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Abstract

Particle transport, dispersion, and segregation in teriiuflows are highly

nonuniform and intermittent phenomena which are recoghieedepend on
the local dynamics of turbulence structures. A sound unaedsing and a
thorough characterization of the mechanisms controlliadigle transfer and
segregation are of fundamental significance for a numbexabirtological and
environmental applications (e.g. mixing, combustion,udegration, spray dy-

namics, pollutant dispersion, cloud dynamics...), andireqdeep comprehen-
sion of the interactions between particle dynamics andutart transport and
mixing. Since inertia is a low-pass filter, particles regpaelectively to tur-

bulence fluctuations so that the system fluid turbulenceiatearticles may

give rise to peak phenomena such as long-term local pageadamulation or

segregation. In the specific case of boundary layers, thisléo irreversible
particle segregation at the wall.

In this work we analyze the dispersion of micrometer sizetiakparticles
by examining the behavior of particle pairs injected in a-homogeneous,
anisotropic turbulent shear flow. The specific physical [@wbconsidered for
the study is fully-developed gas-solid turbulent chanrel/fIPseudo-spectral
Direct Numerical Simulation is carried out to calculate flosv field at bulk
Reynolds numbeRe ~2250 (corresponding to a friction Reynolds number
Re; =150) in a 4cm - high channel. Lagrangian tracking is used to describe
the motion of large swarms of particles with different imerguantified by the
dimensionless particle response time, referred to as Stokmber,S. The
particle-to-fluid density ratio i©(10°). Particles of sizel, = 45, 100 and 230
umwere considered, correspondingRo= 5, 25 and 125 respectively.

The main object of this study is to analyze the influence dfilbo¢an shear
and small-scale turbulent fluctuations on the dispersiopasficles. In par-
ticular, we will present time-dependent Probabilty Dgnsitinctions (PDFs)
of single-particle distributions inside the flow domain ame will propose a
simple parametric model to predict particle spreading. Wekalso present
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particle pair dispersion statistics. In particular we wgitlow both fixed-time
and fixed-scale statistics, the latter being used to highlige presence of an
uncontaminated inertial subrange not affected by different particle p&ip-s
aration rate. We will analyze these statistics systemtida an effort to
isolate large-scale shear-induced effects from smaledcabulence-induced
ones. Shear-induced effects are expected to predomin#te imear-wall re-
gion, where large velocity gradients occur, whereas sewalle fluctuations
are expected to predominate in the nearly-homogeneousatesgion of the
channel.



Sommario

Il trasporto, la dispersione e la segregazione di parédellflussi turbolenti
sono fenomeni fortemente disuniformi ed intermittenti cliygendono dalle
dinamiche locali delle strutture di turbolenza. Una solid@oscenza e una
caraterizzazione approfondita dei meccanismi di comtrdiltrasferimento e
segregazione particellare sono di primaria importanzavpste applicazioni
tecnologiche ed ambientali (come ad esempio il mescolankEntombutione,
la depolverazione, spray, dispersione di inquinanti, ndetle nuvole...), e
richiedono una profonda comprensione delle interaziani tnoti delle par-
ticelle e il rimescolamento turbolento del fluido. Siccortireelrzia & un filtro
passa-basso, le particelle rispondono selettivamemdattuazioni turbolente
cosicché il sistema flusso turbolento - particelle inerpaksono dare luogo
a fenomeni di picco come accumulazioni o segregazioni ilatigbarticelle
a lungo periodo. Nel caso specifico di strati limite, cio poat segregazioni
irreversibili delle particelle a parete.

Nel presente lavoro analizziamo la dispersione di patédekerziali mi-
crometriche studiando il comportamento di coppie di peléciniettate in
un flusso turbolento hon omogeneo ed anisotropo dotato dir.sHeprob-
lema fisico specifico considerato nello studio € quello di ussib turbolento
gas-solido completamente sviluppato in canale. Il campwmatio del fluido
e calcolato per mezzo di simulazioni numeriche dirette (PN@diante un
metodo pseudo-spettrale, in un canale alto 4 cm e a numereyaidds bulk
pari aRe ~2250 (corrispondente ad un friction Reynolds paRea =150).
Si usa un tracciamento Lagrangiano per descrivere il motoiaierosi sciami
di particelle dotate di differente inerzia, quest’ultimaantificata dal tempo di
risposta adimensionale, espresso in termini di numero akeStS. |l rap-
porto di densita particella/fluido & dell’ordine di3L®i considerano particelle
di dimensionid, =45, 100 e 23Qum, corrispondenti rispettivamenteSa=5,
25e125.

L'obiettivo principale del presente studio & analizzaiaflienza dello
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shear medio e delle fluttuazioni turbolente di piccola scaléa dispersione
delle particelle. In particolare, presenteremo a divestsiriti temporali alcune
Probability Density Functions (PDFs) sulle distribuziatglle singole parti-
celle all'interno del dominio e proporremo un semplice mimdparametrico
che sia in grado di predirre la diffusione particellare. dérderemo inoltre le
statistiche sulle dispersioni delle coppie. In particelarostreremo sia statis-
tiche a tempi fissati che a scale fissate. Queste ultime s@ie psr eviden-
Ziare la presenza di un range inerzialeontaminato, ovvero non influenzato
dal differente grado di separazione tra le coppie che sepania lentamente e
guelle che separano piu velocemente. Analizzeremo sisitanmeente queste
statistiche, con lo sforzo di isolare gli effetti di largaakc prodotti dallo shear
da quelli di piccola scala generati dalla turbolenza. Cisgiedta che i primi
siano prevalenti vicino a parete, dove si riscontrano élgvadienti di veloc-
ita, mentre i secondi dovrebbero prevalere nella regiorasigomogenea di
centro canale.



Chapter 1

Introduction

1.1 Particles-turbulence interaction

Decades of extensive studies have clarified several issueeming particle
dynamics. It is well known how inertial particles are subjexthe actions
of the surrounding fluid and a number of papers have been peddwhich
examine the relative values of the fluid forces acting oniglag (see 36] for
instance). However, if particle density is much larger tHaid density (as in
many cases of interest: dispersed flyashes, droplets, awg Bediments) the
largest effects on particle motion are due to drag and meviih only small
quantitative corrections produced by all other fluid foreesions. Thus, if
particle diameter is not negligibly small, inertia will innce strongly particle
behavior. The trajectory of an inertial particle driven I tdrag force in a
vortical flow field is sketched in Fid.1 in which solid lines represent tracer
pathlines. In Fidl.1, the behavior of three different inertia particles is con-
trolled by the particle time-scale — particle relaxatiamei— which, from the
steady-state balance between inertia and the linear Stbikgs is defined as
Tp = ppd§/18u, wherepp, dp, and u are particle density, particle diameter,
and fluid dynamic viscosity, respectively. In Figl, particles with different
time-scale are subject to the same flow time-scaledefined on the basis of
the inverse of vorticity. The ratio of the particle relaxetitime to the flow
time-scale defines the Stokes numbeiSas- 1,/1¢. Broadly speaking, par-
ticles act as a low-pass filter responding to the flow scalegetahan their
time-scale. If their time-scale is comparable to the flumdiscale, particles
may be propelled into specific flow regions and tend to sanielow field
in a preferential way.
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Figure 1.1: Influence of particle relaxation time on paetitlajectory. Small
inertia particles follow precisely the flow; large inertiarficles filter the space
changes of velocity; intermediate inertia particles respeelectively to the
flow structures.

Figure 1.2: Effect of inertia on particle preferential sdimgp of a periodic
vortical two-dimensional flow field reported by Maxe®: distribution of
aerosol particles falling under gravity. The non-dimenalgparameters char-
acterizing aerosol motion are Stokes setting velocity fdirfeiid W = 1,0 =
0.5 and inertia paramet& = 0.2.

This concept was demonstrated by Max@&¥|[examining the behavior
of swarms of inertial particles in a two-dimensional, pdiwfield of simple
cellular vortices. In his numerical experiment, partickesre settling under
gravity and showed a tendency to sample the flow field prefiatn The
same experiment was reproduced by Soldzd] pnd results of particle pref-
erential distribution are shown in Fig2 The effect is striking for this type
of model steady flow and suggests that insights into reakttmmensional,
time-dependent turbulent dispersions may be obtainedymgtto identify the
archetypal dynamics of the dominant flow structures.

Real three-dimensional time-dependent turbulent fieldscharacterized
by vortical structures of largely different scales mutyatiteracting. Particles
will be thus advected in a fashion which is not at all randord aill assume
a spatially intermittent distribution. This effect will mmplified or damped
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depending on the particle-to-flow time-scale ra@6,[10].

Preferential segregation of particles is fundamental inmalver of turbu-
lent flow applications §, 30]. Yet, in the specific case of turbulent boundary
layer, the local interaction between particles and turgestructures leads to
a remarkably uniqgue macroscopic behavior, i.e. particuulation in the
viscous sublayer], 18]. This macroscopic behavior is due to the combined ac-
tion of the many microscopic transfer phenomena which grasticles toward
the wall and away from the wall. Since 1957, when Friedlarated John-
stone [L1] in the context of deposition theory broadly differentthteetween
the behavior of large and small particles in the viscousasds] much at-
tention was dedicated to investigation of particle walhgfer mechanisms. In
1975, Cleaver and YateS][proposed a sub-layer model based on the Reynolds
analogy for particle transport in turbulent boundary lafgerthe deposition of
small solid particles from a gas stream. According to thisma@ism, particles
are driven toward the wall and away from the wall by sweepshemant down-
wash of outer fluid to the wall — and ejections — coherent upvedisvall fluid
toward the outer flow — which are instantaneous realizatairte Reynolds
stresses — Q4 and Q2 type events respectivasy [

Of course, since early times efforts, Reynolds averaginthefNavier-
Stokes equations assigned a crucial role to Q2 and Q4 ewatitd, is only
after the paper by Kline et al.2]l] that they have been dignified as coherent
structures together with the other time and space persiitem phenomena
in the boundary layer. The remarkable papers by Husdahsimplified the
understanding of turbulence phenomena pinpointing thédax entification
and a correct definition of coherent structures were the kemterstand pos-
sible archetypal dynamics in turbulent flows. This theoadtiool assisted by
the rapidly increasing computational power, which finallgda feasible long-
desired, three-dimensional, time- dependent, fullydkesbturbulent flow sim-
ulations, produced an entire branch of flourishing litematwhich gave new
hopes in turbulence research by looking for coherent strastthrough the
wealth of data available from Direct Numerical Simulati@NS). In partic-
ular, many questions about the dynamics of turbulent baynidgers have
been addressed and answered identifying the differenacteaistic coherent
structures and proposing mechanisms to explain their géorrprocess (the
turbulence regeneration mechanism).

