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Abstract This paper investigates the behaviour of elongated, axi-symmetric ellipsoidal particles, their interac-
tion with turbulence, and the effects of the ellipsoids on turbulence in a turbulent channel flow with Reτ = 150.
The simulations are carried out with full four-way coupling using the point-source approach: the particles are
affected by the fluid, the particles affect the fluid, and the particles can collide with each other or the wall using
a realistic collision algorithm. The trajectories of the ellipsoids are tracked by solving the translational and
rotational equations of motion in a Quaternion framework and are closed with hydrodynamic drag and torque
laws. To specifically identify the effect of particle shape, simulations of single phase channel flow are compared
to simulations with spherical particles and to simulations with ellipsoids. In all cases, the driving pressure drop,
to establish a flow with Reτ = 150, is kept constant. Both the spherical particles and the ellipsoidal particles
have a Stokes number of 5. Although the volume fraction is very low, 0.00725 and 0.0219 % for the spheres
and ellipsoids, respectively, there is some effect of the particles and the ellipsoids on the turbulence. Although
the transport terms in the turbulent kinetic energy equation of the fluid are hardly affected, the turbulence
kinetic energy itself decreases by 6.0 % for the flow laden with spherical particles and 4.8 % for the ellipsoidal
particles. The homogeneous dissipation of turbulence kinetic energy by the fluid decreases due to the addition
of particles, and the production also decreases. The particles dissipate turbulence kinetic energy of the fluid
phase, predominantly in the near-wall region. Because there is a high average slip velocity in the stream-wise
direction between the particles and the fluid in the near-wall region, the root mean square of the particle velocity
is higher than that of the fluid velocity in this direction. In the other directions, the root mean square velocities
of the particles are significantly lower than of the fluid. There is, however, a positive slip velocity between the
particles and the fluid in the wall-normal direction, indicating that the particles move towards the wall with
a higher momentum than that they return to the centre of the channel with. As a result, there is a 4–5 times
higher concentration of particles near the wall than in the centre of the channel. As both the spherical and the
ellipsoidal particles are very small, there is no major difference in their overall behaviour. However, in the
near-wall region, there are some profound differences. The collision mechanism of ellipsoids with the walls
is significantly different compared to spheres, the former predominantly inducing rotation resulting from a
collision and the latter predominantly moving away from the wall after colliding. This is confirmed by the
strong rotation as well as large root mean square of rotation of the ellipsoidal particles in the near-wall region.
This results in a slight inward shift of the peak of the root mean square velocities of the fluid and the ellipsoidal
particles as well as the peak in slip velocity, driving the momentum transfer, compared to the simulations with
the spheres. Finally, the statistics of the orientation show that the ellipsoids align in the stream-wise direction
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in the near-wall region, because of the fluid boundary layer as well as the particle–wall collisions, but that
there is no significant orientation of the ellipsoids outside of the near-wall region.

1 Introduction

Solid particles suspended in turbulent flows occur widely in industrial processes, such as the paper industry,
chemical and process industry, fuel combustion processes, as well as in nature, such as sand storms and the
spread of soot particles, to name a few. As such flows occur frequently, it is very important to understand
the complex phenomena concerning the interaction of particles, the role of particle shape, and turbulence.
In the literature, there are a large number of experimental and computational studies related to spherical
particles suspended in wall-bounded turbulent flows, e.g. [9,18–20,22,24,28,30,32]. Assuming that particles
are spheres greatly simplifies the challenge of understanding their behaviour in a turbulent flow; however, this
is not often the case in reality, as the shape of solid particles in turbulence can be arbitrary in most natural
and industrial processes. The behaviour of anisotropic non-spherical particles in turbulence is still poorly
understood, especially the two-way and four-way coupling effects. The coupling mechanisms between the
fluid phase and the non-spherical particles as well as the interactions of non-spherical particles with each
other or the wall (i.e. collisions) are much more complicated than the coupling between fluid and spheres.
Unlike spheres, the orientation and rotational motion of non-spherical particles can dramatically influence
the hydrodynamic drag force and torque. Moreover, collisions can have a strong effect on the rotation and
translation of the non-spherical particles.

An analytical equation expressing the torque on an ellipsoid in a flow under Stokes conditions has been put
forward by Jeffery [17]. Subsequently, Brenner [4–6] have derived equations describing the drag and lift forces
acting on various ellipsoidal particles in a flow under Stokes conditions. A further discussion of these equations
is presented in Gallily and Cohen [15]. In the past few decades, only a limited number of experiments and
modelling studies are reported for ellipsoidal or fibre-like particles in wall-bounded turbulent flows. Numerical
studies of dispersed elongated ellipsoidal particles in wall-bounded turbulent flows are described by Fan and
Ahmadi [12,13], and Brownian effects of the fluid on the particles are discussed in [14]. A direct numerical
simulation (DNS) study on the behaviour of ellipsoids is reported by Zhang et al. [37], followed by a one-way
coupled DNS study performed by Mortensen et al. [26,27] and Marchioli et al. [21]. All these studies concern
one-way coupling, i.e. the particles are affected by the fluid, but the effects of the particles on the fluid as
well as particle-particle interactions are neglected. In all of the above papers, the effects of the elongated
shape, aspect ratio, and inertia (Stokes number) on the dispersion of elongated particles in turbulent flows
have been reported and discussed, and the statistics of ellipsoidal particles are provided. Ellipsoidal particles,
like spheres, accumulate in the near-wall region and preferentially concentrate in low-speed fluid regions near
the wall, commonly referred to as low-speed “streaks”. Furthermore, the orientation statistics of ellipsoidal
particles with different inertia and aspect ratio were investigated by Mortensen et al. [27] and Marchioli et al.
[21]. It is generally found that ellipsoidal particles have a preferential orientation in the stream-wise direction
in the near-wall region and that this preferential orientation increases with the aspect ratio of the particles. In
the centre of the channel, the small ellipsoids are more randomly orientated.

To investigate particle effects on the fluid, two-way or four-way coupling methods are required, but the
equations expressing the coupling mechanisms between the particle translation and rotation with the fluid are
very complex. Recently, Andersson et. al. [2] have proposed a novel torque-coupling scheme, for the two-way
coupling between Lagrangian point particles and Eulerian fluid phase. Furthermore, the effects of particle–
particle interactions are complex and may have a very significant effect on the rotation as well as the preferred
location of the particles. Hence, even in very dilute flow, it is unclear if one-way coupling is justified: the
justification of this approximation is less clear than with spherical particles.

In this study, full four-way coupling is applied in the prediction of the behaviour of ellipsoidal particles in
fully developed turbulent channel flow. This implies including the effects of the fluid on the particles, the effects
of the particles on the fluid, as well as realistically resolving the effect of particle-particle collisions. For the fluid
phase, the particles are treated as point-sources, thus including the effects of the particles as additional source
terms in the fluid phase equations. This requires the particles to be smaller than the Kolmogorov micro-scale,
ηk , for this approximation to be justified [10].

