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Abstract

Particle transport, dispersion, and segregation in turbulent flows are highly

nonuniform and intermittent phenomena which are recognized to depend on

the local dynamics of turbulence structures. A sound understanding and a

thorough characterization of the mechanisms controlling particle transfer and

segregation are of fundamental significance for a number of technological and

environmental applications (e.g. mixing, combustion, depulveration, spray dy-

namics, pollutant dispersion, cloud dynamics...), and require deep comprehen-

sion of the interactions between particle dynamics and turbulent transport and

mixing. Since inertia is a low-pass filter, particles respond selectively to tur-

bulence fluctuations so that the system fluid turbulence-inertial particles may

give rise to peak phenomena such as long-term local particleaccumulation or

segregation. In the specific case of boundary layers, this leads to irreversible

particle segregation at the wall.

In this work we analyze the dispersion of micrometer size inertial particles

by examining the behavior of particle pairs injected in a non-homogeneous,

anisotropic turbulent shear flow. The specific physical problem considered for

the study is fully-developed gas-solid turbulent channel flow. Pseudo-spectral

Direct Numerical Simulation is carried out to calculate theflow field at bulk

Reynolds numberRe ≃2250 (corresponding to a friction Reynolds number

Reτ =150) in a 4cm - high channel. Lagrangian tracking is used to describe

the motion of large swarms of particles with different inertia, quantified by the

dimensionless particle response time, referred to as Stokes number,St. The

particle-to-fluid density ratio isO
(

103
)

. Particles of sizedp
∼= 45, 100 and 230

µm were considered, corresponding toSt = 5, 25 and 125 respectively.

The main object of this study is to analyze the influence of both mean shear

and small-scale turbulent fluctuations on the dispersion ofparticles. In par-

ticular, we will present time-dependent Probabilty Density Functions (PDFs)

of single-particle distributions inside the flow domain andwe will propose a

simple parametric model to predict particle spreading. We will also present

xi
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particle pair dispersion statistics. In particular we willshow both fixed-time

and fixed-scale statistics, the latter being used to highlight the presence of an

uncontaminated inertial subrange not affected by different particle pair sep-

aration rate. We will analyze these statistics systematically in an effort to

isolate large-scale shear-induced effects from small-scale turbulence-induced

ones. Shear-induced effects are expected to predominate inthe near-wall re-

gion, where large velocity gradients occur, whereas small-scale fluctuations

are expected to predominate in the nearly-homogeneous central region of the

channel.



Sommario

Il trasporto, la dispersione e la segregazione di particelle in flussi turbolenti

sono fenomeni fortemente disuniformi ed intermittenti chedipendono dalle

dinamiche locali delle strutture di turbolenza. Una solidaconoscenza e una

caraterizzazione approfondita dei meccanismi di controllo di trasferimento e

segregazione particellare sono di primaria importanza permolte applicazioni

tecnologiche ed ambientali (come ad esempio il mescolamento, la combutione,

la depolverazione, spray, dispersione di inquinanti, motidelle nuvole...), e

richiedono una profonda comprensione delle interazioni tra i moti delle par-

ticelle e il rimescolamento turbolento del fluido. Siccome l’inerzia è un filtro

passa-basso, le particelle rispondono selettivamente alle fluttuazioni turbolente

cosicchè il sistema flusso turbolento - particelle inerziali possono dare luogo

a fenomeni di picco come accumulazioni o segregazioni locali di particelle

a lungo periodo. Nel caso specifico di strati limite, ciò porta a segregazioni

irreversibili delle particelle a parete.

Nel presente lavoro analizziamo la dispersione di particelle inerziali mi-

crometriche studiando il comportamento di coppie di particelle iniettate in

un flusso turbolento non omogeneo ed anisotropo dotato di shear. Il prob-

lema fisico specifico considerato nello studio è quello di un flusso turbolento

gas-solido completamente sviluppato in canale. Il campo dimoto del fluido

è calcolato per mezzo di simulazioni numeriche dirette (DNS) mediante un

metodo pseudo-spettrale, in un canale alto 4 cm e a numero di Reynods bulk

pari a Re ≃2250 (corrispondente ad un friction Reynolds pari aReτ =150).

Si usa un tracciamento Lagrangiano per descrivere il moto dinumerosi sciami

di particelle dotate di differente inerzia, quest’ultima quantificata dal tempo di

risposta adimensionale, espresso in termini di numero di Stokes,St. Il rap-

porto di densità particella/fluido è dell’ordine di 103. Si considerano particelle

di dimensionidp =45, 100 e 230µm, corrispondenti rispettivamente aSt =5,

25 e 125.

L’obiettivo principale del presente studio è analizzare l’influenza dello

xiii
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shear medio e delle fluttuazioni turbolente di piccola scalasulla dispersione

delle particelle. In particolare, presenteremo a diversi istanti temporali alcune

Probability Density Functions (PDFs) sulle distribuzionidelle singole parti-

celle all’interno del dominio e proporremo un semplice modello parametrico

che sia in grado di predirre la diffusione particellare. Presenteremo inoltre le

statistiche sulle dispersioni delle coppie. In particolare mostreremo sia statis-

tiche a tempi fissati che a scale fissate. Queste ultime sono usate per eviden-

ziare la presenza di un range inerzialeincontaminato, ovvero non influenzato

dal differente grado di separazione tra le coppie che separano più lentamente e

quelle che separano più velocemente. Analizzeremo sistematicamente queste

statistiche, con lo sforzo di isolare gli effetti di larga scala prodotti dallo shear

da quelli di piccola scala generati dalla turbolenza. Ci si aspetta che i primi

siano prevalenti vicino a parete, dove si riscontrano elevati gradienti di veloc-

ità, mentre i secondi dovrebbero prevalere nella regione quasi omogenea di

centro canale.



Chapter 1

Introduction

1.1 Particles-turbulence interaction

Decades of extensive studies have clarified several issues concerning particle

dynamics. It is well known how inertial particles are subject to the actions

of the surrounding fluid and a number of papers have been produced which

examine the relative values of the fluid forces acting on particles (see [36] for

instance). However, if particle density is much larger thanfluid density (as in

many cases of interest: dispersed flyashes, droplets, and heavy sediments) the

largest effects on particle motion are due to drag and inertia with only small

quantitative corrections produced by all other fluid forcesactions. Thus, if

particle diameter is not negligibly small, inertia will influence strongly particle

behavior. The trajectory of an inertial particle driven by the drag force in a

vortical flow field is sketched in Fig.1.1 in which solid lines represent tracer

pathlines. In Fig.1.1, the behavior of three different inertia particles is con-

trolled by the particle time-scale – particle relaxation time – which, from the

steady-state balance between inertia and the linear Stokesdrag, is defined as

τp = ρpd2
p/18µ , whereρp, dp, andµ are particle density, particle diameter,

and fluid dynamic viscosity, respectively. In Fig.1.1, particles with different

time-scale are subject to the same flow time-scale,τ f , defined on the basis of

the inverse of vorticity. The ratio of the particle relaxation time to the flow

time-scale defines the Stokes number asSt = τp/τ f . Broadly speaking, par-

ticles act as a low-pass filter responding to the flow scales larger than their

time-scale. If their time-scale is comparable to the fluid time-scale, particles

may be propelled into specific flow regions and tend to sample the flow field

in a preferential way.

1
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Figure 1.1: Influence of particle relaxation time on particle trajectory. Small
inertia particles follow precisely the flow; large inertia particles filter the space
changes of velocity; intermediate inertia particles respond selectively to the
flow structures.

Figure 1.2: Effect of inertia on particle preferential sampling of a periodic
vortical two-dimensional flow field reported by Maxey [25]: distribution of
aerosol particles falling under gravity. The non-dimensional parameters char-
acterizing aerosol motion are Stokes setting velocity for still fluid W = τpg =
0.5 and inertia parameterSt = 0.2.

This concept was demonstrated by Maxey [25] examining the behavior

of swarms of inertial particles in a two-dimensional, periodic field of simple

cellular vortices. In his numerical experiment, particleswere settling under

gravity and showed a tendency to sample the flow field preferentially. The

same experiment was reproduced by Soldati [36] and results of particle pref-

erential distribution are shown in Fig.1.2: The effect is striking for this type

of model steady flow and suggests that insights into real three-dimensional,

time-dependent turbulent dispersions may be obtained by trying to identify the

archetypal dynamics of the dominant flow structures.

Real three-dimensional time-dependent turbulent fields are characterized

by vortical structures of largely different scales mutually interacting. Particles

will be thus advected in a fashion which is not at all random and will assume

a spatially intermittent distribution. This effect will beamplified or damped
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depending on the particle-to-flow time-scale ratio [29, 10].

Preferential segregation of particles is fundamental in a number of turbu-

lent flow applications [5, 30]. Yet, in the specific case of turbulent boundary

layer, the local interaction between particles and turbulence structures leads to

a remarkably unique macroscopic behavior, i.e. particle accumulation in the

viscous sublayer [4, 18]. This macroscopic behavior is due to the combined ac-

tion of the many microscopic transfer phenomena which driveparticles toward

the wall and away from the wall. Since 1957, when Friedlanderand John-

stone [11] in the context of deposition theory broadly differentiated between

the behavior of large and small particles in the viscous sublayer, much at-

tention was dedicated to investigation of particle wall transfer mechanisms. In

1975, Cleaver and Yates [8] proposed a sub-layer model based on the Reynolds

analogy for particle transport in turbulent boundary layerfor the deposition of

small solid particles from a gas stream. According to this mechanism, particles

are driven toward the wall and away from the wall by sweeps – coherent down-

wash of outer fluid to the wall – and ejections – coherent upwash of wall fluid

toward the outer flow – which are instantaneous realizationsof the Reynolds

stresses – Q4 and Q2 type events respectively [35].

Of course, since early times efforts, Reynolds averaging ofthe Navier-

Stokes equations assigned a crucial role to Q2 and Q4 events,yet it is only

after the paper by Kline et al. [21] that they have been dignified as coherent

structures together with the other time and space persistent flow phenomena

in the boundary layer. The remarkable papers by Hussain [13] simplified the

understanding of turbulence phenomena pinpointing that a clear identification

and a correct definition of coherent structures were the key to understand pos-

sible archetypal dynamics in turbulent flows. This theoretical tool assisted by

the rapidly increasing computational power, which finally made feasible long-

desired, three-dimensional, time- dependent, fully-resolved turbulent flow sim-

ulations, produced an entire branch of flourishing literature which gave new

hopes in turbulence research by looking for coherent structures through the

wealth of data available from Direct Numerical Simulation (DNS). In partic-

ular, many questions about the dynamics of turbulent boundary layers have

been addressed and answered identifying the different characteristic coherent

structures and proposing mechanisms to explain their generation process (the

turbulence regeneration mechanism).