There is a general consensus on the dynamics of turbulengeuses in
the boundary layer and the coherent structures have beeisglyeclassified.
Henceforth, we refer to a flow inside a channel. The refergeoenetry con-
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sists of two infinite flat parallel walls: the origin of the gdmate system is
located at the center of the channel andthe y— andz—axes point in the
streamwise, spanwise and wall-normal directions resgaygti(see Fidl.3).
The statistically most common coherent structures ardesgigeamwise-oriented
vortices, generally centred within the buffer layer. Quststamwise vortices
generate strongly coherent sweeps on the downwash siddrandlg coher-
ent ejections on the upwash side.

SR
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= I
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e e
.

z=h

® High-speed & .
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Figure 1.3: Particle-laden turbulent gas flow in a channadtch of the compu-
tational domain and minimal schematics of near-wall tugbticoherent struc-
tures. Strong causal relationship links low-speed stramkgections generated
by quasi-streamwise vortices, which also generate infgsveé high stream-
wise momentum fluid to the wall in the high velocity regions.

In the outer region, several recent investigations sugbasthe most com-
mon vortex structures appear like hairpins whose legs aredhnter-rotating
quasi-streamwise vortices populating the near-wall regideither these hair-
pins usually possess perfect spanwise symmetry nor thderenatating vor-
tices have equal strength. Spanwise axisymmetric onet$idiepins are also
observed. These new models revise and improve the classinaépt ofQ-
shaped horseshoe vortices and are widely, though notytcaaltepted. In re-
cent papers, Zhou et al3T] and Adrian et al. J] proposed a hew mechanism
for turbulence regeneration cycle which is based on pacidtairpin vortices
travelling at the same convection velocity, a new fundamdesuper-structure.
Apparently, these super-structures populate all regibttsecturbulent bound-
ary layer and their characteristics fit well with most of poes quantitative
observations from Kline et al2[l] up to the most recent. Furthermore, Adrian
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et al. [1] report that if we focus our attention only to the near wabjiom
—i.e.less than 60 wall units from the wall — the phenomenplofjthe hair-
pin packet is very similar to the structures proposed by Sph@and Hussain
[32, 13] and Jeong et al.1f].

Despite the great progress in the investigation of turtméesiructures and
dynamics, an equal effort was not produced in the area ofilemb dispersed
flows. Several features of particle behavior in the boundaygr are broadly
established, yet there are still many open issues conceparticle transfer
mechanisms and particle segregation. In particular, elreagh the initial
intuition by Cleaver and YatesS] can be granted, quantitative evaluations are
not yet broadly available. In addition, physical modelseathtan explain why
particles tend to accumulate at the wall, appear not coelglexplored. Still
not fully understood are reasons and modalities under whbiote at the wall,
particles remain trapped in the low streamwise velocityarg at a distance
from the wall not exceeding few wall units even when gravibesl not play a
role, both in horizontal flows with neutrally buoyant paleg and in vertical
flows.

140 B 4 e e PR et 140
120 : Pl 120
100 5 ! bl 100
80
60
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20
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a)

Figure 1.4: Instantaneous distribution of particles ctiarézed byr, = 1163

at timet™ = 2700. View of particle position in thgz-plane for 700< x™ <
1000 (a) and corresponding-plane average number density distribution as a
function of the wall normal direction (b).

Several of the above mentioned phenomena are shown ifh. &g). to-
gether with a number of features which can help us to focushemptocess
of particle dispersion and transfer in turbulent boundaset. First, we ob-
serve that particles are not homogeneously distributedgatbe channel. In
particular, particles tend to cluster around large vorstaictures. From these
clusters, particles are transported toward the wall, actating into specific
“reservoirs” (one of these is indicated by the black circld)ere concentra-
tion build-up occurs. These accumulation regions are cheniaed by flow
streamwise velocity lower than the mean. Particles tendayp leng times
in these low-speed regions so that eventually particle emnation increases
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near the wall. To quantify near-wall accumulation, the iplgtnumber den-
sity distribution is plotted as a function of the non dimemsil distance from
the wall ") in Fig.1.4(b). A logarithmic scale is used for particle number
concentration to capture the detail of particle behavighaproximity of the
wall. The concentration profile is developing with time, aidhe instant shot
in Fig.1.4(b), we observe that particle number density profile hasldped a
maximum well into the near-wall region @ z" < 20). This behavior can be
viewed as the consequence of the turbulence non-homogearit has been
observed in a number of previous works.

1.2 Turbulence wall structure

In a turbulent boundary layer, momentum, heat, and massfélaare con-
trolled by the instantaneous realizations of the Reynoldssses. Ejections
and sweeps — Q4 and Q2 type events, respectively — controlemom trans-
fer at the wall and are also well correlated to heat transfer mass trans-
fer at the wall. Specifically, ejections bring the low-morhen fluid close
to the wall into the outer region whereas sweeps bring thb-higmentum
fluid from the outer flow into the wall region. A complete chaeaization of
sweeps and ejections and of their generation mechanistgsgundamental
to understand the physics of turbulence structure at theawdlto explain the
effect produced on particle dynamics. The snapshot show#igii.5 visual-
izes sweeps, ejections, and their action of momentum tamsfthe wall. In
this figure, flow is from left to right along thedirection. Sweeps (gold lumps)
and ejections (blue lumps) are identified with the same vafitbe instanta-
neous stress isosurfaceuat’ = —3 in wall units. To visualize the correlations
“sweep-high shear stress” and “ejection-low shear strassivall is colored
with the intensity of the instantaneous shear stress at #ike-wblue is low
and red is high. It is apparent that low shear-stress regiomespond to the
ejections, whereas high shear-stress regions correspdhd sweeps.
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Figure 1.5: Snapshot footprint of the wall shear-stres$ witrresponding
sweep and ejection events in the whole computational dardaitme wall, red

indicates high shear-stress; blue indicates low sheessstrGold 3D regions
are isosurfaces characterizing sweeps whereas blue 3Bnsegharacterize
ejections. Isosurfaces are traced/af = —3 in dimensionless units.

Sweeps and ejections are just a chain ring of wall turbuleageneration
cycle, and there is still some uncertainty about the meshasiwhich gen-
erate and maintain the sweep/ejection events. They appdze generated
by the quasi-streamwise vortices which populate the neliregion. Quasi-
streamwise vortices are slightly tilted away from the waltiare responsible
for pumping fluid towards and away from the wall. Clockwisel amounter-
clockwise rotating vortices are slightly tilted upward -oab 9 averaged?);
and are also slighthy tilted about 4 left and right, respetti The stream-
wise vortices may be identified by using pressure, vorticityother indicators
[12]. A broadly-used method for identification exploits theesimline rotation
vector Q to visualize vortices as flow regions where the rate-of-deédion
tensordu; /dx; exhibits complex eigenvalue&T]. From a physical viewpoint,
the vectorQ represents strength and direction of the rotation of treagtfines.

In Fig.1.6(a), two counter-rotating vortices, identified by one istece of
Q, are shown together with the ejections and sweeps they afendrhe elon-
gated red and pale blue structures are two isosurfaces ldthame absolute
value ofQ (and opposite sign) and indicate clockwise rotating (red) @un-
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terclockwise rotating (pale blue) vortices. Flow is goimgrn bottom left to
top right and vortices appear tilted away from the wall byriean strain rate.
The blue lumps of fluid in between the two vortices are ejectiand the green
lumps of fluid outside the two vortices are sweeps. Ejectaondsweeps also
appear stretched streamwise and affected by the mean sitainOwing to
the continuous action of the quasi-streamwise vorticeseimegating sweeps
and ejections, regions between two vortices such as thasensh Figl.6are
characterized by a streamwise velocity lower than the maarspeed streaks,
whereas the regions outside the two vortices are charaeteby a streamwise
velocity higher than the mean high-speed regions.

(@) (b)

Figure 1.6: (a) Quasi-streamwise counter-rotating vestimgether with ejec-
tions and sweeps. Quasi-streamwise vortices extend fart 200 — 300 wall
units. Two isosurfaces of the same absolute valu® afdicate clockwise
rotating (red) and counterclockwise rotating (pale blugigves. Sweeps and
ejections are indicated by green and blue, respectivelylvjb counterrotating
quasi-streamwise vortices onto a single low-speed streaR. (Green isosur-
face ofQ indicates clockwise rotating vortex, blue isosurfaceoindicates
counterclockwise rotating vortex. Picture covers a stwge@ window about
450 wall units long.

Many quasi-streamwise vortices are usually associated anie single
low-speed streak. Low-speed streaks are sinuous regions 5000 wall units
long and are more coherent than high-speed regions.

In Fig.1.6(b), a 450 wall units long piece of one low-speed streak isvsho
flanked by two counter-rotating quasi-streamwise vortidds red isosurface
identifies a streamwise velocity value d&88J., whereU, is centerline veloc-
ity, which is broadly considered the advection velocityluf tow-speed streak.
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In this figure, the action of the quasi-streamwise vorticelifting up the low-
speed streak is clear. Streamwise vortical structuredagvsireamwise as a
staggered array, as was clearly demonstrated by Schoppdussdin B2, 13].
One single low-speed streak has a longer life than quasassivise vortices
and survives a humber of vortex generations. It has beenrsligdy that
the generation of the quasi-streamwise vortices is agdedciaith lateral in-
stabilities producing changes in the shape of the low-sg&edk surface. In
recent papers, Schoppa and Hussam) 13] suggested that wall turbulence is
dominated by a cycle in which low-speed streaks generatsi-gtr@amwise
vortices, which in turn generate ejections and sweeps.€ltially contribute
to maintain the low-speed streaks.

Thus, the view of evolutionary dynamics of boundary laydrsctures
changes perspective in that streaks are considered rdsigofes the initial
generation of quasi-streamwise vortices. Based on this, v8choppa and
Hussain B2, 13] suggest different strategies for turbulence control. st
interesting strategy seems to be stabilization of the Ipeed streaks by means
of large-scale forcing motions. In practice, a low-speedadt which is more
stable to spanwise perturbations would reduce its mearglarnid reduce the
tripping frequency of quasi-streamwise vortices evemuaducing the fre-
quency and the intensity of turbulence production evente -~ $weeps and
ejections.