In the present work, the behaviour of small anisotropic ellipsoidal particles with an aspect ratio of 3 and
a Stokes number of 5 is elucidated in turbulent channel flow and compared to simulations of the channel
without particles (i.e. single phase) and with spherical particles. The equations of motion of the particles are
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solved in the Lagrangian framework, computing the trajectory of each individual particle by solving Newton’s
second law. In the previous studies mentioned above, the orientation of the particles is usually determined by
unit Quaternions, or Euler parameters [3] in conjunction with the corresponding rotation matrix, to explicitly
transform variables into different co-ordinate systems. The present work uses exclusively unit Quaternions,
without the necessity of determining the rotation matrix. This requires a new expression of coupling the different
co-ordinate systems with the unit Quaternion directly. Moreover, to determine the temporal behaviour of the
unit Quaternions, a new method to integrate unit Quaternions is put forward in this paper. This new method
only employs unit Quaternion multiplication, avoiding the use of addition or subtraction of Quaternions,
which gives rise to inevitable numerical errors. This novel algorithm is based on a predictor–corrector method,
avoiding the mixing of variables at different time levels. By the application of new rotation and collision
models as put forward in this paper, more accurate particle statistics (orientation and angular velocity) can be
predicted.

This paper does not only report the statistics for the particulate phase, but also the statistics for the fluid
phase, the statistics for fluid–particle interactions, and the statistics of fluid dissipation, particle dissipation,
and production terms in the equations governing the fluid–particle flow. Through the analysis of the turbulence
kinetic energy equation of the fluid including the particles, the effects of the particles on the flow turbulence
can be investigated and discussed.

The aim of this work is to investigate the behaviour of ellipsoidal particles in turbulent channel flow, by
comparing with a channel flow without particles and a channel flow with spherical particles. The outline of the
paper is as follows: Sect. 2 describes the governing equations of simulations and coupling mechanisms between
fluid and particle phases, and new Quaternion models are derived to determine the rotation and orientation
of ellipsoidal particles. An accurate collision model is introduced, and the turbulence kinetic energy (TKE)
equations are also included in Sect. 2. The simulation set-up and boundary and initial conditions are discussed
in Sect. 3. The results and discussion of the results are in presented in Sect. 4. Finally, Sect. 5 summarises the
paper and presents an outlook for the future.

2 Modelling framework

2.1 Fluid phase

The fluid is assumed incompressible, isothermal, and Newtonian and governed by the continuity and Navier–
Stokes equations:

∂u f
i

∂xi
= 0 (1)

and

∂u f
i

∂t
+ u f

j

∂u f
i

∂x j
= − 1

ρ f

∂p

∂xi
+ ν f ∂2u f

i

∂x2
j

+ δPi + Πi (2)

where u f
i is the velocity, the superscript f represents the fluid phase, and subscript i is the i th (i = 1, 2 or 3)

component. On the right-hand side of Eq. 2, p represents pressure, and the mean constant pressure drop δPi
drives the flow. The last term Πi in the equation describes the momentum exchange between particle and
fluid phases and will be discussed in the next Section. The properties of fluid in the channel are shown in the
Table 1.

In fully developed channel flow, the averaged stress in the direction of the flow is given by

τ(y) = ρ f ν f du1

dx2
− ρ f u f ′

1 u f ′
2 = τ0 = const (3)

Table 1 The properties of the fluid phase

Friction velocity (uτ ) Density (ρ f ) Kinematic viscosity (ν f ) Friction Reynolds number (Reτ )
0.11775 m/s 1.3 kg/m3 1.57 × 10−5 m2/s 150
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as the Reynolds’ stresses u f ′
1 u f ′

2 → 0 as y → 0, and hence, the viscous shear stress on the wall is
expressed as τ0. This viscous shear stress at the wall can enter into the characteristics of the flow by the
combination of

uτ =
√

τ0

ρ f
(4)

where uτ has the units of velocity and is therefore a natural scale of the velocity close to the wall, commonly
referred to as the friction velocity. The friction Reynolds number is then defined by

Reτ = uτ h

ν f
(5)

where h is the half height of the channel. Also, the characteristic length scale of the flow near the wall can be
determined by

l = ν f

uτ

(6)

and the corresponding time scale by

τ f = ν f

u2
τ

. (7)

The friction Reynolds number of the channel flow is given in Table 1. Based on the friction Reynolds number,
a driving pressure drop for the channel flow, δP1, can be determined to exactly overcome the wall shear
stress as

δP1 = ρ f ν f 2
Re2

τ

h3 . (8)

2.2 Lagrangian anisotropic ellipsoidal particle modelling

The motion of ellipsoidal particles can be divided into translational and rotational components. To describe
both components, two Cartesian co-ordinate frameworks are adopted: body space and world space. In world
space, the Cartesian co-ordinates are fixed in the origin of the initial Cartesian framework, which corresponds
to the Eulerian framework of the fluid phase. In body space, the axis of the co-ordinates follows the orientation
of the particle, and the x axis is aligned with the principal axis of the particle. Moreover, the origin of body
space is fixed on the particle mass centre. The two co-ordinate frameworks are depicted in Fig. 1. The linear
motion of particles is easily described in both world and body space, but the transformation of co-ordinate
systems for the rotational motion of ellipsoidal particles requires a more complex approach.

Fig. 1 The world space (left) and body space (on the ellipsoid) co-ordinates. The xb axis of the body space co-ordinate system
always aligns with the major axis of the ellipsoidal particle, whereas the world space co-ordinates remain fixed in space and time
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2.2.1 Rotational motion

The orientation of small ellipsoidal particles in turbulent flow can significantly influence the hydrodynamic
drag force and torque of particles; therefore, an accurate representation of the rotation operator determining
the orientation of particles is very important. In most related papers [13,21,27,37], a rotation matrix is used to
transform vector and tensor variables between body and world space. However, the application of a rotation
matrix leads to a number of problems, such as error accumulation through successive matrix multiplications
and singular matrix operations, sometimes referred to as “Gimbal lock” [11]. To avoid these potential problems,
this paper uses Quaternions throughout. A Quaternion is a set of four numbers, defined as

q = [q0, q1, q2, q3]. (9)

A Quaternion can represent scaling and rotation. To represent rotation only, Quaternions must preserve unit
length during the computation, otherwise a scaling occurs simultaneously. The unit length property is expressed
as

q2
0 + q2

1 + q2
2 + q2

3 = 1. (10)

Successive rotations are obtained by Quaternion multiplication. The Quaternion multiplication operator is
defined as

t = pq =
⎛
⎜⎝

p0 p1 p2 p3
−p1 p0 −p3 p2
−p2 p3 p0 −p1
−p3 −p2 p1 p0

⎞
⎟⎠

⎛
⎜⎝

q0
q1
q2
q3

⎞
⎟⎠ (11)

where Quaternion t is determined by multiplying Quaternion p with Quaternion q . As can be seen from
Eq. (11), the multiplication of Quaternions is not commutative. A corresponding rotation matrix can be directly
determined from the Quaternion numbers:

