 + 0.03
Annular 1.52 + 0.03

0.90 + 0.1 0.48 + 0.04 0.48 + 0.04
1.54 + 0 .02 0.7  + 0 .02
0  +  0 .01
0 .74+0 .03  0 .77  +0 .03  0 .48+0 .03

,  AP  ( i i i )  I
l \ a
r .\

\,/",u\i-Vtri\,{V

r r r
Void fract ion ( i)



versus n. a Strat i f ied f low ( j-2.525 mls, j , :0.07 m/s);
f low (  js :2 .07 m/s,  j7 :2 .07 mls)

information may be retrieved from different observables. The

large majority of the analyses of the features of experimental

time series was performed using pressure drop fluctuations
(Daw et al.  1990; Skrycke et al.  1993; Franca et al.  1991; Fan

et al. 1993; Drahos et al. 1992). In the present work, pressure

drop, void fraction and holdup were measured. This more

complete monitoring of the flow enables a discussion about the

usefulness of the information on flow regimes found by

different measurements.

The information given by the pressure drop signal is in-

trinsically non-local: since the two probes are far apart, the

signal is volume averaged. Capacitance probes and ; ' -den-
sitometer give a section averaged density signal of higher

quality when compared to the pressure drop. Furthermore, the

;'-densitometer datum allows for the detection of small fluc-

tuations characteristic of dispersed bubbles flow that may not

be detected by capacitance probes. In this work, i ' -den-
sitometric signals were used for all of the florv regimes in order

to ensure a consistent analysis of the different flow regimes.

The results of the analysis are shown in Fig. 5a and b, cases i ,

i i  and i i i  (see again Fig. 3 for the data). The scal ing behavior of

Ri@) of the three t ime-series is almost identical within the

range of experimental error (the error margin in the estimate

of p, is +0.06, at most). This strengthens the idea that the

exponents l), are intrinsic features of the flow regime.

When dealing with dispersed bubbles flow regime, though,

diffusional analysis cannot be successfully applied to pressure

drop and l iquid holdup. In this regime, they both are prac-

tically constant in time and the small fluctuations are due to

experimental errors. The conclusion is that diffusional analysis

allows for the determination of the characteristics of the flow

regime provided the measured variable actually carries the

characterist ics of the f low regime. Pressure drop and holdup

values obtained by capacitance probes do not contain enough

information for dispersed bubbles flow to be effectively

analyzed.

4.2
Sensitivity to sampling time
Most of the signal analyses performed in previous works refer

to pressure drop signals. Therefore, i t  seems appropriate to

quantify the accuracy and the amount of information carried

by pressure drop and ; ' -densitometric signals respectively.

However, since the objective is to compare the quality of

information from two different devices, that is all different

kind of features of the flow regime which can be retrieved

analyzing the two different signals, the volume over which the

information is averaged should not affect the result. Therefore,

in the following, diffusional analysis was applied to the

pressure drop signal and to the signal which was derived

averaging the void fraction over a control volume equivalent to

the one over which the pressure drop was measured. Assuming

that the flow pattern is stationary and fully developed, the

volume average over the section S times the length I (the

distance) between the pressure probes, is equivalent to the

temporal average of a section-averaged quanti ty ( i .e.,  the local

density) over a t ime interval7,,, , .  The t ime 7,,,  is the propaga-

t ion t ime of a f luid element along a length L, r.e. Tu,:Ll j .7,

where j t . :  j t* jr .  The dif fusional propert ies of the pressure

drop signal have been compared with the ; ' -densitometric

a) Strat i f ied f low
b) lntermit tent  f low
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Fig. 5a,b. Mean square displacement, R.(n). a Strat i f ìed f low
(  j , :z .szs mls ,  j1 :0 .10 m/s) ;  b  in termi t tent  f low (  / r :2 .07 - / t ,
jr:2.07 rnls). Comparison of the different features of experimental
data: i)  ; ' -densitometric signal (void fract ion); i i )  capacitance probe
signal (holdup); i i i )  pressure drop signal (/P); i i i i )  averaged ; '-
densitometric signal (averaged void fraction)

b are presented. The same data analyzed with diffusional

analysis are presented in Fig. 5a, case i  and Fig. 5b, case i .  I f

results are compared, it can be observed that, for intermittent

f low, the parameter R(n)lS(n) shows a very complex behavior
( l ine b in Fig. 4). I t  is hard to extract a defìnite power law

scaling over a sufficiently broad time interval (one decade)

from such behavior. The opposite is found applying diffusional

analysis as shown in (Fig. 5b) case i ,  in which two clear cut

slopes ( in a log-log plot) can be identi f ied.