1.3 Particle dynamics

There is experimental and numerical evidence that heawjclesr in turbu-
lent boundary layer have a tendency to migrate toward thé uvaler the
turbophoretic drift §, 6, 26]. Fig.1.7(a) shows the particle number density
concentration plotted as a function of the non dimensiorall distancez".

A logarithmic scale is used to capture the detail of partitigribution in the
near-wall region. Particle number concentration is noizedl to the initially
uniform concentration and is calculated after 1125 timel waits. As dis-
cussed by Portela et akR§], particle distribution is not yet statistically steady.
Regardless of particle size, number concentration is miieun along the
wall normal coordinate, the trend being most pronouncedafger particles.
In particular, the concentration profile appears to reaclasimmum very close
to the wall. This behavior can be viewed as the consequennersfiniform
turbulence advection mechanisms, the intensity of whidhedeses to very low
values in the near wall region.
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Figure 1.7: (a) Macroscopic effect of particle interactwith turbulence struc-
tures. Particle number density distribution calculateairfrone way coupling
simulations for particle time scales equal to 0.2, 1, 5 ané&@&inst non di-
mensional distance" from the wall (logarithmic scale). The concentration
profile reach a maximum very close to the wall; the non uniftrend is most
pronounced for larger particles. (b) Top view of particlstdbution in the
boundary layer. Note accumulation of particles in specdgians which cor-
respond to the low-speed streaks.

Number concentration is non-uniform also in the wall paadlirection,
with particles segregated preferentially in regions ctimrézed by streamwise
velocity lower than the mean. Fig.7(b) shows the instantaneous distribution
of 1, = 25 particles in the region between the wall and= 3. The tendency
of inertial particles to accumulate in the low-speed regioray support a pos-
sible use of particles as smart roughness. In real situgticimaracterized by
flow field modulation by the particles, the presence of pladigvould increase
the inertia of the low-speed streaks. Since low-speedisttdility to lateral
perturbation has an impact on the wall turbulence regerugae, the pres-
ence of specific inertia or size particles in turbulent bargdayer might be
exploited to tune wall transfer mechanisms.

In Fig.1.8 we show an instantaneous cross section in(}hez) plane of
particle distribution. Specific regions of particle accuation are clearly vis-
ible. These regions identify the main gateways for particesfer to the wall
region. In a previous work Marchioli and Solda#iJ examined the relation-
ship between patrticle fluxes in and out the wall layer and nmdoma fluxes
at the wall. They found that particles are transferred atneaslusively by
strongly coherent sweeps and ejections: Specifically,amgtcorrelation ex-
ists between sweep events and patrticle flux toward the wallpatween ejec-
tion events and particle flux toward the outer flow. This datien is almost
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Figure 1.8: Cross section of instantaneous particle Higion in they —z
plane forAx" = 400.

perfect for smaller particles and somehow weaker for lapgeticles. In other
words, if a small particle travels toward the wall, it is etred in a sweep
whereas if the particle travels away from the wall, it is drivby an ejection.
For larger particles, most of the particles are still trangfd by sweeps and
ejections but a higher proportion of particles with positivall normal veloc-
ity appears in fluid environments characterized by negatadnormal veloc-
ity, and viceversa. In particular, for the larger sets oftipkes, the fraction
of particles travelling toward the wall in a non-sweep eoriment is smaller
than the fraction of particles travelling away from the wialla non-ejection
environment 23].

This behavior is easily attributed to thaeal particle Stokes number which
increases along the Lagrangian trajectory of the partitiieky while travelling
toward the wall, interacts with smaller and smaller flowstwes. The charac-
teristic time-scale of turbulent structures scales lilyeaith wall distance and
decreases progressively as the structures lie closer tavdhe The strongly
coherent sweeps which transfer effectively particles &wiall are generated
by the forward-end of the mature quasi-streamwise vorsitakctures which is
located in the buffer layer. Larger particles have a largeetscale and filter
out the effects of the smaller fluid scales. Thus, the largementum gained
by the large particles in the strongly coherent sweep is tmbbirive them to
the wall and may be sufficient to let the particle bounce elalty off the wall,
crossing the smaller scale structures in the vicinity ofitlaf unable to further
modify the trajectory of the particle.

Particle Stokes number is also responsible for particleractation under
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Figure 1.9: Cross section of the flow field and front view oftjgées in the
region of particle accumulation.

the low-speed streaks. Fluid obeys continuity and fluid fueethe wall must
be balanced by counterfluxes away from the wall. Particleselver, behave
somehow as a compressible fluid and may accumulate as pyeats®rding
to what is happening to the small swarm of particles circte#ig.1.8, which
is undergoing a strongly coherent phenomenon.1Fighows a cross section
of the flow field in the region of particle accumulation. Vastoepresent ve-
locity components in the plane and color isocontours shawtiues of the
streamwise velocity component. A strongly coherent epecis present in the
middle of the figure and indicates the position of the lowespstreak which
appears lifted and flanked by two counter-rotating vortstalctures. Particle
position is identified with the circles — larger than the rezdle for visualiza-
tion purposes. Blue particles have wall normal velocityedied away from
the wall (w, > 0) whereas purple particles have wall-normal velocity atizd
toward the wall v, < 0). In the outer region, say above > 100, there is
no evident correlation between particle wall-normal vaoand fluid stream-
wise velocity. Approaching the wall, however, virtually particles entrained
in the ejection — streamwise velocity lower than the meanve lp@sitive wall
normal velocity indicating an extremely focused and coheesent. Particles
approaching the wall are entrained in the two sweep eventdlewyregions.
Depending on the momentum they acquire, particles diraotgdrds the wall
may reach it or may follow the flow streaklines approachirgydfection to be
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re-entrained in the outer flow.

1.4 Two-particle Dispersion and Scope of this Work

1.4.1 Single-particle Dispersion

Arguably the most elemental understanding one can haveyofi@an field is
how particles are moved by the flow. Conceptually, it is fargier to consider
the trajectory of a particle than it is to fully comprehenea trelocity vector
field. The motion of particles is also important becauseso€@nnection with
the processes of transport and mixing that impact natuthéagineering flows
in such profound ways. Indeed, it is the latter applicatiwat drew the atten-
tion of some of the greatest minds in fluid mechanics to thdysti particle
motion in turbulence. The original work of Taylor (1922) angle-particle
dispersion gave birth to many of the modern statisticalsaat use to study
turbulence. In particular, a literature survey reveald thany numerical and
experimental studies have been performed to examine $rdigpersion from
a line source orthogonal to wall normal directidry[19, 14]. The first purpose
of this work is to present single particle statistics of tisparticles released
at a certain distance from the walls. This study may haveeésting indus-
trial and environmental applications, such as pollutispdision in the atmo-
spheric boundary layer (see Fidgl0. For instance, it can be useful to predict
in first approximation where and when the smoke released &afmmney at
a certain altitude will reach the ground, if it will stratifomewhere or well
disperse in the sky. Indeed, in the center of the channelltbarsanfluence
is almost null and then its bottom-half ( @< 150 ) can well rapresent the
atmospheric boundary layer.

1.4.2 Two-particle Dispersion

Richardson (1926) was the first that examined the relativeomof two par-
ticles embedded in isotropic turbulence, establishingfolv@dations of two-
particle dispersion. There is a fundamental link betweerfahmal analysis of
pair dispersion and practical problems such as the grovdtive to the center
of mass of a cloud of contaminants in the atmosphere, ntdriarthe ocean,
or chemical species in a turbulent reactor. In all these @k@srthat involve
fluid flow, a nondimensional parameter that represents tiwe ohinertial and
viscous forces is the Reynolds number, here defined in tefithe daylor mi-
croscale aRey = (1?)%) /v , where(u?)"? is the root mean square of the
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Figure 1.10: Some smoke ejected by two chimneys and reldasadire in
the atmospheric boundary layer.

fluctuating velocity,v is the fluid kinematic viscosityd = /15v (U2) / (¢) ,
ande is the turbulent energy dissipation rate. Laboratory axdstrial flows
are characterized bige, O (102 — 103), whereas geophysical flows can reach
0(10*) and higher.

If we consider two particles initially separated by the aigted (t = 0) =
do = d1(0) —d2(0) and placed in a turbulent flow field, we expect that their
distance will change in time. The istantaneous separafitdmegosition of the
particles isd (t) = d1 (t) — d2 (t). We can divide the process of dispersion into
three distinct regimes based on the separation of the |[eartielative to the tur-
bulent scales(a) Thedissipation subrange corresponds td (t) < nk, where
nk = (v3/ <e))1/ *is the Kolmogorov length-scaléb) theinertial subrange
corresponds tgx < d (t) < L, wherelL is the integral length scale; aid) the
diffusion subrange corresponds td (t) > L. The analysis and scaling for each
subrange are unique and they are explained in detail by &ated Collins
[29]. In this work we wil focus on what happens in the inertial sige.

As the particle pair separates beyond the dissipation sctile range of
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motions (or eddy sizes) that move them apart varies with éparation dis-
tance, in which eddies of scale- d(t) are most effective in the process of
dispersion (Corrsin 1962). Richardson (1926) initiallyt farth this notion
and suggested a specific diffusion equation for relativpatsion in isotropic
turbulence. Compiling measurements of the effective edflysibn coeffi-
cient and making other assumptions, he found a solutiontwihiplied that

(d2(t)) = g(e)t?, (1.1)

whereg is calledRichardson’s constant. Many computational and laboratory
experiments, 3, 16] confirmed this trend in the inertial subrange of two and
three-dimensional isotropic turbulent flows. In Hig.1 an example of the
scaling(d?(t)) ~ t* obtained by a DNS is shown.

Mean square relative dispérsion - DNS — "
Richardson’s t° law ——-

102 |

103 L
107 10° 10

Figure 1.11: The mean pair separati@? (t))(indicated agr?(t)) in the fig-
ure) in a homogenous isotropic turbulent flonRas, = 383. The plot refers to
DNS coupled to LPT of 307200 particles pairs. The scating in the inertial
subrange is evident.