There is a general consensus on the dynamics of turbulence structures in

the boundary layer and the coherent structures have been precisely classified.

Henceforth, we refer to a flow inside a channel. The referencegeometry con-
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sists of two infinite flat parallel walls: the origin of the coordinate system is

located at the center of the channel and thex−, y− andz−axes point in the

streamwise, spanwise and wall-normal directions respectively (see Fig.1.3).

The statistically most common coherent structures are single streamwise-oriented

vortices, generally centred within the buffer layer. Quasi-streamwise vortices

generate strongly coherent sweeps on the downwash side and strongly coher-

ent ejections on the upwash side.

Figure 1.3: Particle-laden turbulent gas flow in a channel: sketch of the compu-
tational domain and minimal schematics of near-wall turbulent coherent struc-
tures. Strong causal relationship links low-speed streaksto ejections generated
by quasi-streamwise vortices, which also generate in-sweeps of high stream-
wise momentum fluid to the wall in the high velocity regions.

In the outer region, several recent investigations suggestthat the most com-

mon vortex structures appear like hairpins whose legs are the counter-rotating

quasi-streamwise vortices populating the near-wall region. Neither these hair-

pins usually possess perfect spanwise symmetry nor the counter-rotating vor-

tices have equal strength. Spanwise axisymmetric one-sided hairpins are also

observed. These new models revise and improve the classicalconcept ofΩ-

shaped horseshoe vortices and are widely, though not totally, accepted. In re-

cent papers, Zhou et al. [37] and Adrian et al. [1] proposed a new mechanism

for turbulence regeneration cycle which is based on packetsof hairpin vortices

travelling at the same convection velocity, a new fundamental super-structure.

Apparently, these super-structures populate all regions of the turbulent bound-

ary layer and their characteristics fit well with most of previous quantitative

observations from Kline et al. [21] up to the most recent. Furthermore, Adrian
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et al. [1] report that if we focus our attention only to the near wall region

– i.e.less than 60 wall units from the wall – the phenomenology of the hair-

pin packet is very similar to the structures proposed by Schoppa and Hussain

[32, 13] and Jeong et al. [15].

Despite the great progress in the investigation of turbulence structures and

dynamics, an equal effort was not produced in the area of turbulent dispersed

flows. Several features of particle behavior in the boundarylayer are broadly

established, yet there are still many open issues concerning particle transfer

mechanisms and particle segregation. In particular, even though the initial

intuition by Cleaver and Yates [8] can be granted, quantitative evaluations are

not yet broadly available. In addition, physical models which can explain why

particles tend to accumulate at the wall, appear not completely explored. Still

not fully understood are reasons and modalities under which, once at the wall,

particles remain trapped in the low streamwise velocity regions at a distance

from the wall not exceeding few wall units even when gravity does not play a

role, both in horizontal flows with neutrally buoyant particles and in vertical

flows.

Figure 1.4: Instantaneous distribution of particles characterized byτp = 116.3
at timet+ = 2700. View of particle position in theyz-plane for 700< x+ <
1000 (a) and correspondingxy-plane average number density distribution as a
function of the wall normal direction (b).

Several of the above mentioned phenomena are shown in Fig.1.4(a) to-

gether with a number of features which can help us to focus on the process

of particle dispersion and transfer in turbulent boundary layer. First, we ob-

serve that particles are not homogeneously distributed along the channel. In

particular, particles tend to cluster around large vortical structures. From these

clusters, particles are transported toward the wall, accumulating into specific

“reservoirs” (one of these is indicated by the black circle)where concentra-

tion build-up occurs. These accumulation regions are characterized by flow

streamwise velocity lower than the mean. Particles tend to stay long times

in these low-speed regions so that eventually particle concentration increases
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near the wall. To quantify near-wall accumulation, the particle number den-

sity distribution is plotted as a function of the non dimensional distance from

the wall (z+) in Fig.1.4(b). A logarithmic scale is used for particle number

concentration to capture the detail of particle behavior inthe proximity of the

wall. The concentration profile is developing with time, andat the instant shot

in Fig.1.4(b), we observe that particle number density profile has developed a

maximum well into the near-wall region (0< z+ < 20). This behavior can be

viewed as the consequence of the turbulence non-homogeneity, and has been

observed in a number of previous works.

1.2 Turbulence wall structure

In a turbulent boundary layer, momentum, heat, and mass transfer are con-

trolled by the instantaneous realizations of the Reynolds stresses. Ejections

and sweeps – Q4 and Q2 type events, respectively – control momentum trans-

fer at the wall and are also well correlated to heat transfer and mass trans-

fer at the wall. Specifically, ejections bring the low-momentum fluid close

to the wall into the outer region whereas sweeps bring the high-momentum

fluid from the outer flow into the wall region. A complete characterization of

sweeps and ejections and of their generation mechanisms is thus fundamental

to understand the physics of turbulence structure at the wall and to explain the

effect produced on particle dynamics. The snapshot shown inFig.1.5 visual-

izes sweeps, ejections, and their action of momentum transfer to the wall. In

this figure, flow is from left to right along thex direction. Sweeps (gold lumps)

and ejections (blue lumps) are identified with the same valueof the instanta-

neous stress isosurface atu′w′ =−3 in wall units. To visualize the correlations

“sweep-high shear stress” and “ejection-low shear stress”the wall is colored

with the intensity of the instantaneous shear stress at the wall – blue is low

and red is high. It is apparent that low shear-stress regionscorrespond to the

ejections, whereas high shear-stress regions correspond to the sweeps.
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Figure 1.5: Snapshot footprint of the wall shear-stress with corresponding
sweep and ejection events in the whole computational domain. At the wall, red
indicates high shear-stress; blue indicates low shear-stress. Gold 3D regions
are isosurfaces characterizing sweeps whereas blue 3D regions characterize
ejections. Isosurfaces are traced atu′w′ = −3 in dimensionless units.

Sweeps and ejections are just a chain ring of wall turbulenceregeneration

cycle, and there is still some uncertainty about the mechanisms which gen-

erate and maintain the sweep/ejection events. They appear to be generated

by the quasi-streamwise vortices which populate the near wall region. Quasi-

streamwise vortices are slightly tilted away from the wall and are responsible

for pumping fluid towards and away from the wall. Clockwise and counter-

clockwise rotating vortices are slightly tilted upward - about 9 average [32];

and are also slighthy tilted about 4 left and right, respectively. The stream-

wise vortices may be identified by using pressure, vorticity, or other indicators

[12]. A broadly-used method for identification exploits the streamline rotation

vector Ω to visualize vortices as flow regions where the rate-of-deformation

tensor∂ui/∂x j exhibits complex eigenvalues [27]. From a physical viewpoint,

the vectorΩ represents strength and direction of the rotation of the streamlines.

In Fig.1.6(a), two counter-rotating vortices, identified by one isosurface of

Ω, are shown together with the ejections and sweeps they generate. The elon-

gated red and pale blue structures are two isosurfaces with the same absolute

value ofΩ (and opposite sign) and indicate clockwise rotating (red) and coun-
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terclockwise rotating (pale blue) vortices. Flow is going from bottom left to

top right and vortices appear tilted away from the wall by themean strain rate.

The blue lumps of fluid in between the two vortices are ejections and the green

lumps of fluid outside the two vortices are sweeps. Ejectionsand sweeps also

appear stretched streamwise and affected by the mean strainrate. Owing to

the continuous action of the quasi-streamwise vortices in generating sweeps

and ejections, regions between two vortices such as those shown in Fig.1.6are

characterized by a streamwise velocity lower than the mean low-speed streaks,

whereas the regions outside the two vortices are characterized by a streamwise

velocity higher than the mean high-speed regions.

(a) (b)

Figure 1.6: (a) Quasi-streamwise counter-rotating vortices together with ejec-
tions and sweeps. Quasi-streamwise vortices extend for about 200 − 300 wall
units. Two isosurfaces of the same absolute value ofΩ indicate clockwise
rotating (red) and counterclockwise rotating (pale blue) vortices. Sweeps and
ejections are indicated by green and blue, respectively. (b) Two counterrotating
quasi-streamwise vortices onto a single low-speed streak (red). Green isosur-
face ofΩ indicates clockwise rotating vortex, blue isosurface ofΩ indicates
counterclockwise rotating vortex. Picture covers a streamwise window about
450 wall units long.

Many quasi-streamwise vortices are usually associated with one single

low-speed streak. Low-speed streaks are sinuous regions about 1000 wall units

long and are more coherent than high-speed regions.

In Fig.1.6(b), a 450 wall units long piece of one low-speed streak is shown,

flanked by two counter-rotating quasi-streamwise vortices. The red isosurface

identifies a streamwise velocity value of0.56Uc, whereUc is centerline veloc-

ity, which is broadly considered the advection velocity of the low-speed streak.



1.3. PARTICLE DYNAMICS 9

In this figure, the action of the quasi-streamwise vortices in lifting up the low-

speed streak is clear. Streamwise vortical structures overlap streamwise as a

staggered array, as was clearly demonstrated by Schoppa andHussain [32, 13].

One single low-speed streak has a longer life than quasi-streamwise vortices

and survives a number of vortex generations. It has been shown [20] that

the generation of the quasi-streamwise vortices is associated with lateral in-

stabilities producing changes in the shape of the low-speedstreak surface. In

recent papers, Schoppa and Hussain [32, 13] suggested that wall turbulence is

dominated by a cycle in which low-speed streaks generate quasi-streamwise

vortices, which in turn generate ejections and sweeps. These finally contribute

to maintain the low-speed streaks.

Thus, the view of evolutionary dynamics of boundary layers structures

changes perspective in that streaks are considered responsible for the initial

generation of quasi-streamwise vortices. Based on this view, Schoppa and

Hussain [32, 13] suggest different strategies for turbulence control. Themost

interesting strategy seems to be stabilization of the low-speed streaks by means

of large-scale forcing motions. In practice, a low-speed streak which is more

stable to spanwise perturbations would reduce its meandering and reduce the

tripping frequency of quasi-streamwise vortices eventually reducing the fre-

quency and the intensity of turbulence production events – i.e. sweeps and

ejections.

1.3 Particle dynamics

There is experimental and numerical evidence that heavy particles in turbu-

lent boundary layer have a tendency to migrate toward the wall under the

turbophoretic drift [4, 6, 26]. Fig.1.7(a) shows the particle number density

concentration plotted as a function of the non dimensional wall distancez+.

A logarithmic scale is used to capture the detail of particledistribution in the

near-wall region. Particle number concentration is normalized to the initially

uniform concentration and is calculated after 1125 time wall units. As dis-

cussed by Portela et al. [28], particle distribution is not yet statistically steady.