R =
⎛
⎝1 − 2(q2

2 + q2
3 ) 2q1q2 − 2q0q3 2q0q2 + 2q1q3

2q1q2 + 2q0q3 1 − 2(q2
1 + q2

3 ) 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q0q1 + 2q2q3 1 − 2(q2

1 + q2
2 )

⎞
⎠ . (12)

And this rotation matrix is commonly used to transform vector and tensor variables between two different
co-ordinate frameworks. For a vector,

v′
i = Ri jv j (13)

and for a tensor,

M′
i j = Rik Mkl Rl j (14)

where the vector v′ and tensor M′ represent the rotated counterparts of v and M, respectively. This paper avoids
the use of rotation matrices all together. Hence, two alternatives to transformation equations corresponding to
Eqs. (13) and (14), expressed in Quaternions are required. Equation (13), expressing the transformation of a
vector by a rotation matrix, is equivalent to

v′ = qvq−1 (15)

where Quaternion q−1 is the conjunction of q , defined as q−1 = [q0, −q1, −q2, −q3], and the Quaternion v
multiplying the Quaternions q and q−1 is considered as a Quaternion [0, v1, v2, v3] in the above equation. For
transforming a tensor by unit Quaternions, a more complex expression is derived below.

A second-order tensor M can be treated as comprising three sequential column vectors,

M =
⎛
⎝

⎛
⎝M11

M21
M31

⎞
⎠

⎛
⎝M12

M22
M32

⎞
⎠

⎛
⎝M13

M23
M33

⎞
⎠

⎞
⎠ = (

M1 M2 M3
)
.

The term R M on the right-hand side of Eq. (14) can be replaced by a tensor M′′ as

M′′ = R M. (16)
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Here, M′′ can be considered as transforming three sequential column vectors (M1 M2 M3) by a rotation
matrix, so a corresponding unit Quaternion can replace the rotation matrix,

M ′′
1 = q M1q−1,

M ′′
2 = q M2q−1, (17)

M ′′
3 = q M3q−1.

Combining the above equations, a new expression is defined as

M′′ = qMq−1 = RM. (18)

Then, Eq. (14) becomes

M′ = R M RT = M′′ RT . (19)

Transposing the tensor M′ gives

M′T = R M′′T , (20)

so,

M′T = qM′′T q−1 (21)

where M′′T = (qMq−1)T . Finally, the transformation of a second-order tensor by unit Quaternions can be
expressed as

M′ = (q(qMq−1)T q−1)T . (22)

Applying Eqs. (15) and (22) avoids the application of a rotation matrix all together; the Quaternion can directly
be used to transform a vector or tensor from world space to body space or vice versa.

In almost all papers concerning the time integration of unit Quaternions, the numerical integration procedure
employs the subtraction or addition of unit Quaternions (e.g. [16,35]). In such papers, the time integration
of unit Quaternions is determined by second-order Adams–Bashforth schemes, which require addition or
subtraction operators between Quaternions. This gives rise to Quaternions exceeding unity; therefore, the
Quaternions need to be normalised after each particle time-step:

q = q√
q2

0 + q2
1 + q2

2 + q2
3

. (23)

Due to this required normalisation procedure, numerical errors are inevitable; as the length of the Quaternion
is altered, so is the relation between the Quaternion components and hence the rotation. To achieve an accurate
rotational motion represented by unit Quaternions, a new Quaternion integration algorithm is put forward
in this paper, based on a predictor–corrector method, completely avoiding the necessity for the addition or
subtraction of Quaternions. The unit Quaternion at time level n + 1 is defined as

qn+1 = q̃nqn (24)

where the unit Quaternion q̃i (i = 1, 2, 3 . . . n) represents the change of orientation of a particle in time-step i
and is given as

q̃n =
[

cos
‖ωn+ 1

2
‖δt

2
, sin

‖ωn+ 1
2
‖δt

2

ωn+ 1
2

‖ωn+ 1
2
‖

]
(25)

where ‖ωn+ 1
2
‖ is the length of the angular velocity ωn+ 1

2
. It should be noted that the length of Quaternion q̃n

is exactly unity. Therefore, the multiplication of the unit Quaternions as expressed in Eq. (25) returns a unit
Quaternion by definition, and hence, no normalisation is required. The Quaternion q̃n and ωn+ 1

2
at mid-point
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between two adjacent time-steps are determined by a predictor–corrector method. The angular momentum
equation of particles is determined by (see e.g. [1])

ω̇b =
(
Ib

)−1
(N b − ωb × Ibωb) (26)

where Ib is the inertia tensor of a particle and Nb is the total torque acting on the particle. The superscript b in
the equation denotes that the variable is evaluated in the body space. Elongated fibre-like ellipsoids with two
equal semi-axis, which are usually referred to as spheroids, are used in this paper. The principal inertia tensor
components of a prolate spheroid in body space are:

I b
xx = 2ma2

5
,

I b
yy = I b

zz = (1 + λ2)ma2

5
.

(27)

In the above equation, m and a are the mass and semi-minor axis of an ellipsoid, respectively, where the major
axis of the ellipsoidal particles is aligned with the x axis of body space. The λ = b/a is the aspect ratio of the
ellipsoidal particles.

2.2.2 Translational motion

The translational motion of a particle is governed by Newton’s second law,
∑

F = m
dup

dt
(28)

where up represents the particle velocity. The sum of all the external forces acting on the particle,
∑

F,
includes the hydrodynamic forces (i.e. drag and lift) and the forces due to collisions with other particles or the
wall. Both these contributions are discussed in the next Section.

2.3 Coupling between fluid and particle phases

The governing equation of Lagrangian particle motion is described by the Basset–Boussinesq–Oseen (BBO)
equation [23]. Due to the large difference in density between the particles and the fluid, most of the terms in
the BBO equation are negligible, and only drag, lift, and torque are considered.