Homogeneous isotropic turbulence is the simplest configuror study-
ing the statistics of relative dispersion, but it has liditgpplication to real
situations. An investigation in turbulent flows affectedtbg presence of solid
buondaries should be dutiful. Another limitation introédcin most experi-
ment is due to the use of tracers, i.e., massless partichés |after are able to
follow precisely the flow and then they provide the most aatimformations
about fluid motions, even for the smallest scales. Furthesritacers are pre-
ferred to inertial particles in DNS because it is sufficiamirttegrate in time
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the equation

dt
to track all the history of particle motion; being the velocity of the fluid
at particle position. This greatly reduce computationfdref. Despite these
merits, tracers do not well simulate behavior of real pkasicexpecially when
these have a mass not negligible with respect to the physfithé problem.
The main scope of this work is to study the pair dispersiomeftial parti-

cles in aturbulent channel flow. Particularly, we want toigfgrmations about
the rate of scaling in the inertial subrange and the influeficke strong shear
near the walls on two-particle statistics. To this aim, veekrsome swarms of

(1.2)

particles released at different distances from the waltkrapasure statistics
along the pair trajectories both as a function of time and fasietion of their
separation, i.e., at fixed scales. A comparison with homeges isotropic tur-
bulence in the center of the channel is reasonable, the flow lhew affected
by the two walls in the region around the centerline. We ateggnt some sin-
gle particle statistics regarding swarm'’s distributionhia channel, to correlate
wall segregation with pair dispersion.



Chapter 2

Physical Modelling and
Numerical Methodology

To investigate the physics of particle pairs, we performieebtlnumerical sim-
ulations (DNS) of gas-solid channel flow. The reference ggioyrconsists of
two infinite flat parallel walls: the origin of the coordinatgstem is located
at a corner of the channel and tke, y— andz— axes point in the stream-
wise, spanwise and wall-normal directions respectivede ([Sigl.3). Periodic
boundary conditions are imposed on the fluid velocity fieldha homoge-
neous directionsx(andy), no-slip boundary conditions are imposed at the
walls (z= 0 andz = 2h). The size of the computational domainLigx Ly x

L, = 4rth x 2rth x 2h. In this work, we will consider non-reactive, isothermal
and incompressible (low Mach number) flow and monodispensiedometer-
size particles: in particular, we will consider Newtoniamidl (specifically, air
with densityp = 1.3 kg m~3 and kinematic viscosity = 1.57x 10> n? s !
and pointwise heavy particles (with denstly = 1000kg m~3). Fluid and par-
ticle properties in dimensional form are given here for takesof providing a
possible application of our simulations toeal physical instance.

2.1 Equation for the fluid phase and flow solver

In our studies, we have performe DNS of fully-developed dgrilow. In
DNS, the governing balance equations for the fluid in dinmmess form read
as (cit Soldati and Banerjee, 1998):

0Ui

= — 2.1

17
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ou; ou; 10%; 0

W:_ujd_xf’R_ea—xJZ_a_iJ“é“’ (2.2)
wherevy; is theit" component of the dimensionless velocity vectpiis the
fluctuating kinematic pressurg,  is the mean dimensionless pressure gradient
that drives the flow whered®e; = u;h/v is the shear Reynolds number based
on the shear (or friction) velocity;, and on the half channel height, The
shear velocity is defined ag = \/M wherert,, is the mean shear stress
at the wall. All variables are taken in dimensionless forepresented by
the superscript + (which has been dropped from Egfignd2.2 for ease of
reading) and expressed in wall units. Wall units are obthzmmbiningu;, v
andp.

The flow solver used to perform the numerical simulationsaiseol on a
pseudo-spectral method that transforms the field varidbtesvave space to
discretize the governing equations. In the homogeneoastidins g andy), all
the quantities are expressed by Fourier expansions kgiagdk, wavenum-
bers. In the wall-normal non-homogeneous direction, theyapresented by
Chebyshev polynomials. The solution, represented spigcineall three flow
directions, have the general form:

U (ke, ky, n) = ;Zza Ky, ky, 1) €XTIT, (7). (2.3)
» n

in which T, (2) = cos[n-cos * (z/h)] is then-th order Chebyshev polynomial.
By using the orthogonality property efk*t&y) the equations for the Fourier
coefficientst (ky, ky,n) can be obtained. All the differential equations to be
solved are of Helmholtz type with Neumann, Dirichlet or nixeoundary
conditions specified at the walls. Time advancement of thetons is done
by the two-level explicit Adams-Bashforth scheme for the-tinear convec-
tion terms and by the implicit Crank-Nicolson method for thi#usion terms.
All the calculations are carried out in wave space excepetiaduation of the
nonlinear terms, which is done in physical space and thevsfvamed back
to wave space in order to avoid the convolution summationisiwteduce the
efficiency of the method. This numerical scheme is quitedstedhfor directly
simulating turbulent flows in domains of simple geometrgtsas rectangular
channels (cit Soldati and Banerjee, 1998).
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2.2 Equations for the dispersed phase and Lagrangian
particle tracking

In the Lagrangian framework, the motion of particles is diégd by a set of
ordinary differential equations for particle velocity apdsition. These equa-
tions in vector form read as:

dx
dv Pf> 3CD<pf>
— = (1-=)g-==2(Z= ) |v=u|(v=u)+ 2.5
A (ppg4dppp||<> (2.5)
pt Du pi pi (Du dv
p—th‘FCLp—p[(U—V)XO)]—i-Z—pp(Ft—a)"F

ou t/du dv dr

o (@) e
wherex andv are the patrticle instantaneous position and velocitgndw are
the fluid velocity and vorticity at the particle positiody, andp,, are the parti-
cle diameter and the particle material densjtys the fluid dynamic viscosity;
andg is gravitational acceleration. The time derivatiyadit is calculated fol-
lowing the moving particlgdu/dt = du/dt +v-[Ou), whereasDu/Dt is the
total acceleration of the fluid instantaneously evaluatethe particle posi-
tion (Du/dt = du/dt+u-0u). Each term in Eq.2.5 represents forces per
unit mass acting on a particle. The term on the left-hand @geesents par-
ticle inertia, whereas the right-hand side terms desctikeetfect of gravity,
Stokes drag(p being the drag coefficient), pressure gradient, aerodymami
lift (CL being the lift coefficient), added mass and time-history SBsre-
spectively. This equation is similar to the equation of mtfor small rigid
spheres discussed by Maxey and Rilgy][ in which the second-order terms
have been neglected due to the small size of the particlese, lthee Stokes
drag coefficient is computed using the following non-linearrection B1]:
Cp= Ff—e“p (1+0.15ReX%87) whereRey = dp [v —ul /v is the particle Reynolds
number. The correction fdZp is necessary wheRe, does not remain small
[9].

The evolution of particle position and velocity is obtaingzbn time-integration
of the above equations. In the Lagrangian framework, a ctatipnal particle
represents only one physical particle and, therefore, titegration is per-
formed for each individual particle to be tracked. To mirienthe computa-
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tional effort required by this operation, which scales a&srtbmber of tracked
particlesnp, €q2.5 can be simplified in a suitable manner. Simplification is
made based on the relative importance of each force in theidened flow
configuration, which in turn depends on several particleupeters. Depend-
ing on the specific value of these relevant parameters, sems in ec2.5can
be neglected without loss of accuracy in the final result. gaoticles much
heavier than the fluido,/pr > 1), the most significant forces are Stokes drag
and gravity. Other forces acting on the particle, such as@&afluid pressure
gradient and added mass can be neglected being at leasten@bmagnitude
smaller: The contributions of hydrostatic force, Magnuea&tfand Brownian
diffusion can be neglected as well because of the specifiofq@tysical pa-
rameters of our simulations. One last contribution to besimmred carefully
is that due to the lift force. Previous studies showed ttatsiall particles,
the lift force term becomes formally of the same order inipkrtradius as
other terms we neglected in the more complete equation abmderived by
Maxey and Riley 24]. In this situation, the lift force is small compared to the
particle drag in the same direction and is expected to pmdlight quantita-
tive (yet not qualitative) modifications of the depositidatistics. For larger
particles, however, the lift force may have significant efffeon the rate of par-
ticle accumulation near the wall, particularly in presen€a solid boundary.
The influence of the lift force in determining the buildup afrficle concen-
tration in the viscous sublayer is in turn modulated by gyawihich acts to
increase/decrease the slip velocity between patrticlesflaitivia the well-
known crossing-trajectory effec2$].

For the purposes of performing a phenomenological studyrbtitent par-
ticle pair dispersion, we starte from a base simulation ifctvithe setting is
kept as simplified as possible. To minimize the number of@egof freedom,
we neglecte the effect of gravity and lift in the first instancA simplified
version of the Basset-Boussinesq-Oseen equation is thaged. In vector
form:

dv (u-v) 0.687
_— = 1 .1 . 2.
i 5 (1+0.15Rex*%") (2.6)

where T, = ppd§/18u is the particle relaxation time, a measure of particle
inertia denoting the time scale with which any slip velodigtween the par-
ticles and the fluid is equilibrated. Subsequent inclusibaddlitional forces
(gravity and lift in our problem) can be done to single outitlspecific effect
on particles and to analyze possible qualitative and giaint changes to the
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scenario depicted by the base simulation.

To calculate individual particle trajectories in the flowdiewe have cou-
pled a Lagrangian particle tracking (LPT) routine to the Did® solver. The
routine solves for Eqn8.6 and 2.4 under the following assumptions: (i) par-
ticles are pointwise, non-rotating rigid spheres (poiattigle approach); (ii)
particles are injected into the flow at concentration lowwgioto consider
dilute system conditions: the effect of particles onto tlbualent field is ne-
glected (one-way coupling approach) as well as inter-gartiollisions. These
assumptions lead to a simplified physical model. This maddlvever, still
provides the proper level of description to extract phyidiceowledge from a
complex two-phase system and, therefore, it is fully regmetive of the main
qualitative features of the phenomena investigated.

The equations of particle motion are advanced in time usidj-arder
Runge-Kutta scheme: at the beginning, particles are ralyddistributed on
planes orthogonal to wall normal direction, as describe8én2.4, and their
initial velocity is set equal to that of the fluid at the pdsimitial position. Pe-
riodic boundary conditions are imposed on particles mowiatgide the com-
putational domain in the homogeneous directions. Peyfetdistic collisions
at the smooth walls are assumed when the particle centeaidistance lower
than one particle radius from the wall (note that the dats gletained assum-
ing perfectly reflecting walls can be used to extract subsidsita for the case
of perfectly absorbing walls simply by tagging time and kiaa of the particle
upon impact). The timestep size used for particle trackiag whosen to be
equal to the timestep size used for the flutii = 0.045. This time step size
is more thar20 times smaller than the non-dimensional response time of the
smallest particle tracked (see Sedfor details).