Regardless of particle size, number concentration is non-uniform along the

wall normal coordinate, the trend being most pronounced forlarger particles.

In particular, the concentration profile appears to reach a maximum very close

to the wall. This behavior can be viewed as the consequence ofnon-uniform

turbulence advection mechanisms, the intensity of which decreases to very low

values in the near wall region.
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(a) (b)

Figure 1.7: (a) Macroscopic effect of particle interactionwith turbulence struc-
tures. Particle number density distribution calculated from one way coupling
simulations for particle time scales equal to 0.2, 1, 5 and 25against non di-
mensional distancez+ from the wall (logarithmic scale). The concentration
profile reach a maximum very close to the wall; the non uniformtrend is most
pronounced for larger particles. (b) Top view of particle distribution in the
boundary layer. Note accumulation of particles in specific regions which cor-
respond to the low-speed streaks.

Number concentration is non-uniform also in the wall parallel direction,

with particles segregated preferentially in regions characterized by streamwise

velocity lower than the mean. Fig.1.7(b) shows the instantaneous distribution

of τp = 25 particles in the region between the wall andz+ = 3. The tendency

of inertial particles to accumulate in the low-speed regions may support a pos-

sible use of particles as smart roughness. In real situations, characterized by

flow field modulation by the particles, the presence of particles would increase

the inertia of the low-speed streaks. Since low-speed streak stability to lateral

perturbation has an impact on the wall turbulence regeneratcycle, the pres-

ence of specific inertia or size particles in turbulent boundary layer might be

exploited to tune wall transfer mechanisms.

In Fig.1.8 we show an instantaneous cross section in the(y− z) plane of

particle distribution. Specific regions of particle accumulation are clearly vis-

ible. These regions identify the main gateways for particletransfer to the wall

region. In a previous work Marchioli and Soldati [23] examined the relation-

ship between particle fluxes in and out the wall layer and momentum fluxes

at the wall. They found that particles are transferred almost exclusively by

strongly coherent sweeps and ejections: Specifically, a strong correlation ex-

ists between sweep events and particle flux toward the wall, and between ejec-

tion events and particle flux toward the outer flow. This correlation is almost
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Figure 1.8: Cross section of instantaneous particle distribution in they− z
plane for△x+ = 400.

perfect for smaller particles and somehow weaker for largerparticles. In other

words, if a small particle travels toward the wall, it is entrained in a sweep

whereas if the particle travels away from the wall, it is driven by an ejection.

For larger particles, most of the particles are still transferred by sweeps and

ejections but a higher proportion of particles with positive wall normal veloc-

ity appears in fluid environments characterized by negativewall-normal veloc-

ity, and viceversa. In particular, for the larger sets of particles, the fraction

of particles travelling toward the wall in a non-sweep environment is smaller

than the fraction of particles travelling away from the wallin a non-ejection

environment [23].

This behavior is easily attributed to thelocal particle Stokes number which

increases along the Lagrangian trajectory of the particle which, while travelling

toward the wall, interacts with smaller and smaller flow structures. The charac-

teristic time-scale of turbulent structures scales linearly with wall distance and

decreases progressively as the structures lie closer to thewall. The strongly

coherent sweeps which transfer effectively particles to the wall are generated

by the forward-end of the mature quasi-streamwise vorticalstructures which is

located in the buffer layer. Larger particles have a larger time-scale and filter

out the effects of the smaller fluid scales. Thus, the larger momentum gained

by the large particles in the strongly coherent sweep is ableto drive them to

the wall and may be sufficient to let the particle bounce elastically off the wall,

crossing the smaller scale structures in the vicinity of thewall unable to further

modify the trajectory of the particle.

Particle Stokes number is also responsible for particle accumulation under
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Figure 1.9: Cross section of the flow field and front view of particles in the
region of particle accumulation.

the low-speed streaks. Fluid obeys continuity and fluid fluxes to the wall must

be balanced by counterfluxes away from the wall. Particles, however, behave

somehow as a compressible fluid and may accumulate as precisely according

to what is happening to the small swarm of particles circled in Fig.1.8, which

is undergoing a strongly coherent phenomenon. Fig.1.9shows a cross section

of the flow field in the region of particle accumulation. Vectors represent ve-

locity components in the plane and color isocontours show the values of the

streamwise velocity component. A strongly coherent ejection is present in the

middle of the figure and indicates the position of the low-speed streak which

appears lifted and flanked by two counter-rotating vorticalstructures. Particle

position is identified with the circles – larger than the realscale for visualiza-

tion purposes. Blue particles have wall normal velocity directed away from

the wall (ωp > 0) whereas purple particles have wall-normal velocity directed

toward the wall (ωp < 0). In the outer region, say abovez+ > 100, there is

no evident correlation between particle wall-normal velocity and fluid stream-

wise velocity. Approaching the wall, however, virtually all particles entrained

in the ejection – streamwise velocity lower than the mean – have positive wall

normal velocity indicating an extremely focused and coherent event. Particles

approaching the wall are entrained in the two sweep events – yellow regions.

Depending on the momentum they acquire, particles directedtowards the wall

may reach it or may follow the flow streaklines approaching the ejection to be
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re-entrained in the outer flow.

1.4 Two-particle Dispersion and Scope of this Work

1.4.1 Single-particle Dispersion

Arguably the most elemental understanding one can have of any flow field is

how particles are moved by the flow. Conceptually, it is far simpler to consider

the trajectory of a particle than it is to fully comprehend the velocity vector

field. The motion of particles is also important because of its connection with

the processes of transport and mixing that impact natural and engineering flows

in such profound ways. Indeed, it is the latter application that drew the atten-

tion of some of the greatest minds in fluid mechanics to the study of particle

motion in turbulence. The original work of Taylor (1922) on single-particle

dispersion gave birth to many of the modern statistical tools we use to study

turbulence. In particular, a literature survey reveals that many numerical and

experimental studies have been performed to examine tracers dispersion from

a line source orthogonal to wall normal direction [17, 19, 14]. The first purpose

of this work is to present single particle statistics of inertial particles released

at a certain distance from the walls. This study may have interesting indus-

trial and environmental applications, such as pollution dispersion in the atmo-

spheric boundary layer (see Fig.1.10). For instance, it can be useful to predict

in first approximation where and when the smoke released froma chimney at

a certain altitude will reach the ground, if it will stratifysomewhere or well

disperse in the sky. Indeed, in the center of the channel the shear influence

is almost null and then its bottom-half ( 0 <z+< 150 ) can well rapresent the

atmospheric boundary layer.

1.4.2 Two-particle Dispersion

Richardson (1926) was the first that examined the relative motion of two par-

ticles embedded in isotropic turbulence, establishing thefoundations of two-

particle dispersion. There is a fundamental link between the formal analysis of

pair dispersion and practical problems such as the growth relative to the center

of mass of a cloud of contaminants in the atmosphere, nutrients in the ocean,

or chemical species in a turbulent reactor. In all these examples that involve

fluid flow, a nondimensional parameter that represents the ratio of inertial and

viscous forces is the Reynolds number, here defined in terms of the Taylor mi-

croscale asReλ ≡
〈

u2
〉1/2 λ/ν , where

〈

u2
〉1/2

is the root mean square of the
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Figure 1.10: Some smoke ejected by two chimneys and releasedby a fire in
the atmospheric boundary layer.

fluctuating velocity,ν is the fluid kinematic viscosity,λ ≡
√

15ν 〈u2〉/〈ε〉 ,

andε is the turbulent energy dissipation rate. Laboratory and industrial flows

are characterized byReλ O
(

102−103
)

, whereas geophysical flows can reach

O
(

104
)

and higher.

If we consider two particles initially separated by the distanced(t = 0) =

d0 = d1(0)− d2(0) and placed in a turbulent flow field, we expect that their

distance will change in time. The istantaneous separation of the position of the

particles isd(t) = d1(t)−d2(t). We can divide the process of dispersion into

three distinct regimes based on the separation of the particles relative to the tur-

bulent scales:(a) Thedissipation subrange corresponds tod (t) ≪ ηK , where

ηK ≡
(

ν3/〈ε〉
)1/4

is the Kolmogorov length-scale;(b) the inertial subrange

corresponds toηK ≪ d (t)≪L , whereL is the integral length scale; and(c) the

diffusion subrange corresponds tod (t)≫ L. The analysis and scaling for each

subrange are unique and they are explained in detail by Salazar and Collins

[29]. In this work we wil focus on what happens in the inertial subrange.

As the particle pair separates beyond the dissipation scales, the range of
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motions (or eddy sizes) that move them apart varies with the separation dis-

tance, in which eddies of scalel ∼ d (t) are most effective in the process of

dispersion (Corrsin 1962). Richardson (1926) initially put forth this notion

and suggested a specific diffusion equation for relative dispersion in isotropic

turbulence. Compiling measurements of the effective eddy diffusion coeffi-

cient and making other assumptions, he found a solution which implied that

〈

d2 (t)
〉

= g〈ε〉t3, (1.1)

whereg is calledRichardson′s constant. Many computational and laboratory

experiments [2, 3, 16] confirmed this trend in the inertial subrange of two and

three-dimensional isotropic turbulent flows. In Fig.1.11 an example of the

scaling
〈

d2 (t)
〉

∼ t3 obtained by a DNS is shown.

Figure 1.11: The mean pair separation
〈

d2(t)
〉

(indicated as
〈

r2 (t)
〉

in the fig-
ure) in a homogenous isotropic turbulent flow atReλ = 383. The plot refers to
DNS coupled to LPT of 307200 particles pairs. The scaling∼ t3 in the inertial
subrange is evident.

Homogeneous isotropic turbulence is the simplest configuration for study-

ing the statistics of relative dispersion, but it has limited application to real

situations. An investigation in turbulent flows affected bythe presence of solid

buondaries should be dutiful. Another limitation introduced in most experi-

ment is due to the use of tracers, i.e., massless particles. This latter are able to

follow precisely the flow and then they provide the most accurate informations

about fluid motions, even for the smallest scales. Furthermore, tracers are pre-

ferred to inertial particles in DNS because it is sufficient to integrate in time
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the equation

dx
dt

= v (1.2)

to track all the history of particle motion,v being the velocity of the fluid

at particle position. This greatly reduce computational efforts. Despite these

merits, tracers do not well simulate behavior of real particles, expecially when

these have a mass not negligible with respect to the physicalof the problem.