4
0n the choice of the appropriate experimental time series

4.1
The experimental signal
In principle, the same results should be obtained from the

analysis of different experimental observables. However, due to

the difference of measuring techniques, different levels of

1_
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signal averaged over a number of samples fr, , , :Ll( j ,At).

Therefore, i f  [( ,  ]  is the ; ' -densitometric output, the corres-
ponding t ime averaged signal is given by I i"", ,  

' , ,  
í  o,, , :  I j  I  i '  <i .

Again in Fig. 5, which for the sake of completeness reports
all analyses performed with diffusional analysis on available
probes, the cases a i i i i  and b i i i i  show R:(/r) for the t ime
averaged density signal. These results may be compared with
the others referring to time-series which were not processed.
The averaged signal has an init ial  exponent lJt:1.96 greater
than the s lope of  the unprocessed s ignal ,  f  t :1 .78,  and
identical to that of the pressure drop signal. This effect was
bound to occur, since the temporal average makes the t ime-
series smoother and increases i ts coherence. Also, this result
confirms the physical observation that pressure drop signal
can be regarded as a temporal averaging of local fluctu-
at ions over a t ime-scale Ll j  r .  The other features of R](n) are
practically equivalent: the different asymptotic plateau level
of the mean square displacements of Fig. 5 does depend on the
Fourier component of the periodic signal. However, this is
a characteristic property of the signal itself, not related to any
physical property of the flow. The same cornparison performed
for other flow regimes gave the same results, as it is shown in
Fig. 5b case iiii, where the situation for Intermittent flow
regime is presented.

5
Quantitative characterization and fine structure of flow
regimes

5.1
Slug frequency estimation
The characterization of the Intermittent flow regime requires
a deeper understanding of the phenomena involved. Indeed,
the alternation of large liquid slugs followed by elongated
bubbles, makes the flow pattern highly non homogeneous, and
a mathematical treatment very difficult to apply (Trapp and
Mortensen 1993). In addition, average characteristics are
needed experimental ly to assess theoretical models. In part icu-
lar, the slug frequency is a main parameter of this flow regime.

From diffusional analysis, one can directly obtain a quantit-
at ive estimate of the slug frequency as f, :1/T. from the
crossover behavior of Rj(n). The crossover instant, n.,  is the
value of n for which nl(n) begins to deviate from the init ial
slope ( in a log-1og plot).  In this work, the deviat ion was
considered to occur when the slope differed for more than 60/o
from the init ial  slope. The relat ion I. . :  4n,/t  comes from the
analysis of determinist ic periodic signals and can be extended
to stochastic t ime series possessing a determinist ic component.
It arises from the periodic signal being, on average, in phase for
a time interval equal to one fourth of its period. That is, during
one fourth of the period, the periodic signal acts as a direc-
t ional bias (and, therefore, f i t :2).

In the analysis of experimental data, the value of p1 deviates
from the theoretical predict ion f,  e [1.5 2]. This is an effect of
the complex slug length stat ist ics: the motion of slugs is not
strictly periodic. It has been shown (Giona et al. 1994b) that
quasiperiodic signals exhibit a value of f 1 slightly less than 2,

depending on the complexity of the frequency spectrum and
on both number and intensity of the independent modes.

Figure 6 shows the value of the slug frequency, f , obtained
from the analysis of R.(n), compared with the values of the
frequency of the greater spectral component obtained with
Fourier decomposit ion of the autocorrelat ion function. The
agreement between these two estimates is rather satisfactory.
It can be observed that slug frequencies estimated by means
of diffusional analysis vary with j, in a way smoother than
the one exhibited by the frequencies obtained with Fourier
analysis. This behavior is not yet completely understood.
Nevertheless, the quantitative agreement in the estimate of slug
frequency is a first important assessment of the versatility of
diffusional analysis in extracting statistical and quantitative
information from experimental observations of multiphase
flow.