An accurate calculation of the forces acting on the partetpiires careful
evaluation of the instantaneous fluid velocity at the plarticcation. This is a
critical issue in LPT and, therefore, many papers dealing thie interpolation
problem are available in the archival literature. A widei@gr of interpolation
methods has been tested in channel flow. Both high-ordetichgbhemes (
see for instance Yeung and Pof@$]| who tested both a third-order Taylor-
series interpolation scheme and a cubic-spline schemelpaugd-order time-
efficient schemes have been employed. Considering prednalyses, we
decided to use an interpolation scheme based!'borfler Lagrangian poly-
nomials: near the wall, the interpolation scheme switcbesnie-sided. The
performance of the interpolation scheme is comparableabdhspectral di-
rect summation and to that of an hybrid scheme which expkiitth-order
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Lagrangian polynomials in the homogeneous directions ameb@shev sum-
mation in the wall-normal direction. This second approachighly accurate
and the computational work requirement was smaller tharcdingputational
work requirement for a fully spectral evaluation of the flualocity field at the
center of the particle, which involves summing the FouGeebyshev series.

2.3 Simulation Parameters

The results presented in this paper are relative to a shgaroRkis number of
Re; = 150 based on the shear veloaity= 0.11775ms 1. The corresponding
average (bulk) Reynolds number Rey, = 2100, whereu, = 1.65 m st is
the average (bulk) velocity. The size of the computatior@hdin in wall
units isL x Ly x L = 1885x 942x 300. This latter has been discretized in
physical space with 128 128x 129 grid points (corresponding to 128128
Fourier modes and to 129 Chebyshev coefficients in the waaee3p This is
the minimum number of grid points required in each directiorensure that
the grid spacing is always smaller than the smallest flowesaal that the
requirements imposed by the point-particle approach digfised. Indeed, in
the present flow configuration, the non-dimensional Kolmrmogdength-scale,
ng, varies along the wall-normal direction from a minimum ahg = 1.6 at
the wall to a maximum valug,, = 3.6 at the centerline (see Figl(a)).

The grid resolution in the wall-normal direction is suchtttiee first collo-
cation point is az" = 0.05 from the wall, while in the center of the channel
Azt = 3.7 [22]. Assuming that particle motions due to strain are negligib
the two requirements explained above deal primarily withglze of the par-
ticle, which has to be much smaller than the grid cell to cofib the fact that
the velocityu used in ER.6 is the (undisturbed) fluid velocity at the center
of the particle. Since this velocity is obtained by integimn of the fluid ve-
locity in the neighboring points, accurate estimate rezgithat the grid cell
is significantly larger than the particle. The accuracy effinid flow simula-
tion, however, requires a grid cell significantly smallaritihe fluid scales one
wants to solve: if the particles are much smaller than thdlestaelevant flow
scales, than the point-particle restriction is satisfiedthe case of DNS, this
means that particles must be much smaller than the Kolmedength-scale
(dp < nk). In one-way coupling simulations, violation of the abovetrie-
tions on particle size may introduce significant errors. teavy particles in
gas flows(pp/ps > 1), however, the time scale of the particles is significantly
larger than the time scale of the small scales of the fluid:tdtigeir inertia, the
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Figure 2.1: The Kolmogorov length-scatg (a) and time-scale (b) as a
function of the wall-normal coordinate" in the channel flow alRe; = 150

particles act as low-pass filters and are driven mostly byaige scales. The
error introduced by a small grid cell is not important and rbayneglected,
the only consequence being that the particles experieramabflow field with
smaller scales than the ones that are forcing the actuatlpart

For the simulation, large samples of particles charaadriay different
response times were considered. The response time is nmradagionless us-
ing wall variables, and the Stokes number for each partetiésghus obtained
asS = 1y = 1p/Tt , Wheret; = v/u2 is the viscous timescale of the flow.
This characteristic time scale is proportional to the tuandime of the tur-
bulent eddies and it supplies a measure of the time avaitableddy-particle
interaction. In this work we use inertial particles withebrdifferent magni-
tude: & = 5, 25 and 125. We remark that the characteristic timescaleeof th
flow changes depending on the specific value of the shear Risynamber,

namely on the specific value of the shear velocity. In thegresase, we have
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Ts = 1.13-103s. The non-dimensional value of the Kolmogorov time-scale,
r,{ , ranges from 2.5 wall units at the wall to 12.5 wall units at tthannel
centerline 2] (see Fig2.1(b)).

18
16
14
12
+ 10

ON O

0 50 100 150 200 250 300

Figure 2.2: The streamwise fluid velocity profile in the tudmi channel flow
atRe; =150.

Finally, we need a unit of time of the process in order to shiogviiehav-
ior of the particles in comparison with the one of the flow. Se define the
crossing time (1) as the time that the fluid at the center channel (namely at
the maximum of the streamwise velocity profile, see Eig).takes to cross the
whole channel along the streamwise direction:

Ly 1885
" Umax-dtt — 17.5-0.045

As the simulation is carried out for 9@0, we can say that it takes 8713.

Ty ~108[t*]. 2.7)

2.4 |Initial pairs arrangement

A single particle has three (translational) degrees ofdive® in the three di-
mensional space. Differently, a pair of (point-)particless five degrees of
freedom in the physical space: three translations and twaiioos. Here-
after we will take the orientation of the vectdr(t) = d1 (t) —d2(t) as the
orientation of the pair. In homogeneous isotropic turbulence partipbiss are
initially placed in the whole domain with random positionsdarandom ori-
entations and all statistics are computed on all pairs,ouittany distinctions
on current or initial arrangement. This is possible becavssy part of the
domain has the same probability to be affected at a certaia by turbulence
structures of the all scales. In a channel flow this is no mare, the small-
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est and biggest scales being confined in the boundary lagdrgahe center
channel respectively. So we have to take into account ohtirishomogeneity
of the flow, calculating separate statistics for differeggions of the domain
or for separate sets of particles. The first one iszaterian approach and
consists in dividing the channel into slabs parallel to tleisvand calculating
istantaneous separate statistics for each slab, considenly pairs that are
inside that slab at that time. This method provides a goo@ssatiding of the
fluid motions in circumscribed channel’s regions but it donestake memory
of particle’s history. The second one id_agrangian approach and consists
in releasing different sets of pairs in different specifigioms of the channel
and computing separate statistics for each set, regarofi¢issir istantaneous
position. With this method particles are followed alongitheajectories and
then a better understanding of pairs behaviour is proviéedthis reason we
decide to use this latter approach in the present study.

Since the unique non-homogeneous direction in the chanmelifl the
wall normal one, we decide to place particles pairs on plamdsgonal to
the z axes at the beginning of the simulation. The velocity gnaid{ghear)
du; /dz*due to the presence of the walls can be used as a measure of non-
homogeneity in order to identify wall normal locations atigthrelease the
particles. As shown in Fi§.3, we choose 7 planes of coordinates= 2, 6, 14,
37, 65, 100, 150. Initial locations are confined in the bottati of the channel
because of the flow's simmetry with respect to the centeglime=150). For
each plane, we put three sets of pairs, oriented along tha@&swise, spanwise
and wall normal direction (hereafter set = 1, 2 and 3 respalg), in order
to investigate the influence of turbulence structures (flaimdns) and macro-
scopic quantities (velocity gradient) on initial oriemtat For a specifiz’
coordinate of release, we place the first particle of eachrpadomly inx and
y directions and the second patrticle spaced of one diameterthe first, ori-
ented as just explained. In this way the initial distanceaafhepair isd (0) =
0.34, 0.76 and 1.71 wall units for St =5, 25 and 125 respdgtaed then pair
dispersion starts from the dissipation subrange for eaokeStnumber (see
Fig.2.1(a)).

Another important parameter to be chosen is the number of fii each
plane necessary not to affect too much statistics. To tms\ae placen, pairs
on each plane and we run 4 timetes simulation for 1 crossing time{ /1«
= 1), using 4 different initial displacements (due to thed@m distribution
in x andy directions). We calculate the mean pair distadét)) for each

simulation and then we compute the mean of this four meastués)), in
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Figure 2.3: The particles pairs are initially placed on pkparallel to the
walls in the bottom half of the channel, oriented along theastiwise (set =
1), spanwise (set = 2) and wall normal (set = 3) directionse Wdlocity gra-
dient (shear) is used as a measure of non-homogeneity diengail normal
direction.

order to have the root mean square of the four tests:

2
: (2.8)

0=33 (- @)

We find that fom, =25000,0,-100/(d), namely the relative statistic error due
to the finite number of particles, remains under 5% duringfifs¢ crossing
time (Fig2.4). So this number of particles seems to be large enough not to
affect too much pair statistics. Conservatively, we detadase a number of

particles 4 times larger in our simulations, then we tracBQOD pairs for each
plane.
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Figure 2.4: The relative statistic errar,/(d) [%)].

27



28CHAPTER 2. PHYSICAL MODELLING AND NUMERICAL METHODOLOGY



Chapter 3

Results and Discussion

3.1 Single-particle Statistics

3.1.1 PDF of Single-particle Position

The main purpose of this section is to present single partitatistics of in-
ertial particles. Indeed, the first step to understand tiawer of the system
described above is to know the particles positions histérgach set during
the simulation. First of all we show some snapshots of gagipositions at
different times, in order to give a qualitative idea of thepdirsion process.
We choose the two sets with initial wall normal locatigjx 2 andzj= 150
(Fig.3.1and3.2).

Since we want also a quantitative measure of the phenomevrpm-
pute the single particle position Probability Density Rimt (PDF) along wall
normal direction for different times, namely the probailif a particle to be
at a certairz” coordinate. PDF displays the istantaneous distributioeach
swarm, concentrated onxa- y plane at the beginning of the simulation. This
is the most basic tool to check particles dispersion intactiennel.

Fig.3.3shows the PDF at different crossing times respectivelyifeptanes
at initial positionszj= 150 (center channely]= 37 andz]= 2 (close to the
wall). PDFs displayed refer to St = 25. The trends for patiakith different
inertia are similar to these (see Hg). PDFs shown in figures are related to
the set of pairs initially orientated along streamwise aio;n. Those related
to the other 2 sets (along spanwise and wall normal dire}tiare very simi-
lar to these. This is because first particles positions df gair are the same
for all three sets, and second particles positions are Mesedo each other,
maximum at the distance of a particle diameter, that is vergliscompared to
the channel dimensions.