The main scope of this work is to study the pair dispersion of inertial parti-

cles in a turbulent channel flow. Particularly, we want to getinformations about

the rate of scaling in the inertial subrange and the influenceof the strong shear

near the walls on two-particle statistics. To this aim, we track some swarms of

particles released at different distances from the walls and measure statistics

along the pair trajectories both as a function of time and as afunction of their

separation, i.e., at fixed scales. A comparison with homogeneous isotropic tur-

bulence in the center of the channel is reasonable, the flow being few affected

by the two walls in the region around the centerline. We also present some sin-

gle particle statistics regarding swarm’s distribution inthe channel, to correlate

wall segregation with pair dispersion.



Chapter 2

Physical Modelling and

Numerical Methodology

To investigate the physics of particle pairs, we performed direct numerical sim-

ulations (DNS) of gas-solid channel flow. The reference geometry consists of

two infinite flat parallel walls: the origin of the coordinatesystem is located

at a corner of the channel and thex−, y− and z− axes point in the stream-

wise, spanwise and wall-normal directions respectively (see Fig.1.3). Periodic

boundary conditions are imposed on the fluid velocity field inthe homoge-

neous directions (x and y), no-slip boundary conditions are imposed at the

walls (z = 0 andz = 2h). The size of the computational domain isLx ×Ly ×
Lz = 4πh×2πh×2h. In this work, we will consider non-reactive, isothermal

and incompressible (low Mach number) flow and monodispersedmicrometer-

size particles: in particular, we will consider Newtonian fluid (specifically, air

with densityρ = 1.3 kg m−3 and kinematic viscosityν = 1.57×10−5 m2 s−1

and pointwise heavy particles (with densityρp = 1000kg m−3). Fluid and par-

ticle properties in dimensional form are given here for the sake of providing a

possible application of our simulations to areal physical instance.

2.1 Equation for the fluid phase and flow solver

In our studies, we have performe DNS of fully-developed channel flow. In

DNS, the governing balance equations for the fluid in dimensionless form read

as (cit Soldati and Banerjee, 1998):

∂ui

∂xi
= 0, (2.1)

17
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∂ui

∂ t
= −u j

∂ui

∂x j
+

1
Re

∂ 2ui

∂x2
j

− ∂ p
∂xi

+ δ1,i, (2.2)

whereui is the ith component of the dimensionless velocity vector,p is the

fluctuating kinematic pressure,δ1,i is the mean dimensionless pressure gradient

that drives the flow whereasReτ = uτ h/ν is the shear Reynolds number based

on the shear (or friction) velocity,uτ , and on the half channel height,h. The

shear velocity is defined asuτ =
√

τw/ρ , whereτw is the mean shear stress

at the wall. All variables are taken in dimensionless form, represented by

the superscript + (which has been dropped from Eqns.2.1 and2.2 for ease of

reading) and expressed in wall units. Wall units are obtained combininguτ , ν
andρ .

The flow solver used to perform the numerical simulations is based on a

pseudo-spectral method that transforms the field variablesinto wave space to

discretize the governing equations. In the homogeneous directions (x andy), all

the quantities are expressed by Fourier expansions usingkx andky wavenum-

bers. In the wall-normal non-homogeneous direction, they are represented by

Chebyshev polynomials. The solution, represented spectrally in all three flow

directions, have the general form:

u(kx,ky,n) = ∑
kx

∑
ky

∑
n

û(kx,ky,n)ei(kxx+kyy)Tn (z) , (2.3)

in whichTn (z) = cos
[

n ·cos−1(z/h)
]

is then-th order Chebyshev polynomial.

By using the orthogonality property ofei(kxx+kyy), the equations for the Fourier

coefficientsû(kx,ky,n) can be obtained. All the differential equations to be

solved are of Helmholtz type with Neumann, Dirichlet or mixed boundary

conditions specified at the walls. Time advancement of the equations is done

by the two-level explicit Adams-Bashforth scheme for the non-linear convec-

tion terms and by the implicit Crank-Nicolson method for thediffusion terms.

All the calculations are carried out in wave space except theevaluation of the

nonlinear terms, which is done in physical space and then transformed back

to wave space in order to avoid the convolution summations which reduce the

efficiency of the method. This numerical scheme is quite standard for directly

simulating turbulent flows in domains of simple geometry, such as rectangular

channels (cit Soldati and Banerjee, 1998).
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2.2 Equations for the dispersed phase and Lagrangian

particle tracking

In the Lagrangian framework, the motion of particles is described by a set of

ordinary differential equations for particle velocity andposition. These equa-

tions in vector form read as:

dx
dt

= v, (2.4)

dv
dt

=

(

1− ρ f

ρp

)

g− 3
4

CD

dp

(

ρ f

ρp

)

|v−u|(v−u)+ (2.5)

ρ f

ρp

Du
Dt

+CL
ρ f

ρp
[(u−v)×ω ]+

ρ f

2ρp

(

Du
Dt

− dv
dt

)

+

9µ
dpρp

√
πν

∫ t

0

(

du
dτ

− dv
dτ

)

dτ
(t − τ)0.5 ,

wherex andv are the particle instantaneous position and velocity;u andω are

the fluid velocity and vorticity at the particle position;dp andρp are the parti-

cle diameter and the particle material density;µ is the fluid dynamic viscosity;

andg is gravitational acceleration. The time derivatived/dt is calculated fol-

lowing the moving particle(du/dt = ∂u/∂ t +v ·∇u), whereasDu/Dt is the

total acceleration of the fluid instantaneously evaluated at the particle posi-

tion (Du/dt = ∂u/∂ t +u ·∇u). Each term in Eq.2.5 represents forces per

unit mass acting on a particle. The term on the left-hand siderepresents par-

ticle inertia, whereas the right-hand side terms describe the effect of gravity,

Stokes drag (CD being the drag coefficient), pressure gradient, aerodynamic

lift (CL being the lift coefficient), added mass and time-history Basset, re-

spectively. This equation is similar to the equation of motion for small rigid

spheres discussed by Maxey and Riley [24], in which the second-order terms

have been neglected due to the small size of the particles. Here, the Stokes

drag coefficient is computed using the following non-linearcorrection [31]:

CD = 24
Rep

(

1+0.15Re0.687
p

)

whereRep = dp |v−u|/ν is the particle Reynolds

number. The correction forCD is necessary whenRep does not remain small

[9].

The evolution of particle position and velocity is obtainedupon time-integration

of the above equations. In the Lagrangian framework, a computational particle

represents only one physical particle and, therefore, timeintegration is per-

formed for each individual particle to be tracked. To minimize the computa-
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tional effort required by this operation, which scales as the number of tracked

particlesnp, eq.2.5 can be simplified in a suitable manner. Simplification is

made based on the relative importance of each force in the considered flow

configuration, which in turn depends on several particle parameters. Depend-

ing on the specific value of these relevant parameters, some terms in eq.2.5can

be neglected without loss of accuracy in the final result. Forparticles much

heavier than the fluid(ρp/ρ f ≫ 1), the most significant forces are Stokes drag

and gravity. Other forces acting on the particle, such as Basset, fluid pressure

gradient and added mass can be neglected being at least one order of magnitude

smaller: The contributions of hydrostatic force, Magnus effect and Brownian

diffusion can be neglected as well because of the specific setof physical pa-

rameters of our simulations. One last contribution to be considered carefully

is that due to the lift force. Previous studies showed that, for small particles,

the lift force term becomes formally of the same order in particle radius as

other terms we neglected in the more complete equation of motion derived by

Maxey and Riley [24]. In this situation, the lift force is small compared to the

particle drag in the same direction and is expected to produce slight quantita-

tive (yet not qualitative) modifications of the deposition statistics. For larger

particles, however, the lift force may have significant effects on the rate of par-

ticle accumulation near the wall, particularly in presenceof a solid boundary.

The influence of the lift force in determining the buildup of particle concen-

tration in the viscous sublayer is in turn modulated by gravity, which acts to

increase/decrease the slip velocity between particles andfluid via the well-

known crossing-trajectory effect [25].

For the purposes of performing a phenomenological study of turbulent par-

ticle pair dispersion, we starte from a base simulation in which the setting is

kept as simplified as possible. To minimize the number of degrees of freedom,

we neglecte the effect of gravity and lift in the first instance. A simplified

version of the Basset-Boussinesq-Oseen equation is thus obtained. In vector

form:

dv
dt

=
(u−v)

τp

(

1+0.15Re0.687
p

)

, (2.6)

whereτp = ρpd2
p/18µ is the particle relaxation time, a measure of particle

inertia denoting the time scale with which any slip velocitybetween the par-

ticles and the fluid is equilibrated. Subsequent inclusion of additional forces

(gravity and lift in our problem) can be done to single out their specific effect

on particles and to analyze possible qualitative and quantitative changes to the
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scenario depicted by the base simulation.

To calculate individual particle trajectories in the flow field, we have cou-

pled a Lagrangian particle tracking (LPT) routine to the DNSflow solver. The

routine solves for Eqns.2.6 and2.4 under the following assumptions: (i) par-

ticles are pointwise, non-rotating rigid spheres (point-particle approach); (ii)

particles are injected into the flow at concentration low enough to consider

dilute system conditions: the effect of particles onto the turbulent field is ne-

glected (one-way coupling approach) as well as inter-particle collisions. These

assumptions lead to a simplified physical model. This model,however, still

provides the proper level of description to extract physical knowledge from a

complex two-phase system and, therefore, it is fully representative of the main

qualitative features of the phenomena investigated.

The equations of particle motion are advanced in time using a4th-order

Runge-Kutta scheme: at the beginning, particles are randomly distributed on

planes orthogonal to wall normal direction, as described inSec.2.4, and their

initial velocity is set equal to that of the fluid at the particle initial position. Pe-

riodic boundary conditions are imposed on particles movingoutside the com-

putational domain in the homogeneous directions. Perfectly-elastic collisions

at the smooth walls are assumed when the particle center is ata distance lower

than one particle radius from the wall (note that the data sets obtained assum-

ing perfectly reflecting walls can be used to extract subsetsof data for the case

of perfectly absorbing walls simply by tagging time and location of the particle

upon impact). The timestep size used for particle tracking was chosen to be

equal to the timestep size used for the fluid,δ t+ = 0.045. This time step size

is more than20 times smaller than the non-dimensional response time of the

smallest particle tracked (see Sec.2.4for details).