2.3.1 Hydrodynamic drag force

The hydrodynamic drag force acting on an ellipsoidal particle is derived by Brenner [5] under creeping flow
conditions as

Fdrag = μ f πaK(u f @p − up) (29)

where μ f is fluid dynamic viscosity, K is the resistance tensor, depending on the orientation of the particle in
the flow, and u f @p represents the undisturbed fluid velocity at the centre of the particle. The resistance tensor
K in world space is given by

K = (q(qKbq−1)T q−1)T (30)

where Kb is a constant tensor in body space. The off-diagonal components of it are 0, whereas the diagonal
components are given by

Kb
xx = 8(λ2 − 1)3/2[

(2λ2 − 1) ln(λ + √
λ2 − 1) − λ(

√
λ2 − 1)

] , (31)

Kb
yy = Kzz = 16(λ2 − 1)3/2[

(2λ2 − 3) ln(λ + √
λ2 − 1) + λ(

√
λ2 − 1)

] . (32)

A more detailed derivation and discussion of the resistance tensor can be found in [15].
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2.3.2 Hydrodynamic torque

In Jeffery [17], the hydrodynamic torque acting on ellipsoids in a shear flow under Stokes flow condition is
derived analytically. The torque components of an ellipsoid, of which the major axis is along the xb-axis, are
given in body space as

Nb,h
x = 32πμ f a3λ

3(α2 + α3)
(�b

zy − ωb
x ), (33)

Nb,h
y = 16πμ f a3λ

3(α3 + λ2α1)

[
(1 − λ2)Sb

xz + (1 + λ2)(�b
xz − ωb

y)
]
, (34)

Nb,h
z = 16πμ f a3λ

3(α2 + λ2α1)

[
(λ2 − 1)Sb

yx + (1 + λ2)(�b
yx − ωb

z )
]

(35)

where the Sb and �b represent the fluid strain rate tensor and the rotation tensor in body space, given as

Sb
i j = 1

2

⎛
⎝∂u f b

i

∂x j
+ ∂u f b

j

∂xi

⎞
⎠ , (36)

�b
i j = 1

2

⎛
⎝∂u f b

i

∂x j
− ∂u f b

j

∂xi

⎞
⎠ . (37)

It should be noted that the derivatives are to be evaluated in body space, in the framework of the particle, and
not in the Eulerian framework in which the fluid equations are solved. In Eqs. (33)–(35), the constants α1, α2,
and α3 are defined by

α1 = − 2

λ2 − 1
− λ

(λ2 − 1)3/2 ln

[
λ − (λ2 − 1)1/2

λ + (λ2 − 1)1/2

]
, (38)

α2 = α3 = 2

λ2 − 1
+ λ

2(λ2 − 1)3/2 ln

[
λ − (λ2 − 1)1/2

λ + (λ2 − 1)1/2

]
. (39)

The total torque on the particle is the sum of the hydrodynamic torque and the torque arising from possible
collisions,

Nb = Nb,h +
∑

collisions

Nb,c, (40)

and this torque is used to compute the acceleration of angular momentum, Eq. (26). A more detailed derivation
and discussion of the hydrodynamic torque on an ellipsoid in Stokes flow can be found in [15].

2.3.3 Particle effects on fluid phase

The effects of the linear momentum of the particles on the fluid are included in the fluid momentum equation,
Eq. (2), as a source term. The effect of the rotational momentum of the particles on the fluid is assumed small
and has been neglected. The inclusion of this source term is referred to as the “particle-source-in-cell” method.
The PSI-Cell method of Crowe et al. [8] is used, and the force of the particle on the fluid in each computational
cell is volume averaged and added as a source term in the momentum equation:

Π = − 1

V f
cell

Np∑
i=1

Fi
drag (41)

where the summation is for all particles and fractions of them in each computational cell. In this way, the
Lagrangian particle properties are transformed to Eulerian by volume averaging. Note that this method involves
the interpolation of Lagrangian quantities to the fluid cell centres. Yeung and Pope [36] perform a study on the
interpolation schemes in homogeneous and isotropic turbulence and report that the cubic spline interpolation
method has the least effect on the fluid energy spectrum. Therefore, cubic splines are used in this work to
determine u f @p at each of the particle positions in the drag equation (29).
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2.4 Particle collision modelling

In many gas-particle flows, both particle–particle and particle–wall collisions are important mechanisms for
predicting the behaviour of the flow. For ellipsoidal-shaped particles, it is not precisely clear at what mass
loading collisions become important. Therefore, this paper derives and applies a realistic deterministic collision
model for the particles. To achieve this, all potential collisions must be correctly detected in order to add their
contribution to the overall force on each of the particles involved in the collision. Moreover, the particle–wall
collisions are required to keep the particles in the domain.

Firstly, all particle–particle and particle–wall contact points must be determined. This is achieved by placing
a large number of small, fictitious spheres inside each of the ellipsoids, so that the hull of the small spheres in
each ellipsoid provides an accurate representation of the surface of the ellipsoid. The contact points of collision
are then determined by considering the contact points between the small spheres of different but neighbouring
ellipsoids, or between the small spheres and the walls of the channel. Once the contact point has been identified,
the local displacement can be determined at the point of contact. It should be noted that the small spheres are
only used to determine the point of contact, not to determine the actual parameters of the collision.

A small overlap, which is determined at the identified point of contact, represents the local deformation of
the colliding particle. The repellent force resulting from the deformation of the contact point is determined by
using a Hertzian-like force model. This soft-sphere collision model is applied to resolve particle–particle and
particle–wall collisions. The overlap is used as a measure to estimate the local deformation of the particle at
the point of collision and leads to normal and tangential forces based upon the work of [25],

Fn(t) = Kn(t)δ
3
2
n (t)n(t),

Ft (t) = min (μFn(t), Kt (t)δt (t))

where μ is the coefficient of friction, δn(t) is the scalar representing the normal displacement, and δt (t) is the
vector representing the total tangential displacement mapped onto the current reference frame. The tangential
displacement vector is determined by integrating the successive tangential displacements and mapping this
into the current frame of reference of the collision. Kn and Kt are the spring constants for the normal and
tangential forces, respectively, as predicted by Hertzian contact theory,

Kn,l(t) = 4

3
E∗√r(t),

Kt (t) = 8G∗√r(t)δ(t)

where r(t) represents the local radius of the particle–particle contact and the subscript l represents loading,
i.e. the particles moving towards each other. To account for the dissipative nature of the collision, a coefficient
of restitution is introduced to determine the spring constant value for unloading, represented by the subscript
u, following [34]

e =
√

Kn,u

Kn,l
. (42)

The subsequent forces and torques of the particle–particle and particle–wall collisions are then added to the
particles in contact. The collisional torque for each collision is determined as

Nc = (Fn + Ft ) × Xmp−cp (43)

where Xmp−cp represents the vector from the centre of the particle to the contact point of the collision. Note
that the above equation is expressed in world space and is converted to body space for application in Eq. (40).
The collision algorithm can be summarised as follows:

(i) Identify all the points of contact between particle-particle and particle-wall.
(ii) At each point of contact, determine the normal and tangential overlaps, which represent the local

deformation of the solid.
(iii) From the overlaps, determine the resulting normal and tangential repellent forces associated with each

contact point.
(iv) From the forces, determine the resulting torque on the particle.
(v) Apply the forces and the torque to the equations of motion of each corresponding particle.
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2.5 Turbulence kinetic energy equation