29
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Figure 3.1: Some snapshots of particles istantaneousbdistn at several
crossing timest(/1q = 1/4, 1, 3, 8). Particles are released on a plane at
zj =150 (center of the channel). St = 25.
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Figure 3.2: Some snapshots of particles istantaneousbdistn at several
crossing timest( /1« = 1/4, 1, 3, 8). Particles are released on a planzg at2
(near the wall). St = 25.
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Figure 3.3: Single-particle position PDF at several crogsimes for particles
released on a plane 2= 150 (a),z; = 37 (b) andzy = 2 (c).
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Figure 3.4: The PDFs for St = 5, 25 and 125t af14 = 1/4 (a) and 4 (b).
Particles distribution is almost the same for the threecdhifit particle sizes,
expecially at large times (b). An optimum for the segregatite at the walls
is found for St = 25. Particles are originally placedzpt 150.

In Fig.3.3(a) we can see how particles released in the center of thexehan
move as in a diffusion phenomenon, observable from the phcashape of
the PDF for 0< t* /14 < 1inlog scale. Aftet™ /14 = 2 - 4, PDF is almost flat
along wall normal direction, which means that particlegritigtion is very
homogenous. Aftet™ /14 = 8 a significant wall segregation is appreciated.
From Fig3.3(c) we can notice that particles released on a plane clodeeto t
wall move in a different way. Most of them remain very closete wall for a
long period, while a small quantity of particles moves skt the other wall.
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After t™ /14 = 8 most of the particles are still near the origizatoordinate,
so distribution along wall normal direction is very nonhayeoeous. Finally,
Fig.3.3(c) shows that particles released on an intermediate platweeln a
wall and the center channel have a mixed behavior betweetwtherevious
cases. Initially a diffusion phenomenon is appreciatedraadhez" coordinate
of release. Later most of particles move to the nearest wdltlzey start there
a segregation. Other particles move to the opposite walhallyi particles
homogeneity is at an intermediate level between the twaquewcases.

An parametric model to predict PDF in time may be useful. Tie #m
it's possible to fit data of every particle set with a specifacgmmetric function
and extract a time-dependent law for the parameters. Frg.Bit's clear
that data for particles originally placed at the centertiaa be well fitted by
a gaussian function, because of their symmetric diffusefealsior, while data
for particles that start near the wall can be better fittedrbgxaonential func-
tion; this is evident from the linear trend of the PDF’s tail$og scale. Instead,
it's more difficult to find an appropriate fitting function féine other swarms,
because of their mixed behavior between the two previousscads the next
section we will try to find a parametric model only for the twartierlines z; =
2, 150.
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12000
10000
“b 8000 [
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thy

Figure 3.5: The variance of the gaussian distribution iswhior 1 <t* /14 <
3. Particles are originally placed z#= 150.

3.1.2 Parametric Model for Particles Dispersion
Particles released atz} = 150

A gaussian function is chosen to fit PDFs of particles orifyrzut atzt= 150:
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f(x)=

exp [— (X_‘;)Zl . (3.1)

21102 20

In the previous equationx,= t* /14, 0 is the variance ang is the mean
value. It's easy to understand thaf is necessary and sufficient to describe
the phenomenon; in fact, because of its symmetry, the mdaa pds always
more or less equal to 150. In Fig.5 it's shown the variance for different
crossing times. At each time, fit is done only for the rangeatfidelonging
to the gaussian distribution, disregarding phenomenonratifsggregation. As
we can see, variance increases piecewise linearly, anddhes an inflection
point because of the presence of the walls. After the secarssing time the
shape of the PDF departs increasingly from a gaussian émetid after the
third crossing time no longer makes sense to fit data.

It's interesting to notice the presence of a transient,esthe beginning of
the simulation untit* /74 = 1.5, in which the variance increase rate is almost
the same for the three Stokes numbers. This is also obserivablg. 3.4(a),
in which PDFs at™ /14 = 1/4 for the three different patrticle sizes is displayed.
After that, particle inertia plays a predominant role ondigpersion, this latter
becoming the faster the smaller Stokes number. This is bedhe smaller the
particles the better they follow the small vortices, whietirg them from the
center region of the channel to the walls (turbophoresisgs®). Once reached
the walls, there’s an optimum for the segregation rate, wisidound to be the
highest for St = 25, according with previous studies (se€3Fi(ph)). This is
because particles with St = 25 have a relaxation time of theesarder of
the fluid time scale near the walls, so they follow best thacstires in the
boundary layer and they are trapped near the wall more tteaotkiers.

Finally, we fitted the variance’s trends, in order to get aapsatric model
for the dispersion process. Fit is done using a piecewigalifunction for
each Stokes. In this way the separation between the initiaktent and the
faster regime of dispersion is pointed out.

Particles released atz} = 2

If we chose a gaussian function to fit data for the set staftioigp the cen-
terline, we surely need a different one for particles reddasear to the wall.
Indeed, as mentioned above, most of this latter group ofgestremains at a
z"coordinate very close to the initial one. They are as trappedtank in the
boundary layer that releases a little quantity of partielea time in the chan-
nel. Linear trends of PDF’s tails in log scale suggest us @amsexponential
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Figure 3.6: A simple model for the law of the variance is o¢al by a linear
interpolation of the trend ofi? for 1 < t* /14 < 2.3 . Particles are originally
placed azy= 150 (gaussian distribution).

function for the fit:

f(x) =k-exp[—¥T]. (3.2)

In the previous equatior =t*/14. Also here, at each time fit is done only
for the range of data belonging to the exponential distigmtdisregarding
phenomenon of wall segregation. We make this choice in daodgredict with

a very simple model particle dispersion from the boundaygiao the rest of
the channel. Unlike the previous case, here we need botimpteesk and T

to build the model.

In this case PDF’s trend is exponential until the end of tmeusation,
so we fit data front™ /14 = 1 to 8. In Fig. 3.7 values of T and k obtained
from PDF’s fit are shown together with their fits in time. T is d@ure of
the slope of PDF’s tail in log scale: the bigger T the lower $t@pe. The
value of T is more or less the same for the three Stokes nunpetstd /1
= 2. This is also observable in Fig3.9, in which the PDF at™ /14 = 1
for the three different particle sizes is displayed. Afteatt particle inertia
plays a predominant role on the dispersion, this latter imgrng the faster for
St = 25. In fact, as explained above, this kind of particldtofes best the
small vortices in the boundary layer and then they are mosdyemjected
in the center of the channel. We notice how the three valudsaunverge
within t* /14 = 4. So, fixed the time (after’ /14 = 4), the main difference
between the three cases is the value of T: the bigger T ther ldveeslope
(see Fig.3.9), the greater particle omogeneity along wall normal dioggtthe
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Figure 3.7: Data off andk and relative time-dependent laws obtained by
interpolation are displayed. Particles are releasega® (exponential distri-
bution).

greater particle concentration at the second wall. In &ter an infinite time,
we expect a steady state in which most of the particles arapped at the
two walls - with the same concentration - and only few of thewvenalong
the channel at the same rate up and down, keeping the overathdeneous
distribution in the central region. Therefore, PDF tailspe is a misure of
the diffusion rate along" coordinate; with this view we can apply Fick’s first
law to describe qualitatively the phenomenon. The law esldhe diffusive
flux to the concentration field, by postulating that the fluxegidrom regions
of high concentration to regions of low concentration, vatinagnitude that is
proportional to the concentration gradient (spatial Geie):

_ po9
J=-D. (3.3)

J is the diffusion flux,D is the diffusion coefficient or diffusivityg is the
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concentration andis the position. In this case, J is the flux of particles along
wall normal direction,@ is particle concentration at a certaih position and
the gradienl‘;—‘f is related to 1/T, being maximum at the beginning of the simu-
lation and going to zero after an infinite time (see Fg). The diffusivity D

is probably related to the Stokes number both the flow chariatts.
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Figure 3.8: The trend of 1/T (values of T are obtained fitting PDFs). 1/T
is the slope of PDF’s tail in logarithmic scale and it's alsogortional to the
term ‘;—‘g in Fick's first law. We expect that 1/T goes to zero after amitdi
time, which corresponds to an homogeneous particle disimio in the central
region of the channel.

Finally, we can notice that at a certain time PDF for St = 2%gdr than
the other two in the central region. This accords with thediowalue of k for
St =25 (aftett* /14 = 4) and with the maximum of concentration to the walls.
This means that this kind of particles tends to stay in thendaty layers rather
than in the central region.
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Figure 3.9: Comparison between the PDFs for St = 5, 25 andat2®o dif-
ferent times. At" /14 = 1 (a) the three trends are very similar, while at 1
= 8 (b) a different slope for different Stokes numbers is olase: Particles are
originally placed a3 = 2.

If we look at the snapshots of Fig3.1 and 3.2, we notice a similarity
with the pictures of smoke expelled by a chimney and by a fifgign 1.10
In both cases there’s an unidirectional strong pressumiggrathat drives the
second phase (smoke, steam or particles swarms) in the tissep(air) and
the presence of a surface (channel walls or ground) infligetieeflow with a
shear.
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3.2 Pair dispersion

3.2.1 Statistics

In this section the pair dispersion statistics are presenf®r semplicity we
will show results only for St = 25 and then we will discuss amyidtions for
lighter and heavier particles (St =5 and 125 respectively).

As mentioned in Set.4.], in isotropic homogenous turbulence Richard-
son’'s law predicts the scaling d?(t) >~ t3 in the inertial subrange, where
d(t) is the pair distance at tinte Thus, the first quantity we plot is the mean
square pair distancgd? (t)) for different initial wall normal locationg and
different initial orientations (Fi¢s.10). In Secl.4.1we defined the inertial sub-
range such thax < d(t) < L, wherenk = (v3/ <s>)1/4 is the Kolmogorov
length-scale andl is the integral length-scale. We fix upper limit of inertial
range al. = h= 150, that is the half-height of the channel, and it is indipen
dent of the initial position of the plane, while lower lim& fixed at 10 n,
and it varies along wall normal direction becaugg varies. In this way it is
possible to show the exponential trend of dispersion inéartlrtial subrange.
To this aim, we chose straight lines of different slopes dottgr them on the
same figure.