An accurate calculation of the forces acting on the particlerequires careful

evaluation of the instantaneous fluid velocity at the particle location. This is a

critical issue in LPT and, therefore, many papers dealing with the interpolation

problem are available in the archival literature. A wide variety of interpolation

methods has been tested in channel flow. Both high-order hybrid schemes (

see for instance Yeung and Pope [36], who tested both a third-order Taylor-

series interpolation scheme and a cubic-spline scheme) andlower-order time-

efficient schemes have been employed. Considering previousanalyses, we

decided to use an interpolation scheme based on 6th-order Lagrangian poly-

nomials: near the wall, the interpolation scheme switches to one-sided. The

performance of the interpolation scheme is comparable to that of spectral di-

rect summation and to that of an hybrid scheme which exploitssixth-order



22CHAPTER 2. PHYSICAL MODELLING AND NUMERICAL METHODOLOGY

Lagrangian polynomials in the homogeneous directions and Chebyshev sum-

mation in the wall-normal direction. This second approach is highly accurate

and the computational work requirement was smaller than thecomputational

work requirement for a fully spectral evaluation of the fluidvelocity field at the

center of the particle, which involves summing the Fourier-Chebyshev series.

2.3 Simulation Parameters

The results presented in this paper are relative to a shear Reynolds number of

Reτ = 150 based on the shear velocityuτ = 0.11775m s−1. The corresponding

average (bulk) Reynolds number isReb = 2100, whereub = 1.65 m s−1 is

the average (bulk) velocity. The size of the computational domain in wall

units isL+
x ×L+

y ×L+
z = 1885×942×300. This latter has been discretized in

physical space with 128×128×129 grid points (corresponding to 128×128

Fourier modes and to 129 Chebyshev coefficients in the wave space). This is

the minimum number of grid points required in each directionto ensure that

the grid spacing is always smaller than the smallest flow scale and that the

requirements imposed by the point-particle approach are satisfied. Indeed, in

the present flow configuration, the non-dimensional Kolmogorov length-scale,

η+
K , varies along the wall-normal direction from a minimum valueη+

K = 1.6 at

the wall to a maximum valueη+
K = 3.6 at the centerline (see Fig.2.1(a)).

The grid resolution in the wall-normal direction is such that the first collo-

cation point is atz+ = 0.05 from the wall, while in the center of the channel

△z+ = 3.7 [22]. Assuming that particle motions due to strain are negligible,

the two requirements explained above deal primarily with the size of the par-

ticle, which has to be much smaller than the grid cell to cope with the fact that

the velocityu used in Eq.2.6 is the (undisturbed) fluid velocity at the center

of the particle. Since this velocity is obtained by interpolation of the fluid ve-

locity in the neighboring points, accurate estimate requires that the grid cell

is significantly larger than the particle. The accuracy of the fluid flow simula-

tion, however, requires a grid cell significantly smaller than the fluid scales one

wants to solve: if the particles are much smaller than the smallest relevant flow

scales, than the point-particle restriction is satisfied. In the case of DNS, this

means that particles must be much smaller than the Kolmogorov length-scale

(dp ≪ ηK). In one-way coupling simulations, violation of the above restric-

tions on particle size may introduce significant errors. Forheavy particles in

gas flows(ρp/ρ f ≫ 1), however, the time scale of the particles is significantly

larger than the time scale of the small scales of the fluid: dueto their inertia, the
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Figure 2.1: The Kolmogorov length-scaleη+
K (a) and time-scaleτ+

K (b) as a
function of the wall-normal coordinatez+ in the channel flow atReτ = 150.

particles act as low-pass filters and are driven mostly by thelarge scales. The

error introduced by a small grid cell is not important and maybe neglected,

the only consequence being that the particles experience a local flow field with

smaller scales than the ones that are forcing the actual particles.

For the simulation, large samples of particles characterized by different

response times were considered. The response time is made dimensionless us-

ing wall variables, and the Stokes number for each particle set is thus obtained

asSt = τ+
p = τp/τ f , whereτ f = ν/u2

τ is the viscous timescale of the flow.

This characteristic time scale is proportional to the turnover time of the tur-

bulent eddies and it supplies a measure of the time availablefor eddy-particle

interaction. In this work we use inertial particles with three different magni-

tude: St = 5, 25 and 125. We remark that the characteristic timescale of the

flow changes depending on the specific value of the shear Reynolds number,

namely on the specific value of the shear velocity. In the present case, we have
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τ f = 1.13·10−3s. The non-dimensional value of the Kolmogorov time-scale,

τ+
K , ranges from 2.5 wall units at the wall to 12.5 wall units at the channel

centerline [22] (see Fig.2.1(b)).
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Figure 2.2: The streamwise fluid velocity profile in the turbulent channel flow
at Reτ =150.

Finally, we need a unit of time of the process in order to show the behav-

ior of the particles in comparison with the one of the flow. So we define the

crossing time (τct ) as the time that the fluid at the center channel (namely at

the maximum of the streamwise velocity profile, see Fig.2.2) takes to cross the

whole channel along the streamwise direction:

τct =
Lx

umax ·dt+
≃ 1885

17.5·0.045
≃ 108

[

t+
]

. (2.7)

As the simulation is carried out for 900t+, we can say that it takes 8,3τct .

2.4 Initial pairs arrangement

A single particle has three (translational) degrees of freedom in the three di-

mensional space. Differently, a pair of (point-)particleshas five degrees of

freedom in the physical space: three translations and two rotations. Here-

after we will take the orientation of the vectord(t) = d1(t)− d2(t) as the

orientation of the pair. In homogeneous isotropic turbulence particlespairs are

initially placed in the whole domain with random positions and random ori-

entations and all statistics are computed on all pairs, without any distinctions

on current or initial arrangement. This is possible becauseevery part of the

domain has the same probability to be affected at a certain time by turbulence

structures of the all scales. In a channel flow this is no more true, the small-
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est and biggest scales being confined in the boundary layers and in the center

channel respectively. So we have to take into account of thisnon-homogeneity

of the flow, calculating separate statistics for different regions of the domain

or for separate sets of particles. The first one is anEulerian approach and

consists in dividing the channel into slabs parallel to the walls and calculating

istantaneous separate statistics for each slab, considering only pairs that are

inside that slab at that time. This method provides a good undestanding of the

fluid motions in circumscribed channel’s regions but it doesnot take memory

of particle’s history. The second one is aLagrangian approach and consists

in releasing different sets of pairs in different specific regions of the channel

and computing separate statistics for each set, regardlessof their istantaneous

position. With this method particles are followed along their trajectories and

then a better understanding of pairs behaviour is provided.For this reason we

decide to use this latter approach in the present study.

Since the unique non-homogeneous direction in the channel flow is the

wall normal one, we decide to place particles pairs on planesorthogonal to

the z axes at the beginning of the simulation. The velocity gradient (shear)

du+
x /dz+due to the presence of the walls can be used as a measure of non-

homogeneity in order to identify wall normal locations at which release the

particles. As shown in Fig.2.3, we choose 7 planes of coordinatesz+ = 2, 6, 14,

37, 65, 100, 150. Initial locations are confined in the bottomhalf of the channel

because of the flow’s simmetry with respect to the centerline(z+ =150). For

each plane, we put three sets of pairs, oriented along the streamwise, spanwise

and wall normal direction (hereafter set = 1, 2 and 3 respectively), in order

to investigate the influence of turbulence structures (fluctuations) and macro-

scopic quantities (velocity gradient) on initial orientation. For a specificz+

coordinate of release, we place the first particle of each pair randomly inx and

y directions and the second particle spaced of one diameter from the first, ori-

ented as just explained. In this way the initial distance of each pair isd (0) =

0.34, 0.76 and 1.71 wall units for St = 5, 25 and 125 respectively and then pair

dispersion starts from the dissipation subrange for each Stokes number (see

Fig.2.1(a)).

Another important parameter to be chosen is the number of pairs for each

plane necessary not to affect too much statistics. To this aim, we placenp pairs

on each plane and we run 4 times atest simulation for 1 crossing time (t+/τct

= 1), using 4 different initial displacements (due to the random distribution

in x and y directions). We calculate the mean pair distance〈d (t)〉 for each

simulation and then we compute the mean of this four measures, 〈d (t)〉, in



26CHAPTER 2. PHYSICAL MODELLING AND NUMERICAL METHODOLOGY

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  0.2  0.4  0.6  0.8  1

z+

dux
+/dz+

Figure 2.3: The particles pairs are initially placed on 7 planes parallel to the
walls in the bottom half of the channel, oriented along the streamwise (set =
1), spanwise (set = 2) and wall normal (set = 3) directions. The velocity gra-
dient (shear) is used as a measure of non-homogeneity along the wall normal
direction.

order to have the root mean square of the four tests:

σu =
1
4

4

∑
i=1

(

〈d〉i −〈d〉
)2

. (2.8)

We find that fornp =25000,σu·100/〈d〉, namely the relative statistic error due

to the finite number of particles, remains under 5% during thefirst crossing

time (Fig.2.4). So this number of particles seems to be large enough not to

affect too much pair statistics. Conservatively, we decideto use a number of

particles 4 times larger in our simulations, then we track 100000 pairs for each

plane.
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Chapter 3

Results and Discussion

3.1 Single-particle Statistics

3.1.1 PDF of Single-particle Position

The main purpose of this section is to present single particle statistics of in-

ertial particles. Indeed, the first step to understand the behavior of the system

described above is to know the particles positions history of each set during

the simulation. First of all we show some snapshots of particles positions at

different times, in order to give a qualitative idea of the dispersion process.

We choose the two sets with initial wall normal locationz+
0 = 2 andz+

0 = 150

(Fig.3.1and3.2).

Since we want also a quantitative measure of the phenomenon,we com-

pute the single particle position Probability Density Function (PDF) along wall

normal direction for different times, namely the probability of a particle to be

at a certainz+ coordinate. PDF displays the istantaneous distribution ofeach

swarm, concentrated on ax− y plane at the beginning of the simulation. This

is the most basic tool to check particles dispersion into thechannel.

Fig.3.3shows the PDF at different crossing times respectively for the planes

at initial positionsz+
0 = 150 (center channel),z+

0 = 37 andz+
0 = 2 (close to the

wall). PDFs displayed refer to St = 25. The trends for particles with different

inertia are similar to these (see Fig.3.4). PDFs shown in figures are related to

the set of pairs initially orientated along streamwise direction. Those related

to the other 2 sets (along spanwise and wall normal directions) are very simi-

lar to these. This is because first particles positions of each pair are the same

for all three sets, and second particles positions are very close to each other,

maximum at the distance of a particle diameter, that is very small compared to

the channel dimensions.

29
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Figure 3.1: Some snapshots of particles istantaneous distribution at several
crossing times (t+/τct = 1/4, 1, 3, 8). Particles are released on a plane at
z+
0 =150 (center of the channel). St = 25.
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Figure 3.2: Some snapshots of particles istantaneous distribution at several
crossing times (t+/τct = 1/4, 1, 3, 8). Particles are released on a plane atz+

0 =2
(near the wall). St = 25.
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released on a plane atz+
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Figure 3.4: The PDFs for St = 5, 25 and 125 att+/τct = 1/4 (a) and 4 (b).
Particles distribution is almost the same for the three different particle sizes,
expecially at large times (b). An optimum for the segregation rate at the walls
is found for St = 25. Particles are originally placed atz+

0 = 150.