To study the effect of the particles on turbulence, an analysis of the terms on the turbulence kinetic energy
(TKE) equation is required. Reynolds decomposition is applied when analysing TKE equation. A variable u
can be divided into two parts: a mean component and a random fluctuating component,

u = U + u′ (44)

where U is the mean component and u′ is the fluctuating part. The turbulence kinetic energy is defined as

k = 1

2
〈u′ f

i u′ f
i 〉, (45)

and the TKE equation for single phase fully developed channel flow including the effect of particles can be
simplified as

d

dy

(
1

2
< u′ f

y u′ f
i u′ f

i > +u′ f p′

ρ f
− ν f dk

dy

)
= P − ε̃ + εp (46)

where the left-hand-side terms are commonly referred to as the transport terms of TKE and where P and
ε̃ are the production and the homogeneous dissipation, respectively, and where the particle dissipation rate
εp is derived from the particle-source term in Eq. (2). In fully developed channel flow, the production and
homogeneous dissipation rate are given by

P = − < u′ f
x u′ f

y >
∂U f

x

∂y
, (47)

ε̃ = ν f <
∂u′ f

i

∂x j

∂u′ f
i

∂x j
>, (48)

and the particle dissipation rate is given by the equation

εp = < Π ′
i u

′ f
i > (49)

The particle dissipation rate represents the attenuation of turbulence due to the presence of the particles.
The symbol <> represents the averaging operator in the above equations. The terms on the left-hand side

of Eq. (46) are transport of kinetic energy in a inhomogeneous field: turbulence itself, the pressure fluctuations,
and viscous stresses, respectively. Due to the homogeneity of stream-wise (x) and span-wise (z) directions, all
the items of these two direction gradients are zero, and the full TKE equation can be simplified to Eq. (46),
where only gradients remain which are in the y-direction.

For particle-laden turbulent channel flow, an additional term arises on the TKE equation, representing the
effect of the particles. This terms originates from the source term Πi , presented on the momentum equation,
Eq. (2).

2.6 Correlation between particle and fluid velocity

In the equation for the drag of the ellipsoidal particles, Eq. (29), the force is determined by the velocity difference
between the particle and fluid at the position of the particle. Hence, the velocity relationship between two phases
plays an important role: it determines where energy is transferred from the fluid to the particles or vice versa.
The correlation coefficient of relative velocities at the particle point is defined as

ρ̂ f p = < u′
f @pu′

p >

[
< u′2

f @p >< u′2
p >

] 1
2

. (50)

For high Stokes number particles, i.e. particles with large inertia, it is expected to find a small correlation
between the particle velocity and fluid velocity. However, as the particle inertia decreases, the particles tend
to behave more and more as fluid particles. It is expected that the particle shape also plays an important role
on the velocity correlation. As non-spherical particles may have a preferential orientation, this will affect
the correlation significantly. In this work, the velocity correlation of ellipsoidal particles will be compared to
spherical particles with the same Stokes number.
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3 Simulation set-up

In this work, the properties of the fluid phase and the computational domain are the same as in the work of
Marchioli et al. [21,22], who have studied this channel case for spherical and ellipsoidal particles. The size
of the channel computational domain is 4πh × 2h × 2πh in x, y, and z directions, respectively, in which
h = 0.02 m is the half height of the channel, and the mean flow is in the x direction. There are solid walls in
the low and high y directions, and in all other directions, periodic boundaries are applied. The corresponding
flow conditions are given in Table 1. This leads to a required external pressure drop based on Eq. (8), which
for the flow conditions specified in Table 1 leads to δP1 = 0.90123 Pa/m.

3.1 Computational parameters

This domain is discretised in 161 × 171 × 161 grid points, where the grid spacing is uniform in the x and
z directions. The grid spacing in the y direction is refined towards the walls, using a tanh distribution with a
growth factor of 1.6 on both sides. This ensures 4 grid points in the first 5 y+ layer of the wall. The temporal
operator in the Navier–Stokes equations is approximated with a 3 point backward Euler scheme with second-
order accuracy with respect to the time-step. The non-dimensional time-step for the fluid phase, �t+ = �t

τ f
, is

0.08826. The advective terms in the Navier–Stokes and continuity equations are approximated with a central
scheme, with second-order accuracy with respect to the local grid spacing.

3.2 Particles

This paper compares simulations of a turbulent channel flow with the same turbulent channel flow with spherical
particles and the channel flow with ellipsoidal particles. The ellipsoidal particles have an aspect ratio of λ = 3.
Both the spheres as well as the ellipsoids have a Stokes number of 5. The response time for the ellipsoidal
particles, τp, is derived by Shapiro [29] as

τp =
2a2 ρ p

ρ f

9ν f

λ ln
(
λ + (λ2 − 1)

1
2

)

(λ2 − 1)
1
2

. (51)

The properties of the particles considered in this paper are summarised in Table 2. For the translational
velocity, a velocity-Verlet temporal discretisation is employed with a dimensionless time-step of �t+ =
�t
τ f = 8.826 × 10−5. The same time-step is used for the integration of the unit Quaternions. This time-step is
significantly smaller than the fluid time-step, but only such a small time-step can guarantee the accuracy of
the soft-sphere collision model for the given material and flow parameters.

For the simulations concerning spherical and ellipsoidal particles, 200,000 particles are randomly placed
in the domain of the channel with fully developed single phase flow as initial conditions for the fluid. The
initial velocity of the particles is the same as the local fluid velocity, and the rotational velocity is set to zero.
The simulations are carried out in our in-house code MultiFlow [7,33].

4 Results and discussion

In this Section, the results of three different simulations are compared to each other and analysed: a turbulent
channel flow, the same channel flow with spherical particles, and the same channel flow with ellipsoidal particles
with the same Stokes number as the spheres. Both the fluid and particle velocity statistics are analysed, as well
as the correlations between the particle and the fluid. Also, the effect of the different particles on the turbulence

Table 2 The properties of particles

Shape Aspect ratio (λ) Stokes number (St) Density (ρp) Semi-major axis (b)
Sphere 1.0 5 225.68 kg/m3 47.99μm
Ellipsoid 3.0 5 120.77 kg/m3 143.96μm
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is reported, by analysing the terms on the TKE equation, and the effects are discussed. Finally, the orientation
and angular velocity of the ellipsoidal particles are reported, discussed, and compared to earlier findings.

4.1 Single phase

To ensure the simulation, results for the channel flow are in accordance with previous results of [22], in which a
number of researchers compare their findings on this case, and Figs. 2 and 3 compare the results of the current
framework with the results of the UUD group (Marchioli and Soldati) [22] for the stream-wise velocity and
the RMS of the stream-wise fluid velocity, respectively. As can be seen, the results are in very good agreement.