In Fig.3.11the variances? = 5N, (di — (d))? /N is used as error bar to

quantify deviation of separation of each pair from the mealne;N being the
number of pairs for each set.
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Figure 3.11: The variance? = S\, (di — (d))? /N is used as error bar to
quantify the deviation of separation of each pair from themealue.
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Figure 3.10: The evolution of the mean square pair distana (t) > for
particles pairs released zf= 150, (center of the channeb}j = 37 andz; = 2
(close to the wall) oriented along the streamwise, spanagkewall normal
direction respectively (set = 1, 2 and 3 ). Stokes number Sr&Br(nediate
size). Slopes are plotted just as trendlines (no data fithéninertial range

(located between the horizontal lines).
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In Fig.3.12a comparison between St = 5, 25 and 125 is shown for pairs
initially oriented along streamwise direction. In gengrzdrticles with St =
125 separate slower than those with St = 25, while lightes aeparate at the
same speed or faster (see trendlines in the figure).

Since some pairs separate rapidly while others remain tbgsther, slowly
separating pairs (which remain in the dissipative subrpage rapidly separat-
ing pairs (which approach the integral scalem)taminate the statistics in the
inertial subrange. To disentangle the effects of diffesmatles, an alternative
approach, based ait time statistics, has been proposéql [This consists of
fixing a set of thresholdgl,, = p"dy, wherep > 1 andn=1,2,3,..., and then
calculating the timd taken for the pair separation to change frdgrto dy, 1.

By averaging over the particle pairs, we obtain the meantiewé, (T, (dy)),

or meandoubling time if p = 2. Formally, we are calculating the first passage
time. The advantage of this approach is that all pairs arekaiat the same
scales and that finite Reynolds number effects are less tamgorn Fig3.13
the exit time statistics calculated with this method arensho

In Fig.3.14 we show the timel taken for the pair separation to change
from dp to dn 1. We nameT the total exit time, to distinguish it from the
previous statistic. For each figure we draw the trendlinedhfe inertial sub-
range; these latter are proportionald®?, a being the exponent we chose
for the slopes in Fig.10 We also show the straight line proportionald®?,
which corresponds to Richardson’s law, and that one prigp@ittod for set
3 at small times near the wall. Finally, in Figl5the total mean exit time for
particels with& =125 is shown, together with the straight line proportional
to d%/6. As evident from the good agreement between dispersiongrand
trendlines, this latter statistic confirm very well resutstained from the first
one (Fig3.10.

We now consider the statistics of the relative velocity & farticle pairs
during the separation process and which we denotg @$ = uj (t) — ux(t).
The relative velocity statistics are of interest becausg grovide information
on the rate of separation of the particle pairs. We considerstatistics of
the relative velocity projected in the direction of the ggpian vector, the
longitudinal component. The former is given by

u = d [d(t)] =u-d, (3.4)
dt

whered = d/d. Following the exit time method described above, we cal-
culate the relative velocity at fixed scales in order to aghigncontaminated
inertial subrange statistics and which we termeéki¢ velocities. We compute
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Figure 3.12: The evolution of the mean square pair distana (t) > for
particles pairs released zf= 150, (center of the channebj; = 37 andz} =
2 (close to the wall) oriented along the streamwise directi€omparison
between St = 5, 25 and 125. Slopes are plotted just as tresdlivo data fit)

in the inertial range.
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the value of the relative velocity componemt(d) whenever a particle pair
has a separation within a specified logarithmic shell ofuadi= d, (1+0.1),
with d, = p"do. This differs from the method we used to calculate the exit
times above as here we are calculating not just the velotityedirst passage
but also at all subsequent passages. In¥Flg.we plot the mean longitudinal
exit velocity, (u, (d)) as a function of the absolute separattbn

St=125;z," =150
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Figure 3.15: Theotal mean exit time (T (d)) for pairs released af = 150 ori-
ented along the streamwise, spanwise and wall normal directspectively

(set =1, 2 and 3). Stokes number = 126= 1.5. Slopes are plotted just as
trendlines (no data fit).
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Figure 3.13: The mean exit tim@), (d)) for pairs released af; = 150, (cen-
ter of the channel)zj= 37 andz} = 2 (close to the wall) oriented along the
streamwise, spanwise and wall normal direction respédgtiget = 1, 2 and 3
). Stokes number = 25 (intermediate size)- 1.5.
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Figure 3.14: Theotal mean exit time for pairs released atj= 150, (cen-
ter of the channel)z;= 37 andz} = 2 (close to the wall) oriented along the
streamwise, spanwise and wall normal direction respdgt{get = 1, 2 and 3
). Stokes number = 25 (intermediate size)= 1.5. Slopes are plotted just as

trendlines (no data fit).
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Figure 3.16: The mean longitudinal exit velocify (d)) as a function of
the separatior for pairs released a = 150, (center of the channeby =

37 andz{ = 2 (close to the wall) oriented along the streamwise, spesand
wall normal direction respectively (set = 1, 2 and 3). Stokamber = 25
(intermediate size)p = 1.5. Slopes are plotted just as trendlines (no data fit).
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3.2.2 Discussion

The first observation we do regarding Fid.0is that the slopes of trendlines in
the inertial subrange are much steeper than those in horaogsiisotropic tur-
bulence, expecially for the swarm initially placed at thetegline ¢ =150).
In fact we find a trend proportional t8 and not tat3, as predicted by Richard-
son’s law. Focusing on this set of particles, we note that thave the cen-
ter region and spread to the walls exploring channel’'s regiaith shear’s
value progressively higher (see FHdlL7), namely they go through an increas-
ingly nonhomogeneous flow (see also Sel). Thus, first hypothesis about
disagreement with Richardson’s law is that the shear soméveacases pair
separation. Indeed the main difference between isotropicdgeneous tur-
bulence and the channel flow is that in this latter the shdavdaoces a new
time and length scale in the flow, and consequently also irst¢héng of pair
dispersion. Here below we qualitatively discuss this éffex we also present
several measures in order to quantify the role of the sheapaced with that
one of turbulence fluctuations on dispersion process.
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Figure 3.17: The mean shedu; /dz" along the wall normal direction in the
channel flow.

Still looking at Fig3.1Q the closer to the wall the location of particles
release the more different behavior between set = 1, 2 andafpeeciated.
For all the cases, pairs of set = 3 separate faster than tHasst ¢ 2, and
the latter separate faster than those of set = 1. This diffdrehavior can be
justified by the different effects of fluid motions on the gaat the first stages
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of simulation. For example, for particles initially placed a plane az] =
2 (close to the wall), pairs initially oriented along wallrmaal direction are
affected above all by the action of the shear and in seconer tmdthe effect
of the quasi-streamwise counter-rotating vortices whigputate the near wall
region (see Set.2 for details). Instead pairs initially oriented along spisav
direction are affected only by the effect of the counteatiog vortices and
finally pairs initially oriented along streamwise directiare not affected by
any of these two fluid structures, but only by the local tugbge fluctuations.
This is no more true for particles released at the cente(hige3.10a)): here
initial orientation affects almost for nothing pair dispien. In fact, as we
can see in Fig.17, the greater the distance from the walls the less the shear
value, being this latter zero at the centerline. This mehasthe greater the
distance from the walls the more turbulence fluctuationsivecthe only cause
of separation and in the center of the channel we expect &lparbehavior
analogue to that one in homogeneous isotropic turbulexi@e [

For pairs released & =150, (center channel, Fi§1Q@a)) dispersion
trend is proportional t¢® for all 3 sets, while it decreases tofor the swarm
initially placed atzg = 37 (Fig3.1Qb)). Looking at pairs initially put close to
the wall it is evident that the slope is very different for Bieets: it goes from
~ t® for set = 1 down to~ t? for set = 3 (Fig3.10(c)). This difference is due
to the high shear near the wall, which imposes substanfiaireinces on fluid
streamwise velocity also for small increments along wathmal direction. So
particles pairs initially oriented alormaxis are affected by the shear from the
first instants of simulation. If they were tracers, theydullperfectly the mo-
tion of fluid at their positions; for instance, consider twartiles spaced of
 alongz at timet = 0. If we call S= du] /dz" the shear and; anduj the
streamwise fluid velocity components at the two particlesitiums, then the
guadratic pair distance at a certain titne  will be:

=0 = &+|uf-ust]® =82+ [|uf —uflf)
5% +[(S-8))? ~ S5, (3.5)

12

whereS= S|,...,., with the hypothesis that? < [(S- 8)f]2. This result is
in agreement with the slope t?> shown in Fig3.10just above trend of set = 3.
This means that even if in this study we are not tracking tsabat inertial par-
ticles, the difference due to drag and inertia forces (tHg ones we consider
active on the particles) is negligible at the first stagesp dlecause particles
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velociticies are initialized with fluid velocities at théimitial positions. Instead,
pairs of set = 1 and 2 are initially affected only by turbul@inttuations and
since shear effect is dominant on these latter for low vabfes, this pairs

take more time to wander out of alignment fronandy axis respectively, so
that they can be affected by differents values of streamuesacity and start
a faster separation.

From these observations we can infer that the turbulenctéitions and
the shear play two different roles in space and time reggrdair dispersion.
According with Richardson’s hypothesis, for which eddiésealel ~ d(t)
are most effective in the process of dispersion, the smaltuations are re-
sponsable of separation above all in the dissipation sgeramhile the shear,
that is a mean quantity, acts on the bigger scales (inetdlaiasige) and then
it becomes dominant at large time. In FHgL.8we plot a comparison between
the sheadu; /dz" and the inverse of the Kolmogorov time-scalg in or-
der to show that in the center channel the small turbulencgutitions are
predominant on the shear and vice versa at the walls.

0 20 40 60 80 100 12 140

Figure 3.18: Comparison between the shawar /dz™ and the inverse of the
Kolmogorov time-scala. In the center of the channel the small turbulence
fluctuations are predominant on the shear and vice verse atdls.