In Fig.3.3(a) we can see how particles released in the center of the channel

move as in a diffusion phenomenon, observable from the parabolic shape of

the PDF for 0< t+/τct < 1 in log scale. Aftert+/τct = 2 - 4, PDF is almost flat

along wall normal direction, which means that particles distribution is very

homogenous. Aftert+/τct = 8 a significant wall segregation is appreciated.

From Fig.3.3(c) we can notice that particles released on a plane close to the

wall move in a different way. Most of them remain very close tothe wall for a

long period, while a small quantity of particles moves slowly to the other wall.
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After t+/τct = 8 most of the particles are still near the originalz+coordinate,

so distribution along wall normal direction is very nonhomogeneous. Finally,

Fig.3.3(c) shows that particles released on an intermediate plane between a

wall and the center channel have a mixed behavior between thetwo previous

cases. Initially a diffusion phenomenon is appreciated around thez+coordinate

of release. Later most of particles move to the nearest wall and they start there

a segregation. Other particles move to the opposite wall. Finally particles

homogeneity is at an intermediate level between the two previous cases.

An parametric model to predict PDF in time may be useful. To this aim

it’s possible to fit data of every particle set with a specific parametric function

and extract a time-dependent law for the parameters. From Fig.3.3 it’s clear

that data for particles originally placed at the centerlinecan be well fitted by

a gaussian function, because of their symmetric diffusive behavior, while data

for particles that start near the wall can be better fitted by an exponential func-

tion; this is evident from the linear trend of the PDF’s tailsin log scale. Instead,

it’s more difficult to find an appropriate fitting function forthe other swarms,

because of their mixed behavior between the two previous cases. In the next

section we will try to find a parametric model only for the two borderlines,z+
0 =

2, 150.
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Figure 3.5: The variance of the gaussian distribution is shown for 1< t+/τct <
3. Particles are originally placed atz+

0 = 150.

3.1.2 Parametric Model for Particles Dispersion

Particles released atz+
0 = 150

A gaussian function is chosen to fit PDFs of particles originally put atz+= 150:
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f (x) =
1√

2πσ2
exp

[

−(x−µ)2

2σ2

]

. (3.1)

In the previous equation,x = t+/τct , σ2 is the variance andµ is the mean

value. It’s easy to understand thatσ2 is necessary and sufficient to describe

the phenomenon; in fact, because of its symmetry, the mean value µ is always

more or less equal to 150. In Fig.3.5 it’s shown the variance for different

crossing times. At each time, fit is done only for the range of data belonging

to the gaussian distribution, disregarding phenomenon of wall segregation. As

we can see, variance increases piecewise linearly, and it reaches an inflection

point because of the presence of the walls. After the second crossing time the

shape of the PDF departs increasingly from a gaussian function and after the

third crossing time no longer makes sense to fit data.

It’s interesting to notice the presence of a transient, since the beginning of

the simulation untilt+/τct = 1.5, in which the variance increase rate is almost

the same for the three Stokes numbers. This is also observable in Fig. 3.4(a),

in which PDFs att+/τct = 1/4 for the three different particle sizes is displayed.

After that, particle inertia plays a predominant role on thedispersion, this latter

becoming the faster the smaller Stokes number. This is because the smaller the

particles the better they follow the small vortices, which carry them from the

center region of the channel to the walls (turbophoresis process). Once reached

the walls, there’s an optimum for the segregation rate, which is found to be the

highest for St = 25, according with previous studies (see Fig.3.4(b)). This is

because particles with St = 25 have a relaxation time of the same order of

the fluid time scale near the walls, so they follow best the structures in the

boundary layer and they are trapped near the wall more than the others.

Finally, we fitted the variance’s trends, in order to get a parametric model

for the dispersion process. Fit is done using a piecewise linear function for

each Stokes. In this way the separation between the initial transient and the

faster regime of dispersion is pointed out.

Particles released atz+
0 = 2

If we chose a gaussian function to fit data for the set startingfrom the cen-

terline, we surely need a different one for particles released near to the wall.

Indeed, as mentioned above, most of this latter group of particles remains at a

z+coordinate very close to the initial one. They are as trappedin a tank in the

boundary layer that releases a little quantity of particlesat a time in the chan-

nel. Linear trends of PDF’s tails in log scale suggest us to use an exponential
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function for the fit:

f (x) = k ·exp[−x/T ] . (3.2)

In the previous equationx = t+/τct . Also here, at each time fit is done only

for the range of data belonging to the exponential distribution, disregarding

phenomenon of wall segregation. We make this choice in orderto predict with

a very simple model particle dispersion from the boundary layer to the rest of

the channel. Unlike the previous case, here we need both parametersk andT

to build the model.

In this case PDF’s trend is exponential until the end of the simulation,

so we fit data fromt+/τct = 1 to 8. In Fig. 3.7 values of T and k obtained

from PDF’s fit are shown together with their fits in time. T is a misure of

the slope of PDF’s tail in log scale: the bigger T the lower theslope. The

value of T is more or less the same for the three Stokes numers up to t+/τct

= 2. This is also observable in Fig.3.9, in which the PDF att+/τct = 1

for the three different particle sizes is displayed. After that, particle inertia

plays a predominant role on the dispersion, this latter becoming the faster for

St = 25. In fact, as explained above, this kind of particles follows best the

small vortices in the boundary layer and then they are more easily injected

in the center of the channel. We notice how the three values ofk converge

within t+/τct = 4. So, fixed the time (aftert+/τct = 4), the main difference

between the three cases is the value of T: the bigger T the lower the slope

(see Fig.3.8), the greater particle omogeneity along wall normal direction, the
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Figure 3.7: Data ofT and k and relative time-dependent laws obtained by
interpolation are displayed. Particles are released atz+

0 = 2 (exponential distri-
bution).

greater particle concentration at the second wall. In fact,after an infinite time,

we expect a steady state in which most of the particles are entrapped at the

two walls - with the same concentration - and only few of them move along

the channel at the same rate up and down, keeping the overall homogeneous

distribution in the central region. Therefore, PDF tail’s slope is a misure of

the diffusion rate alongz+ coordinate; with this view we can apply Fick’s first

law to describe qualitatively the phenomenon. The law relates the diffusive

flux to the concentration field, by postulating that the flux goes from regions

of high concentration to regions of low concentration, witha magnitude that is

proportional to the concentration gradient (spatial derivative):

J = −D
∂φ
∂ z

. (3.3)

J is the diffusion flux,D is the diffusion coefficient or diffusivity,φ is the
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concentration andz is the position. In this case, J is the flux of particles along

wall normal direction,φ is particle concentration at a certainz+ position and

the gradient∂φ
∂ z is related to 1/T, being maximum at the beginning of the simu-

lation and going to zero after an infinite time (see Fig.3.8). The diffusivity D

is probably related to the Stokes number both the flow characteristics.
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Figure 3.8: The trend of 1/T (values of T are obtained fitting the PDFs). 1/T
is the slope of PDF’s tail in logarithmic scale and it’s also proportional to the
term ∂φ

∂ z in Fick’s first law. We expect that 1/T goes to zero after an infinite
time, which corresponds to an homogeneous particle distribution in the central
region of the channel.

Finally, we can notice that at a certain time PDF for St = 25 is lower than

the other two in the central region. This accords with the lower value of k for

St = 25 (aftert+/τct = 4) and with the maximum of concentration to the walls.

This means that this kind of particles tends to stay in the boundary layers rather

than in the central region.
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Figure 3.9: Comparison between the PDFs for St = 5, 25 and 125,at two dif-
ferent times. Att+/τct = 1 (a) the three trends are very similar, while att+/τct

= 8 (b) a different slope for different Stokes numbers is observed. Particles are
originally placed atz+

0 = 2.

If we look at the snapshots of Fig.3.1 and 3.2, we notice a similarity

with the pictures of smoke expelled by a chimney and by a fire inFig. 1.10.

In both cases there’s an unidirectional strong pressure gradient that drives the

second phase (smoke, steam or particles swarms) in the first phase (air) and

the presence of a surface (channel walls or ground) influences the flow with a

shear.
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3.2 Pair dispersion

3.2.1 Statistics

In this section the pair dispersion statistics are presented. For semplicity we

will show results only for St = 25 and then we will discuss any deviations for

lighter and heavier particles (St = 5 and 125 respectively).

As mentioned in Sec.1.4.1, in isotropic homogenous turbulence Richard-

son’s law predicts the scaling< d2 (t) >∼ t3 in the inertial subrange, where

d (t) is the pair distance at timet. Thus, the first quantity we plot is the mean

square pair distance
〈

d2 (t)
〉

for different initial wall normal locationsz+
0 and

different initial orientations (Fig.3.10). In Sec.1.4.1we defined the inertial sub-

range such thatηK ≪ d (t) ≪ L, whereηK ≡
(

ν3/〈ε〉
)1/4

is the Kolmogorov

length-scale andL is the integral length-scale. We fix upper limit of inertial

range atL = h = 150, that is the half-height of the channel, and it is indipen-

dent of the initial position of the plane, while lower limit is fixed at 10·η+
K

and it varies along wall normal direction becauseη+
K varies. In this way it is

possible to show the exponential trend of dispersion into the inertial subrange.

To this aim, we chose straight lines of different slopes and plotted them on the

same figure.

In Fig.3.11 the varianceσ2 = ∑N
i=1(di −〈d〉)2/N is used as error bar to

quantify deviation of separation of each pair from the mean value,N being the

number of pairs for each set.
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Figure 3.11: The varianceσ2 = ∑N
i=1 (di −〈d〉)2/N is used as error bar to

quantify the deviation of separation of each pair from the mean value.
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Figure 3.10: The evolution of the mean square pair distance< d2 (t) > for
particles pairs released atz+

0 = 150, (center of the channel),z+
0 = 37 andz+

0 = 2
(close to the wall) oriented along the streamwise, spanwiseand wall normal
direction respectively (set = 1, 2 and 3 ). Stokes number = 25 (intermediate
size). Slopes are plotted just as trendlines (no data fit) in the inertial range
(located between the horizontal lines).
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In Fig.3.12 a comparison between St = 5, 25 and 125 is shown for pairs

initially oriented along streamwise direction. In general, particles with St =

125 separate slower than those with St = 25, while lighter ones separate at the

same speed or faster (see trendlines in the figure).