4.2 Particle-laden channel flow

4.2.1 Distribution of particles

In this study, the average volume fractions, < α > of the spherical particles, and ellipsoidal particles are
around 0.00725 and 0.0219 %, respectively. Figure 4 shows the relative volume fraction, α(y)

<α>
, showing a

Fig. 2 Fluid stream-wise direction mean velocities as functions of the distance to the wall for: clear fluid (solid line with circle),
Marchioli et al. [22] data (dashed line)

Fig. 3 Fluid stream-wise direction RMS velocities as functions of the distance to the wall for: clear fluid (solid line with circle),
Marchioli et al. [22] data (dashed line)
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Fig. 4 Relative volume fraction as a function of distance to the wall for: spherical case (dashed line), ellipsoidal case (solid line)

Fig. 5 Relative volume fraction in near-wall region as function of distance to the wall for: spherical case (dashed line), ellipsoidal
case (solid line)

strong accumulation of the particles in the near-wall region. The difference between the spheres and the
ellipsoids is small, but the relative volume fraction of the ellipsoids peaks slightly inside of the channel,
due to the larger size and the different dynamics of the collisions of the ellipsoids. Figure 5 shows a close-
up of the near-wall region, where it can be observed that the volume fraction of the ellipsoids reaches a
maximum a bit away from the wall, at y+ = 2.5. In both cases, the number of particles in the near-
wall region are several times (≈4–5) larger than the number in centre region. Figure 6 shows an instanta-
neous fluid velocity and the distribution of ellipsoids in a wall-parallel plane y+ = 6.5. It can be clearly
seen that more ellipsoids accumulate in the low-speed streaks (blue region), whereas the high-speed region
(red region) contains only few ellipsoids. This is in line with earlier observations of spherical particles.
Figure 7 shows an instantaneous contour plot of wall-normal fluid velocity and the distribution of the ellip-
soids in the X−Y plane at z+ = 942. In this Figure, only a few ellipsoids appear in the relative large
velocity and low strain rate zones (dark blue and red zones), but the ellipsoids preferentially concentrate in
low velocity and high stain regions (yellow and green areas between the high velocity zones). The pref-
erential concentration of particles has been previously reported by Squires and Eaton [31] for spherical
particles.
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Fig. 6 Instantaneous stream-wise fluid velocity (indicated by colour) and distribution of the ellipsoids in the cross-sectional X−Z
plane at y+ = 6.5 (colour figure online)

Fig. 7 Instantaneous wall-normal velocity (indicated by colour) and distribution of the ellipsoids in the cross-sectional X−Y
plane at z+ = 942 (colour figure online)

4.2.2 Velocity statistics

In this Section, the velocity statistics of both phases are reported and discussed, including the mean stream-
wise velocity, the root mean square (RMS) of velocity in all directions, the Reynolds stresses, and the relative
velocity between fluid and particles. Although the volume fraction of the particles in both cases is very small,
the presence of particles in turbulent flow still influences the fluid statistics slightly.

4.2.3 Fluid velocity statistics

Figure 8 compares the mean fluid stream-wise velocities for the 3 different cases: the clear channel, the
channel with the spheres, and the channel with the ellipsoids. Under the dilute flow condition, the difference
of mean stream-wise velocity between particle-fluid and clear fluid simulations is very small, but is slightly
affected by the particles. The fluid velocity in the particle-laden case is generally slightly lower in the region
of 2 < y+ < 40. In the very near-wall region as well as the centre of the channel, the fluid velocity for the
spherical particle-laden case is the same as in the case of the clear channel. The mean fluid velocity is slightly

Fig. 8 Fluid stream-wise direction mean velocities as functions of distance to the wall for: single phase (solid line with circle),
fluid with spherical particles (dashed line), fluid with ellipsoidal particles (solid line)
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Fig. 9 Fluid stream-wise direction RMS velocities as a function of the distance to the wall for: single phase (solid line with circle),
fluid with spherical particles (dashed line), fluid with ellipsoidal particles (solid line)

Fig. 10 Fluid wall-normal direction RMS velocities as a function of the distance to the wall for: single phase (solid line with
circle), fluid with spherical particles (dashed line), fluid with ellipsoidal particles (solid line)

lower for the channel flow laden with ellipsoidal particles, most likely because the volume fraction in this case
is slightly higher compared to the case with spheres. As the flow is driven with the same pressure drop in all 3
cases, a slightly lower fluid bulk velocity, and therefore value of Rebulk, is observed for the two particle-laden
cases. The bulk fluid velocity decreases from 1.803 m/s in clear channel to 1.781 m/s for the flow laden with
spheres, and 1.721 m/s for the flow laden with ellipsoids. Hence, part of the driving pressure drop is used to
account for the additional dissipation caused by the behaviour of the particles.

The fluid RMS velocities are shown in Figs. 9, 10 and 11 for the 3 different orthogonal directions. Again,
due to the low mass loading of the particles in the flow, the results of the two cases with particles are very similar
to the clear channel flow statistics. The peak values of the span-wise and wall-normal fluid RMS velocities
are slightly reduced, but the fluctuations slightly increase in the stream-wise direction for the channel with
spherical particles. Hence, the particles seem to stabilize the flow slightly in the span-wise and wall-normal
directions, but increase the fluid velocity fluctuations in the stream-wise direction. The latter arises due to the
magnitude of the slip velocity between the fluid and particles in this direction in the near-wall region: particles
are slightly faster than the fluid in this region and therefore may increase the local fluid momentum and thus
the fluctuation in velocity. In all of the particle-laden cases, the peak of the RMS velocities shifts slightly to
the centre of the channel when particles are added to the flow. The results are in general agreement with the
observations reported in [2].
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Fig. 11 Fluid span-wise direction RMS velocities as functions of the distance to the wall for: single phase (solid line with circle),
fluid with spherical particles (dashed line), fluid with ellipsoidal particles (solid line)

Fig. 12 Fluid Reynolds stresses as functions of the distance to the wall for: single phase (solid line with circle), spherical case
(dashed line), ellipsoidal case (solid line)

Figure 12 shows the Reynolds stresses as functions of the distance to the wall. This Figure shows there is
very little effect of the particles on the Reynolds stresses; possibly, a small shift of the curve to the centre of
the channel as the particles are added.

4.2.4 Particle velocity statistics

Figure 13 shows the mean particle velocity as a function of the distance to the wall for the case considering
spheres and ellipsoids. There is a small difference between the average particle velocity, comparing the spheres
with the ellipsoids. This is because the higher mass loading of the ellipsoids, leading to slightly lower fluid
velocities. The slip velocity is similar in both cases.