5.2
Fractal dimension of multiphase flow
In other works (e.g., Sether et al.  1990; Franca et al.  1991; Daw
et al. 1990) where the R/S technique is employed, the fractal
dimension of the signal is used to characterize the signal
behavior with a global feature. In Srether et al. ( 1993) the fractal
dimension of oil water interfaces, which was obtained with
image-analysis techniques, versus the mixture velocity is
presented. It is found that the fractal dimension of the interface
increases with the mixture velocity and with the complexity of
the interface. In cases l ike the one treated here, the fractal
dimension of the signal may not be easi ly related to the
complexity of the interface except in strat i f ied (or annular)
flow. Indeed, in this regime, the density of the mixture in the
measuring section can be related to the structure of the in
terface and, therefore, the fractal dimension of the density
signal might be interpreted as a measure of the complexity of
the interface.

With diffusional analysis, the fractal dimension of the signal
can be calculated from the exponent f1, t f  the t ime series is
regarded as the discret ized representation of the graph of
a function which is continuous but almost nowhere differenti-
able. The fractal dimension De of the graph is given by

lJ'
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Fig. 6. Behavior of the slug frequency versus the gas superficial
velocity at different liquid superficial velocity. Comparison of the
frequency values from void fraction data obtained using diffusional
analysis (lines), and Fourier decomposition of the autocorrelation
function of the signal (symbols)
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Fig.7, Fractal dimension of the void fraction signals: Eq. (7) versus
jr: jrl j1, for different values of the superfìcial liquid velocity j,

Figure 7 shows the behavior of D0 versus the total superficial

velocity jr :  j r* j '  for dif ferent values of j i .  The fractal di-

mension is related to the function i ;  versus i  and not to the

propert ies of the interface. An examination of the results by

Sather et al. (1993), who applied the box counting method
(Hao 1989) to the digit ized image of an oi l-water interface,

leads to the following conclusion: the values of De are much

smal ler  (Due [ ] ,  1 .2 ] )  in  a i r  o i l  system than in  water -o i l

system (Du e [1, 1.5] );  the fractal dimension Ds for low l iquid

velocities in the Stratified region exhibits an almost monot-

onous trend with respect to the total superfìcial velocity jr  (see

in  F ig .  7  datafor  j1 :0 .10 and j r :1 .0  m/s) .  However ,  the

comparison with results by Sather et al.  (1993) is l imited, given

the physical differences of the interface in gas liquid and

liquid liquid systems.

6
Summary and conclusions
A set of experimental data obtained for light oil and air flowing

concurrently in a horizontal pipel ine was analyzed using

diffusional analysis. The scal ing of R, 'z(n ) appears to be an

adequate tool for the identification and characterization of

multiphase flow regimes. Different flow regimes may be

characterized on the basis of the values of their t ime scal ing

exponents, ll, and /r. A comparison between diffusional analysis

and the R/S technique demonstrates that diffusional analysis can

give better and more complete information about the investi-

gated phenomenon. In particular, when the time series is

constituted by a superposition of stochastic and periodic

fluctuations, as in the case of intermittent flow, diffusional

analysis is capable of providing information about the features

of the periodic oscillations, slug frequency and, straight-

forwardly, slug length, and on the characteristics of the random

fluctuations which are related to the dynamics of small bubbles.

For the intermittent flow regime, the results obtained by

diffusional analysis have been compared also with a standard

Fourier decomposit ion of the autocorrelat ion function of the

signal with good agreement.
Particularly interesting, from an experimental point of view,

a comparison of the amount information related to the f luid

dynamics features of the different regimes, which can be

retrieved analyzing different experimental signals has been

presented. Pressure drop analysis, although largely used in the

past to characterize multiphase flows, seems to be inadequate

when the fine structure of the flow is sought. Furthermore, if

the dispersed bubbles flow regime is investigated, capacitance

probes signal may not detect the small holdup fluctuations

associated with the motion of the bubbles. The ; ' -densitometer
output appears to give more complete information for all flow

regimes.
To obtain a global parameter characteristic of the signal,

and, to a certain extent, of the flow regime, the fractal

dimension of the signal has been calculated. The fractal

dimension increases with the total superficial velocity.

The results presented in this work demonstrate that diffu-

sional analysis may be regarded as an important tool to

uncover fundamental features of multiphase fluid dynamics.

The method is very simple and may be applied straightfor-

wardly to the output of any experimental device. As a further

development, it is suggested that diffusional analysis be used as

a predictive tool for the identification of fluid dynamic

regimes. For example, it may be a practical method to achieve

on-l ine characterization of mult iphase f low, appl icable in

monitoring and control units of industrial plant involving two

and, eventually, three phase systems. It can be applied to time

series coming from arbitrary probes, within the l imitat ions on

the experimental variable previously discussed.
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