Since some pairs separate rapidly while others remain closetogether, slowly

separating pairs (which remain in the dissipative subrange) and rapidly separat-

ing pairs (which approach the integral scales)contaminate the statistics in the

inertial subrange. To disentangle the effects of differentscales, an alternative

approach, based onexit time statistics, has been proposed [2]. This consists of

fixing a set of thresholds,dn = ρnd0, whereρ > 1 andn = 1,2,3, ..., and then

calculating the timeT taken for the pair separation to change fromdn to dn+1.

By averaging over the particle pairs, we obtain the mean exittime,
〈

Tρ (dn)
〉

,

or meandoubling time if ρ = 2. Formally, we are calculating the first passage

time. The advantage of this approach is that all pairs are sampled at the same

scales and that finite Reynolds number effects are less important. In Fig.3.13

the exit time statistics calculated with this method are shown.

In Fig.3.14 we show the timeT taken for the pair separation to change

from d0 to dn+1. We nameT the total exit time, to distinguish it from the

previous statistic. For each figure we draw the trendlines for the inertial sub-

range; these latter are proportional tod2/α , α being the exponent we chose

for the slopes in Fig.3.10. We also show the straight line proportional tod2/3,

which corresponds to Richardson’s law, and that one proportional tod for set

3 at small times near the wall. Finally, in Fig.3.15the total mean exit time for

particels withSt =125 is shown, together with the straight line proportional

to d2/6. As evident from the good agreement between dispersion trends and

trendlines, this latter statistic confirm very well resultsobtained from the first

one (Fig.3.10).

We now consider the statistics of the relative velocity of the particle pairs

during the separation process and which we denote asur (t) = u1(t)−u2(t).

The relative velocity statistics are of interest because they provide information

on the rate of separation of the particle pairs. We consider the statistics of

the relative velocity projected in the direction of the separation vector, the

longitudinal component. The former is given by

uq =
d
dt

[d (t)] = ur · d̂, (3.4)

whered̂ = d/d. Following the exit time method described above, we cal-

culate the relative velocity at fixed scales in order to achieve uncontaminated

inertial subrange statistics and which we term theexit velocities. We compute
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Figure 3.12: The evolution of the mean square pair distance< d2 (t) > for
particles pairs released atz+

0 = 150, (center of the channel),z+
0 = 37 andz+

0 =
2 (close to the wall) oriented along the streamwise direction. Comparison
between St = 5, 25 and 125. Slopes are plotted just as trendlines (no data fit)
in the inertial range.
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the value of the relative velocity componentuq (d) whenever a particle pair

has a separation within a specified logarithmic shell of radiusd = dn (1±0.1),

with dn = ρnd0. This differs from the method we used to calculate the exit

times above as here we are calculating not just the velocity at the first passage

but also at all subsequent passages. In Fig.3.16we plot the mean longitudinal

exit velocity,〈uq (d)〉 as a function of the absolute separationd.
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Figure 3.15: Thetotal mean exit time 〈T (d)〉 for pairs released atz+
0 = 150 ori-

ented along the streamwise, spanwise and wall normal direction respectively
(set = 1, 2 and 3). Stokes number = 125;ρ = 1.5. Slopes are plotted just as
trendlines (no data fit).
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Figure 3.13: The mean exit time
〈

Tρ (d)
〉

for pairs released atz+
0 = 150, (cen-

ter of the channel),z+
0 = 37 andz+

0 = 2 (close to the wall) oriented along the
streamwise, spanwise and wall normal direction respectively (set = 1, 2 and 3
). Stokes number = 25 (intermediate size);ρ = 1.5.
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Figure 3.14: Thetotal mean exit time for pairs released atz+
0 = 150, (cen-

ter of the channel),z+
0 = 37 andz+

0 = 2 (close to the wall) oriented along the
streamwise, spanwise and wall normal direction respectively (set = 1, 2 and 3
). Stokes number = 25 (intermediate size);ρ = 1.5. Slopes are plotted just as
trendlines (no data fit).
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Figure 3.16: The mean longitudinal exit velocity
〈

u|| (d)
〉

as a function of
the separationd for pairs released atz+

0 = 150, (center of the channel),z+
0 =

37 andz+
0 = 2 (close to the wall) oriented along the streamwise, spanwise and

wall normal direction respectively (set = 1, 2 and 3). Stokesnumber = 25
(intermediate size);ρ = 1.5. Slopes are plotted just as trendlines (no data fit).
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3.2.2 Discussion

The first observation we do regarding Fig.3.10is that the slopes of trendlines in

the inertial subrange are much steeper than those in homogeneous isotropic tur-

bulence, expecially for the swarm initially placed at the centerline (z+
0 =150).

In fact we find a trend proportional tot9 and not tot3, as predicted by Richard-

son’s law. Focusing on this set of particles, we note that they leave the cen-

ter region and spread to the walls exploring channel’s regions with shear’s

value progressively higher (see Fig.3.17), namely they go through an increas-

ingly nonhomogeneous flow (see also Sec.3.1). Thus, first hypothesis about

disagreement with Richardson’s law is that the shear someway increases pair

separation. Indeed the main difference between isotropic homogeneous tur-

bulence and the channel flow is that in this latter the shear introduces a new

time and length scale in the flow, and consequently also in thescaling of pair

dispersion. Here below we qualitatively discuss this effect and we also present

several measures in order to quantify the role of the shear compared with that

one of turbulence fluctuations on dispersion process.
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Figure 3.17: The mean sheardu+
x /dz+ along the wall normal direction in the

channel flow.

Still looking at Fig.3.10, the closer to the wall the location of particles

release the more different behavior between set = 1, 2 and 3 isappreciated.

For all the cases, pairs of set = 3 separate faster than those of set = 2, and

the latter separate faster than those of set = 1. This different behavior can be

justified by the different effects of fluid motions on the pairs at the first stages
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of simulation. For example, for particles initially placedon a plane atz+
0 =

2 (close to the wall), pairs initially oriented along wall normal direction are

affected above all by the action of the shear and in second order by the effect

of the quasi-streamwise counter-rotating vortices which populate the near wall

region (see Sec.1.2for details). Instead pairs initially oriented along spanwise

direction are affected only by the effect of the counter-rotating vortices and

finally pairs initially oriented along streamwise direction are not affected by

any of these two fluid structures, but only by the local turbulence fluctuations.

This is no more true for particles released at the centerline(Fig.3.10(a)): here

initial orientation affects almost for nothing pair dispersion. In fact, as we

can see in Fig.3.17, the greater the distance from the walls the less the shear

value, being this latter zero at the centerline. This means that the greater the

distance from the walls the more turbulence fluctuations become the only cause

of separation and in the center of the channel we expect a particles behavior

analogue to that one in homogeneous isotropic turbulence [22].

For pairs released atz+
0 =150, (center channel, Fig.3.10(a)) dispersion

trend is proportional tot9 for all 3 sets, while it decreases tot5 for the swarm

initially placed atz+
0 = 37 (Fig.3.10(b)). Looking at pairs initially put close to

the wall it is evident that the slope is very different for the3 sets: it goes from

∼ t6 for set = 1 down to∼ t2 for set = 3 (Fig.3.10(c)). This difference is due

to the high shear near the wall, which imposes substantial differences on fluid

streamwise velocity also for small increments along wall normal direction. So

particles pairs initially oriented alongz axis are affected by the shear from the

first instants of simulation. If they were tracers, they follow perfectly the mo-

tion of fluid at their positions; for instance, consider two particles spaced of

δ alongz at timet = 0. If we call S = du+
x /dz+ the shear andu+

1 andu+
2 the

streamwise fluid velocity components at the two particles positions, then the

quadratic pair distance at a certain timet = t̃ will be:

d2 (t = t̃) = δ 2 +
∣

∣u+
1 t̃ −u+

2 t̃
∣

∣

2
= δ 2 +

[∣

∣u+
1 −u+

2

∣

∣ t̃
]2

≃ δ 2 +[(S ·δ ) t̃]2 ≃ S2δ 2t̃2, (3.5)

whereS = S |z+
1
∼=z+

2
, with the hypothesis thatδ 2 ≪ [(S ·δ ) t̃]2. This result is

in agreement with the slope∼ t2 shown in Fig.3.10just above trend of set = 3.

This means that even if in this study we are not tracking tracers but inertial par-

ticles, the difference due to drag and inertia forces (the only ones we consider

active on the particles) is negligible at the first stages, also because particles
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velociticies are initialized with fluid velocities at theirinitial positions. Instead,

pairs of set = 1 and 2 are initially affected only by turbulentfluctuations and

since shear effect is dominant on these latter for low valuesof z+, this pairs

take more time to wander out of alignment fromx andy axis respectively, so

that they can be affected by differents values of streamwisevelocity and start

a faster separation.

From these observations we can infer that the turbulence fluctuations and

the shear play two different roles in space and time regarding pair dispersion.

According with Richardson’s hypothesis, for which eddies of scalel ∼ d (t)

are most effective in the process of dispersion, the small fluctuations are re-

sponsable of separation above all in the dissipation subrange, while the shear,

that is a mean quantity, acts on the bigger scales (inertial subrange) and then

it becomes dominant at large time. In Fig.3.18we plot a comparison between

the sheardu+
x /dz+ and the inverse of the Kolmogorov time-scaleτK , in or-

der to show that in the center channel the small turbulence fluctuations are

predominant on the shear and vice versa at the walls.
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Figure 3.18: Comparison between the sheardu+
x /dz+ and the inverse of the

Kolmogorov time-scaleτ+
K . In the center of the channel the small turbulence

fluctuations are predominant on the shear and vice versa at the walls.

In Fig.3.19(a) we compare the mean square distance
〈

d2
〉

for particles re-

lased atz+
0 = 150 with its three components

〈

d2
x

〉

,
〈

d2
y

〉

and
〈

d2
z

〉

. At small times

(t+/τct < 1), corresponding to the dissipation subrange,
〈

d2
x

〉

≈
〈

d2
y

〉

≈
〈

d2
z

〉

,

but at larger times (2 <t+/τct < 3), corresponding to the inertial subrange, we

observe that
〈

d2
〉

≈
〈

d2
x

〉

∼ t9. This means that most of the pairs have sep-
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arated so much that at a certain time the two particles of eachpair perceived

very different values of streamwise velocity. For instance, the first particle has

segregated at a wall while its twin is driven by the flow at center of the chan-

nel. Therefore, inertial subrange of turbulence is contaminated by the effect of

the shear and the two particles of most of the pairs decorrelate before reaching

it. In Fig.3.19(a) particles are relased atz+
0 = 150 oriented along streamwise

direction. A similar behavior was found for other wall normal locations and

initial orientations.
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Figure 3.19: The mean square pair distance
〈

d2
〉

compared with its three com-
ponents:

〈

d2
x

〉

,
〈

d2
y

〉

and
〈

d2
z

〉

. At small times (t+/τct < 1),
〈

d2
x

〉

≈
〈

d2
y

〉

≈
〈

d2
z

〉

. (a) At larger times (2 <t+/τct < 3), corresponding to the inertial sub-
range,

〈

d2
〉

≈
〈

d2
x

〉

∼ t9 and
〈

d2
z

〉

∼ t6. Statistics are calculated on the all
pairs. Particles are relased atz+

0 = 150 oriented along the streamwise direction.
A similar behavior was found for other wall normal locationsand initial ori-
entations. (b) At larger times (t+/τct > 4),

〈

d2
〉

≈
〈

d2
x

〉

∼ t7. Statistics are
calculated only on the pairs that remain confined in the center of the channel,
in the slab 145< z+ < 155. The fluctuating trends of the lines at the end of the
graph is due to the small number of pairs still within the verythin slab at long
times. Slopes are plotted just as trendlines (no data fit).