The slip velocity between the fluid and the particles in the stream-wise direction for the 2 particle-laden
cases is shown in Fig. 14. It can be observed that the particles obtain their momentum from the fluid in the outer
region of the boundary and the centre of the channel, for y+ > 20. In the inner layer of the boundary layer,
the particles add momentum to the fluid, as the slip velocity is negative. The peak of the momentum transfer
lies slightly away from the wall. For the spherical particles, the momentum transfer peaks around y+ = 5.5,
and for the case laden with ellipsoids, the maximum in momentum transfer lies at y+ = 9.5. Moreover, from
the Figure, it can be seen that the ellipsoidal particles require more momentum than the spherical particles,
and this is due to their higher mass loading of the ellipsoidal particles or the orientation of the ellipsoids, or a
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Fig. 13 Particle stream-wise direction mean velocities single phase (solid line with circle), spherical case (dashed line), ellipsoidal
case (solid line)

Fig. 14 The slip velocity between particles and fluid in the stream-wise direction for: spherical case (dashed line) and ellipsoidal
case (solid line)

combination of the two effects. Fig. 15 shows the slip velocity between the particles and the fluid in the wall-
normal direction. As the slip velocity directly drives the momentum transfer between the phases, it represents
how much of the momentum of the particles is conveyed to the wall region. This means that particles quickly
migrate from the centre of the channel to the wall layer and then slowly move back. As can be clearly observed,
the particles are moving to the wall and are “dragging” the fluid along. Although the mass flux of particles
moving towards the wall and away from the wall is the same, as the statistics predicted by the simulation
have reached steady-state, particles moving towards the wall have a much higher momentum than particles
moving away from the wall. This confirms that mechanism of particles obtaining momentum in the centre of
the channel and transporting this momentum towards the wall even in a stationary situation. Figure 16 shows
the slip velocity between the particles and the fluid in the span-wise direction. There is no momentum transfer
in this direction, confirming the simulation has reached steady-state statistics prior to sampling the statistics.
It should be noted that the average fluid velocity in the wall-normal and span-wise directions are zero, as
the simulations have reached steady-state. Figures 17, 18 and 19 present the RMS of particle velocities and
compare these to the fluid RMS velocity of the clear channel, in the stream-wise, wall-normal, and span-wise
directions, respectively. The figures show that the particles have a larger RMS velocity than the fluid in the
stream-wise direction, but that their RMS velocities in the other 2 directions are lower than the fluid phase. The
increased RMS velocity in the stream-wise direction can be explained from the fact that there is a large mean
fluid velocity gradient and a large slip velocity in the stream-wise direction. The RMS of the particle velocity
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Fig. 15 Slip velocity between the particles and fluid in the wall-normal direction for: spherical case (dashed line) and ellipsoidal
case (solid line)

Fig. 16 Slip velocity between the particles and fluid in the span-wise direction for: spherical case (dashed line) and ellipsoidal
case (solid line)

are coupled to the fluid drag, which in turn is coupled to the slip velocity between the phases. The large mean
fluid velocity, the large fluid RMS velocity as well as a strong drag between the phases will enhance the RMS
of the particle velocities.

On the other hand, velocity gradients and slip velocities are close to zero in span-wise and wall-normal
directions and so there is almost no mean fluid drag in these two directions. Moreover, the particles have a
larger response time than the fluid. Therefore, the RMS velocities of the particles are lower than those of the
fluid in those directions.

The Reynolds stresses as functions of wall distance for the fluid as well as for the two particles are shown
in Fig. 20. This figure shows that the Reynolds stresses of the particles are lower between 15 < y+ < 70, but
are the same in the inner boundary layer and towards the centre of the channel.

4.2.5 Turbulence kinetic energy

In Sect. 2.5 the equation of turbulence kinetic energy (TKE) for fully developed channel flow has been given.
In Eq. (46), three “transport terms” do not produce or dissipate net energy; their average over the channel is
zero. These terms merely transport kinetic energy from one part in the channel to another part.

Figures 21 and 23 show the production term as well as the sum of the dissipation terms of the TKE
equation, as discussed in Sect. 2.5, for the case of the clear fluid, the case with spherical particles, and the
case including ellipsoidal particles. Although the differences are not large, due to the low mass loading of the
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Fig. 17 The stream-wise RMS of velocities for the: clear fluid (solid line with circle), spherical particles (dashed line), ellipsoidal
particles (solid line)

Fig. 18 The wall-normal RMS velocities for the: clear fluid (solid line with circle), spherical particles (dashed line), ellipsoidal
particles (solid line)

particles, there are clear differences between these terms in the case without particles compared to the case
with particles. Compared to the results from the clear channel, the total TKE decreases 6.0 and 4.8 % for the
channel flow including spheres and ellipsoids, respectively. The particle dissipation rates are shown in Fig. 24
for the channel with spheres and ellipsoids. The dissipation caused by the spherical particles peaks around a
distance of y+ = 6 from the wall, whereas the peak of the dissipation caused by the presence of the ellipsoids
lies around a distance of y+ = 8.6 from the wall. This shift is due to the shape difference of the ellipsoids
compared to the spheres. The dissipation of the ellipsoids is also more significant than that of the spheres,
which is most likely an effect of the difference in mass loading. Figures 22, 25, and 26 show the effect of
the particles and ellipsoids on the transport terms in the TKE equation. At the current particle concentrations,
there does not seem to be an effect of the particles or ellipsoids on the transport terms on the TKE equation.

4.3 Velocity correlations

Figure 27 shows the stream-wise velocity correlation coefficient between the particles and the fluid as a function
of the distance to the wall. The correlation is very high and almost constant in most of the channel, except in
the region very near the wall, y+ < 9. The correlation drops off significantly for the case laden with spherical
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Fig. 19 The span-wise RMS of velocities for the: clear fluid (solid line with circle), spherical particles (dashed line), ellipsoidal
particles (solid line)

Fig. 20 Particle span-wise direction velocity RMS single phase (solid line with circle), spherical case (dashed line), ellipsoidal
case (solid line)

Fig. 21 The production term on the turbulence kinetic energy equation as identified in Sect. 2.5, for single phase and particle-laden
cases, as a function of the distance to the wall
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Fig. 22 The turbulence transport term on the turbulence kinetic energy equation as identified in Sect. 2.5, for particle-laden cases,
as a function of the distance to the wall

Fig. 23 The dissipation term on the turbulence kinetic energy equation as identified in Sect. 2.5, for single phase and particle-laden
cases, as a function of the distance of the wall

Fig. 24 Particle dissipation rate as a function of distance to the wall for: channel laden with spheres (dashed line), ellipsoids
(solid line)
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Fig. 25 The pressure transport term on the turbulent kinetic energy equation as identified in Sect. 2.5, for particle-laden cases, as
a function of the distance to the wall

Fig. 26 The viscous transport term on the turbulence kinetic energy equation as identified in Sect. 2.5, for particle-laden cases,
as a function of the distance to the wall

Fig. 27 The stream-wise velocity correlation coefficient between the particles and the fluid as a function of the distance to the
wall
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Fig. 28 The wall-normal velocity correlation coefficient between the particles and the fluid as a function of the distance to the
wall

particles, but even much more so for the case concerning the ellipsoidal particles. This originates from the
complex nature of the collisions between the ellipsoidal particles and the wall, involving rotation of the particle
as well as some translation. For the spherical particles, the wall has most effect on the translational velocity of
the particle.