In Fig.3.19@) we compare the mean square dista{d:’e) for particles re-
lased atz; = 150 with its three componentsl), (d?) and(dZ). At small times
(t" /14 < 1), corresponding to the dissipation subran@¥, ~ (d7) ~ (dZ),
but at larger times (2 €7 /14 < 3), corresponding to the inertial subrange, we
observe tha{d?) ~ (d?) ~ t%. This means that most of the pairs have sep-
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arated so much that at a certain time the two particles of pagthperceived
very different values of streamwise velocity. For instaribe first particle has
segregated at a wall while its twin is driven by the flow at eemif the chan-
nel. Therefore, inertial subrange of turbulence is contiateid by the effect of
the shear and the two particles of most of the pairs decterbkfore reaching
it. In Fig.3.19a) particles are relased z§= 150 oriented along streamwise
direction. A similar behavior was found for other wall nodni@cations and
initial orientations.
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Figure 3.19: The mean square pair dista(‘nt%} compared with its three com-
ponents:(dZ), (d7) and (dZ). At small times (*/1y < 1), (d) ~ (df) ~
<d22> (a) At larger times (2 4 /14 < 3), corresponding to the inertial sub-
range, (d?) ~ (d2) ~ t% and (dZ) ~ t°. Statistics are calculated on the all
pairs. Particles are relasedzgt= 150 oriented along the streamwise direction.
A similar behavior was found for other wall normal locaticersd initial ori-
entations. (b) At larger times (/14 > 4), (d?) ~ (dZ) ~t’. Statistics are
calculated only on the pairs that remain confined in the ceftthe channel,

in the slab 145< z < 155. The fluctuating trends of the lines at the end of the
graph is due to the small number of pairs still within the vigip slab at long
times. Slopes are plotted just as trendlines (no data fit).

We can try to reduce the action of the shear calculating thennsquare
separation<d2> of particles released at the center channel and only fos pair



3.2. PAIR DISPERSION 53

that remain within a slab of flow symmetric to the centerlige that they are
exposed at smaller differences of streamwise velocityedtiss that the thinner
the slab the slower the dispersion, as expected. We can i firends with
the exponential functiorf (t) = t% in order to get a more accurate estimate of
the exponentr in the inertial subrange.

du, /dz"

0O 20 40 60 80 100 120 140

+
z

Figure 3.20: The exponemt of the slope of(d?) in the inertial subrange for
particles initially placed at the centerling}(=150) and for different slabs of
statistics computation. The shear is superimposed for adsgn purposes.

In Fig.3.20values ofa are shown at the limiz"™ coordinate for the corre-
sponding slab. For instance, the valuenoat z= 20 is the exponent obtained
calculating statistics betweeri= 20 andz"= 280. A similar trend for the
shear and the exponeatis found fromz*= 0 toz"= 90 (monotonic decreas-
ing). After that an increase af is appreciated, even if this latter is not so
reliable, because of the fluctuating statistics values dlegt small number of
pairs still within the very thin slabs at long times.

This confined statistics allowed an evaluation of shear émite on pair
dispersion. The exponentreaches the minimum value of this latter being
much less than.8 (obtained with statistics over the whole channel). Howeve
the trend is still rather far from Richardson’s one. It iseimsting to note that
at large times(dZ) becomes dominant even when statistics are confined very
close to the centerline (Fig.19b)). This means that pairs separate above all
along streamwise direction even if the shear is almost rithis behavior is
also found for all slabs of different thickness, namely wharticles are both
affected by turbulent fluctuations and by shear of diffemmaignitude. This
results suggest us that even if in the center channel somés fibatistics are
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very similar to those in a homogeneous isotropic fl@&&][and the shear is
almost null, there must be some other causes for the diffeedravior in terms
of pairs dispersion, probably because of the non-zero mebotity (along
streamwise direction) and because of the turbophoresisatits mainly in the
nonhomogeneous wall normal direction. In Big.9b) the mean square pair
dispersion and its three components are shown for statistofined to the
thinner slab (145< z© < 155).

As mentioned above, thetal exit time provides a good measure of pair
dispersion, in agreement with the trend obtained caImQa(id (t)2> (see
Fig.3.10. This agreement is found because every exit time refetsatinitial
time ¢ = 0), when particles of each pair were very close to each othdr a
every pair was placed at the same wall normal coordinates ishmo longer
true in the computation of thexit time (Fig.3.13), for which we calculate the
average time taken for the pair separation to change fromeshhbld to the
next one. This statistic does not refer to the initial sefi@maand location of
each pair and then it is affected by the istantaneous pogitidhe particles.
Hence the reasons of the non-monotonous trendfd))are not completely
understood. Looking for instance at Fgl3a), we notice that when the graph
reaches its first local minimum value, i.e. A& 20, the effect of the shear is
predominat andd?) ~ (dZ), as clearly visible in Fig.19 This means that at
the eighth threshold, namely @ = p2dy = 19.6, particles of each pair are al-
most completely decorrelated and so an explanation foroited maximum at
d = 150 and the other local minimum @t 500 is not easy to find. A similar
discussion can be provided for thean longitudinal exit velocity (Fig.3.16).

A previous work by Celanét al. [7] reveals results very similar to our.
They superimposed an average linear shear and a turbuletuating field
on a two-dimensional domain, in order to study the effectstten energy
spectrum. They illustrate the physical mechanisms in tesfrithe motion
of Lagrangian particles. Their results are shown in Figjl(a) and3.24a).
At small times, the Richardson prediction is recovered dmdanisotropy in-
duced by the shear is negligible. As the separation becoangsricompared
to the characteristic length scale of the shear, the laffiecta the trajectories
and (d%) ~ (dZ) > (d?), where the subscrigt refers to the component or-
thogonal to the shear (that we nag)e In particular, in this range of scales,
(dZ) ~t? and(dZ) ~t”. Similarly, we find(d?) ~ (df) ~ t° in the inertial
subrange, even if for a smaller range of time (see slope inFR)(c)). Wall
normal component cannot reach the inertial subrange bbfing affected by
the shear and it foIIow$d22> ~ t® at the end of the dissipation subrange. Fi-
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nally, we do not observe any plateau around the stofi@ in the dissipation
subrange. In Fi¢.24a) we plot the quantitys, (r,0), that Celaniet al. say
being proportional to "the time for two particles, initialtoinciding, to reach
a separatiom ”, exactly what we naméotal exit time. Thus we can compare
S (r,0) with (T, (d)), that is displayed in Fig.22b). As mentioned above,
this statistic shows thencontaminated behavior of the particles at several pair
distances. Indeed the plateau @02- 0.22 in the inertial subrange in well
appreciated in the slope (F&224c)).
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Figure 3.21: Comparison between present results and sesultelaniet al.
[7] (a) At small times, Celanét al. recover Richardson prediction, while the
anisotropy induced by the shear is negligible. As the séjparbecomes larger
compared to the characteristic length scale of the sheatatter affects par-
ticles trajectories andd?) ~ (dZ) > (d7), where the subscrigtrefers to the
component orthogonal to the shear (that we namnén this range of scales,
(dZ) ~t%and(dZ) ~t’. (b) Similarly, we find(d?) ~ (dZ) ~t?in the inertial
subrange, even if for a smaller range of time. The wall norroatponent can-
not reach the inertial subrange before being affected bghibar and it evolves
as<d22> ~ t® at the end of the dissipation subrange. Slopes are plotstchgu
trendlines (no data fit). (c) No plateau is observed arouadkbpe~ t3 in the
dissipation subrange.
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Figure 3.22: Comparison between present results and sesfuelaniet al.

[7]. In Celaniet al. the quantityS; (r,0), shown in panel (a), is proportional to
the time for two particles, initially coinciding, to reachsaparatiorr, which

is exactly thetotal meanexit time, shown in panel (b). Slopes are plotted just
as trendlines (no data fit). This statistic showsuheontaminated behavior of
the particles pairs at several inter-particle distancdse flateau of the slope
at a value of 29 ~ 0.22 in the inertial subrange in well appreciated (c).
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Chapter 4

Conclusions

In this work we analyzed the dispersion of micrometer sizstial particles
by examining the behavior of particles pairs injected in a-homogeneous
and anisotropic turbulent shear flow. Pseudo-spectralcDMemerical Sim-
ulation was carried out to calculate the flow field at frictiRaynolds number
Re; =150 in a 4cm - high channel. Lagrangian tracking was used to describe
the motion of large swarms of particles with different iiegriprecisely with
sizedp = 45, 100 and 23Qum, corresponding t& = 5, 25 and 125 respec-
tively.

First, we showed time-dependent PDFs of single-partidé&ildutions in-
side the flow domain. We noticed that the dispersion of thégbes follows
different laws for swarms injected at different wall nornh@ations. In par-
ticular, particles released at the center of the channebsiio the walls with a
Gaussian behavior, while most of the particles injected tlreawalls remain
very close to their initial wall normal coordinate. We fittddta of these two
swarms and we created a simple parametric model to prediitipa spread-
ing from the injection planes to the rest of the channel. Tha&lel can be
applied in a lot of real situations, such as for studies ofl@dispersion by a
chimney or by a fire in the atmospheric boundary layer.

Then, we showed particle pair dispersion, through both ftkeé and
fixed-scale statistics, the latter used to displayiaeontaminated inertial sub-
range, i.e. not affected by the different separation ratpaifs that separate
slowly and those that separate rapidly. We found a very gtdmviation from
Richardson’s scaling- t2 in the inertial subrange in isotropic homogeneous
turbulence. Indeed, pairs separate proportionally’ favherea varies from 4
up to 9 depending on their Stokes number, wall normal coatdiof injection
and initial orientation. We justified this trends by the antof the shear, but we
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founda >3 even when statistics are confined around the nearly-honeoges
central region of the channel. So there must be other redeoitisis devia-
tion from Richardson’s law, probably due to the non-zeromesocity profile
along streamwise direction or to the turbophoresis. We @ewbour results
with results of Celanét al.[7]. They superimposed an average linear shear and
a turbulent fluctuating field on a two-dimensional domainpider to study
the effects on the energy spectrum. They illustrate theipalymechanisms
in terms of the motion of Lagrangian particles. We both fotmat at small
times, the anisotropy induced by the shear is negligiblé abithe separation
becomes larger compared to the characteristic length s¢dle shear, the
latter affects the trajectories afd?) ~ (d2) > (d2). In particular we both
obtained(dZ) ~ t° in the inertial subrange.

Finally, we propose some future developments. The reasbtiseale-
viation of pair dispersion from Richardson’s law have to barfd. To this
aim, tracer particles should be tracked, so that they sathpl@henomenon
of dispersion without any low-pass filter due to inertia, idong a more ac-
curate action of the small-scales of turbulence on pairrsgipa. After that,
the parametric study in thdRe;, &) space should be expanded, in order to get
a more complete collection of results at several configomatiof the system
fluid turbulence-inertial particles. Finally, the filtegreffects of the flow field
on particle pair dispersion have to be studied, to get amasgi of the errors
introduced by Large Eddy Simulations.
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