We can try to reduce the action of the shear calculating the mean square

separation
〈

d2
〉

of particles released at the center channel and only for pairs
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that remain within a slab of flow symmetric to the centerline,so that they are

exposed at smaller differences of streamwise velocity. It seems that the thinner

the slab the slower the dispersion, as expected. We can also fit this trends with

the exponential functionf (t) = tα in order to get a more accurate estimate of

the exponentα in the inertial subrange.
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Figure 3.20: The exponentα of the slope of
〈

d2
〉

in the inertial subrange for
particles initially placed at the centerline (z+

0 =150) and for different slabs of
statistics computation. The shear is superimposed for comparison purposes.

In Fig.3.20values ofα are shown at the limitz+ coordinate for the corre-

sponding slab. For instance, the value ofα at z+= 20 is the exponent obtained

calculating statistics betweenz+= 20 andz+= 280. A similar trend for the

shear and the exponentα is found fromz+= 0 to z+= 90 (monotonic decreas-

ing). After that an increase ofα is appreciated, even if this latter is not so

reliable, because of the fluctuating statistics values due to the small number of

pairs still within the very thin slabs at long times.

This confined statistics allowed an evaluation of shear influence on pair

dispersion. The exponentα reaches the minimum value of 5.5, this latter being

much less than 8.7 (obtained with statistics over the whole channel). However,

the trend is still rather far from Richardson’s one. It is interesting to note that

at large times
〈

d2
x

〉

becomes dominant even when statistics are confined very

close to the centerline (Fig.3.19(b)). This means that pairs separate above all

along streamwise direction even if the shear is almost null.This behavior is

also found for all slabs of different thickness, namely whenparticles are both

affected by turbulent fluctuations and by shear of differentmagnitude. This

results suggest us that even if in the center channel some flow’s statistics are
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very similar to those in a homogeneous isotropic flow [22] and the shear is

almost null, there must be some other causes for the different behavior in terms

of pairs dispersion, probably because of the non-zero mean velocity (along

streamwise direction) and because of the turbophoresis, that acts mainly in the

nonhomogeneous wall normal direction. In Fig.3.19(b) the mean square pair

dispersion and its three components are shown for statistics confined to the

thinner slab (145< z+ < 155).

As mentioned above, thetotal exit time provides a good measure of pair

dispersion, in agreement with the trend obtained calculating
〈

d (t)2
〉

(see

Fig.3.10). This agreement is found because every exit time refers to the initial

time (t = 0), when particles of each pair were very close to each other and

every pair was placed at the same wall normal coordinate. This is no longer

true in the computation of theexit time (Fig.3.13), for which we calculate the

average time taken for the pair separation to change from a threshold to the

next one. This statistic does not refer to the initial separation and location of

each pair and then it is affected by the istantaneous position of the particles.

Hence the reasons of the non-monotonous trend of
〈

Tρ (d)
〉

are not completely

understood. Looking for instance at Fig.3.13(a), we notice that when the graph

reaches its first local minimum value, i.e. atd ∼= 20, the effect of the shear is

predominat and
〈

d2
〉

≈
〈

d2
x

〉

, as clearly visible in Fig.3.19. This means that at

the eighth threshold, namely atd8 = ρ8d0
∼= 19.6, particles of each pair are al-

most completely decorrelated and so an explanation for the local maximum at

d ∼= 150 and the other local minimum atd ∼= 500 is not easy to find. A similar

discussion can be provided for themean longitudinal exit velocity (Fig.3.16).

A previous work by Celaniet al. [7] reveals results very similar to our.

They superimposed an average linear shear and a turbulent fluctuating field

on a two-dimensional domain, in order to study the effects onthe energy

spectrum. They illustrate the physical mechanisms in termsof the motion

of Lagrangian particles. Their results are shown in Fig.3.21(a) and3.22(a).

At small times, the Richardson prediction is recovered and the anisotropy in-

duced by the shear is negligible. As the separation becomes larger compared

to the characteristic length scale of the shear, the latter affects the trajectories

and
〈

d2
〉

≈
〈

d2
x

〉

≫
〈

d2
y

〉

, where the subscripty refers to the component or-

thogonal to the shear (that we namez). In particular, in this range of scales,
〈

d2
x

〉

∼ t9 and
〈

d2
y

〉

∼ t7. Similarly, we find
〈

d2
〉

≈
〈

d2
x

〉

∼ t9 in the inertial

subrange, even if for a smaller range of time (see slope in Fig. 3.21(c)). Wall

normal component cannot reach the inertial subrange beforebeing affected by

the shear and it follows
〈

d2
z

〉

∼ t6 at the end of the dissipation subrange. Fi-
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nally, we do not observe any plateau around the slope∼ t3 in the dissipation

subrange. In Fig.3.22(a) we plot the quantityS2(r,0), that Celaniet al. say

being proportional to ”the time for two particles, initially coinciding, to reach

a separationr ”, exactly what we nametotal exit time. Thus we can compare

S2 (r,0) with
〈

Tρ (d)
〉

, that is displayed in Fig.3.22(b). As mentioned above,

this statistic shows theuncontaminated behavior of the particles at several pair

distances. Indeed the plateau at 2/9 ≈ 0.22 in the inertial subrange in well

appreciated in the slope (Fig.3.22(c)).
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Figure 3.21: Comparison between present results and results of Celaniet al.
[7] (a) At small times, Celaniet al. recover Richardson prediction, while the
anisotropy induced by the shear is negligible. As the separation becomes larger
compared to the characteristic length scale of the shear, the latter affects par-
ticles trajectories and

〈

d2
〉

≈
〈

d2
x

〉

≫
〈

d2
y

〉

, where the subscripty refers to the
component orthogonal to the shear (that we namez). In this range of scales,
〈

d2
x

〉

∼ t9 and
〈

d2
y

〉

∼ t7. (b) Similarly, we find
〈

d2
〉

≈
〈

d2
x

〉

∼ t9 in the inertial
subrange, even if for a smaller range of time. The wall normalcomponent can-
not reach the inertial subrange before being affected by theshear and it evolves
as

〈

d2
z

〉

∼ t6 at the end of the dissipation subrange. Slopes are plotted just as
trendlines (no data fit). (c) No plateau is observed around the slope∼ t3 in the
dissipation subrange.
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Figure 3.22: Comparison between present results and results of Celaniet al.
[7]. In Celaniet al. the quantityS2 (r,0), shown in panel (a), is proportional to
the time for two particles, initially coinciding, to reach aseparationr, which
is exactly thetotal meanexit time, shown in panel (b). Slopes are plotted just
as trendlines (no data fit). This statistic shows theuncontaminated behavior of
the particles pairs at several inter-particle distances. The plateau of the slope
at a value of 2/9≈ 0.22 in the inertial subrange in well appreciated (c).
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Chapter 4

Conclusions

In this work we analyzed the dispersion of micrometer size inertial particles

by examining the behavior of particles pairs injected in a non-homogeneous

and anisotropic turbulent shear flow. Pseudo-spectral Direct Numerical Sim-

ulation was carried out to calculate the flow field at frictionReynolds number

Reτ =150 in a 4cm - high channel. Lagrangian tracking was used to describe

the motion of large swarms of particles with different inertia, precisely with

sizedp
∼= 45, 100 and 230µm, corresponding toSt = 5, 25 and 125 respec-

tively.

First, we showed time-dependent PDFs of single-particle distributions in-

side the flow domain. We noticed that the dispersion of the particles follows

different laws for swarms injected at different wall normallocations. In par-

ticular, particles released at the center of the channel spread to the walls with a

Gaussian behavior, while most of the particles injected near the walls remain

very close to their initial wall normal coordinate. We fitteddata of these two

swarms and we created a simple parametric model to predict particles spread-

ing from the injection planes to the rest of the channel. Thismodel can be

applied in a lot of real situations, such as for studies of smoke dispersion by a

chimney or by a fire in the atmospheric boundary layer.

Then, we showed particle pair dispersion, through both fixed-time and

fixed-scale statistics, the latter used to display anuncontaminated inertial sub-

range, i.e. not affected by the different separation rate ofpairs that separate

slowly and those that separate rapidly. We found a very strong deviation from

Richardson’s scaling∼ t3 in the inertial subrange in isotropic homogeneous

turbulence. Indeed, pairs separate proportionally totα , whereα varies from 4

up to 9 depending on their Stokes number, wall normal coordinate of injection

and initial orientation. We justified this trends by the action of the shear, but we

59
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foundα >3 even when statistics are confined around the nearly-homogeneous

central region of the channel. So there must be other reasonsfor this devia-

tion from Richardson’s law, probably due to the non-zero mean velocity profile

along streamwise direction or to the turbophoresis. We compared our results

with results of Celaniet al.[7]. They superimposed an average linear shear and

a turbulent fluctuating field on a two-dimensional domain, inorder to study

the effects on the energy spectrum. They illustrate the physical mechanisms

in terms of the motion of Lagrangian particles. We both foundthat at small

times, the anisotropy induced by the shear is negligible, but as the separation

becomes larger compared to the characteristic length scaleof the shear, the

latter affects the trajectories and
〈

d2
〉

≈
〈

d2
x

〉

≫
〈

d2
z

〉

. In particular we both

obtained
〈

d2
x

〉

∼ t9 in the inertial subrange.

Finally, we propose some future developments. The reasons of the de-

viation of pair dispersion from Richardson’s law have to be found. To this

aim, tracer particles should be tracked, so that they samplethe phenomenon

of dispersion without any low-pass filter due to inertia, providing a more ac-

curate action of the small-scales of turbulence on pair separation. After that,

the parametric study in the(Reτ ,St) space should be expanded, in order to get

a more complete collection of results at several configurations of the system

fluid turbulence-inertial particles. Finally, the filtering effects of the flow field

on particle pair dispersion have to be studied, to get an estimate of the errors

introduced by Large Eddy Simulations.
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