Figure 28 shows the wall-normal velocity correlation coefficient between the particles and the fluid as a
function of distance to the wall. The trends in this figure are similar compared to the stream-wise velocity
correlation, but are even more pronounced. In near-wall region, the translational velocity of the particles in wall-
normal direction strongly depends on the wall collisions. Spheres are vertically reflected by a wall collision and
returned towards the centre of the channel. However, the elongated shape of the ellipsoids strongly influences
the dynamics of the collisions, as it depends on the orientation of the ellipsoids when they collide with the
wall. Moreover, a significant exchange of momentum between translational and rotational components can
occur when the ellipsoids collide, which is not the case with spherical particles. The increased complexity of
the dynamics of the collision for ellipsoids decreases the correlation of velocity in the wall-normal direction.

4.4 Orientation of ellipsoids

For spherical particles, the orientation does not change the hydrodynamic forces. However, for the ellipsoidal
particles, there is a strong effect of their orientation on the hydrodynamic forces: the ellipsoid can minimise
the drag by aligning the longest axis of the particle with the flow direction, or maximise the drag by aligning
one of the shorter axes with the flow direction. The statistics of the results are presented in terms of the cosine
value of the 3 angles between the major axes of the ellipsoid and the world space axes, as is shown in Fig. 29,
where the world x axis is the direction of the average flow.

The orientation of the ellipsoids is compared to the work of [21]. In their work, the collisions between
ellipsoids are neglected and collisions between the ellipsoids and the wall are not resolved, but the ellipsoidal
particles are treated as elastic points when their centre comes into contact with the wall: the wall-normal
velocity is reversed.

Figure 30 shows the absolute cosine value of the angle between the ellipsoid’s major axis and the x axis of
the world space co-ordinate as a function of distance to the wall. The X axis corresponds to the stream-wise
direction of the flow. Therefore, the figure shows that the ellipsoids in the centre of the channel have almost no
preferential orientation, as an average cosine value of 0.5 corresponds to a random distribution. However, the
orientation of the ellipsoids becomes preferential in the flow direction near the wall, peaking around an angle
of 45◦ at the distance from the wall of around y+ = 15. Although the trends between the current simulation
results are comparable to the findings of [21], there are some differences. The peak value of the angle at 45◦
in the current work occurs further inward the channel compared to [21]. This is attributed to a more realistic
model to describe the interaction of the ellipsoids with the wall. In the current approach, the collision between
a rotating ellipsoid and the wall moves the ellipsoid further into the domain than in the ad hoc particle–wall
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Fig. 29 The definition of the angles between the major axis of the ellipsoid, x ′, and the world space axis. The mean flow is in the
x direction

Fig. 30 The absolute cosine value of the angle between the ellipsoid’s major axis and the X axis of the world space co-ordinate
as a function of the distance to the wall

collision model of [21]. Moreover, there seems to be a minor effect of ellipsoid–ellipsoid collision inside the
channel, as the average angle is slightly larger in the results reported in this paper.

The average absolute cosine values of the angle between the ellipsoid’s major axis and the y and z axis or
world space as a function of distance to the wall are shown in Figs. 31 and 32, respectively. The effect of the
wall is more pronounced than the findings of [21] show, but the values inside the channel are similar and show
no preferential orientation, which is expected in the case of stationary statistics. Near the wall, two effects
can be observed. The first is the presence of strong fluid velocity gradients, inducing a preferential orientation
of the ellipsoid through the hydrodynamic torque coupling. The second effect concerns the collisions of the
ellipsoids with the wall. These collisions induce rotation on the ellipsoids and may force the ellipsoids in
a specific orientation. This can be seen clearly in Fig. 32, where very close to the wall only ellipsoids are
encountered which have a very large angle of orientation. This is because any other orientation would make it
very difficult for the ellipsoid to be so near to the wall.

Figure 33 shows the average angular velocity of the ellipsoids as function of distance to the wall, showing
both walls. As can be clearly seen, the wall and the boundary layer induce a strong angular velocity in the
span-wise direction of the ellipsoids. This angular velocity leads to the orientation of the ellipsoids as observed
in Figs. 30, 31 and 32. Figure 34 shows the RMS of the angular velocities of the ellipsoids as function of the
distance to the wall upto the centre of the channel.
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Fig. 31 The absolute cosine value of the angle between the ellipsoid’s major axis and the Y axis of the world space co-ordinate
as a function of the distance to the wall

Fig. 32 The absolute cosine value of the angle between the ellipsoid’s major axis and the Z axis of the world space co-ordinate
as a function of the distance to the wall

Fig. 33 The mean angular velocity of ellipsoids in the three orthogonal directions as a function of the distance to the wall, showing
both walls
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Fig. 34 The RMS of the angular velocity of the ellipsoids in the three orthogonal directions as a function of the distance to the
wall

5 Conclusions

In this paper, the behaviour of very small ellipsoidal particles suspended in turbulent channel flow is elucidated
using direct numerical simulation combined with the “point-source” approach and the Lagrangian tracking of
the individual ellipsoids. The simulations are carried out with four-way coupling: the fluid affects the particles,
the particles affect the fluid, and the particles collide with each other and the wall, by application of a newly
proposed deterministic collision algorithm. A novel Quaternion framework is put forward, using an accurate
time integration and avoiding the usage of a rotation matrix all together.

An analysis of the terms of the turbulence kinetic energy (TKE) equation of the fluid shows that the
homogeneous dissipation of TKE caused by the fluid decreases by the addition of particles. This is because
of the existence of an additional mechanism responsible for dissipation at the small scales, i.e. the dissipation
resulting from the behaviour of the particles. This dissipation is caused by the slip velocity between the particles
and the fluid. Almost all dissipation of TKE caused by the particles is in a thin layer in the near-wall region.

The results of the slip velocity between the fluid and the particles show that particles approach the wall
with a larger momentum than they have returning to the centre of the channel. This leads to an increase of
concentration of particles near the wall by a factor 4 compared to the centre of the channel. The maximum
of the RMS of the fluid velocities is shifted inwards by addition of particles or ellipsoids. For the spherical
particles, the RMS of particle velocities in the stream-wise direction is larger than the RMS of fluid velocity,
because of the relatively large slip velocity between the phases in this direction. The RMS of the particle
velocity in the other two directions is less than the RMS of the fluid velocity in the corresponding directions,
because the slip velocity between the two phases is very small.

The results of orientation and angular velocity of the ellipsoidal particles show that there is no strong
preferential orientation of the particles in the centre of the channel, but that the particles are aligned with the
stream-wise direction in the near-wall region. This is caused by the dynamics of the boundary layer, as was
previously suggested in [21], but also by the effect of particle–wall collisions. Finally, the paper shows that
particle–particle and particle–wall collisions have some effect on the behaviour of the ellipsoids, even in the
very dilute flow of interest in this paper.
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