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Abstract There are three main frameworks to describe the orientation and rotation of non-spherical particles:
Euler angles, rotation matrices and unit Quaternions. Of these methods, the latter seems the most attractive for
describing the behaviour of non-spherical particles. However, there are a number of drawbacks when using unit
Quaternions: the necessity of applying rotation matrices in conjunction to facilitate the transformation from
body space to world space, and the algorithm integrating the Quaternion should inherently conserve the length
of the Quaternion. Both drawbacks are addressed in this paper. The present paper derives a new framework to
transform vectors and tensors by unit Quaternions, and the requirement of explicitly using rotation matrices
is removed altogether. This means that the algorithm derived in this paper can describe the rotation of a
non-spherical particle with four parameters only. Moreover, this paper introduces a novel corrector-predictor
method to integrate unit Quaternions, which inherently conserves the length of the Quaternion. The novel
framework and method are compared to a number of other methods put forward in the literature. All the
integration methods are discussed, scrutinised and compared to each other by comparing the results of four
test cases, involving a single falling particle, nine falling and interacting particles, a 2D prescribed torque on
a sphere and a 3D prescribed torque on a non-spherical particle. Moreover, a convergence study is presented,
comparing the rate of convergence of the various methods. All the test cases show a significant improvement
of the new framework put forward in this paper over existing algorithms. Moreover, the new method requires
less computational memory and fewer operations, due to the complete omission of the rotation matrix in the
algorithm.

1 Introduction

Understanding the behaviour of rigid particles is important for many industrial processes and phenomena
occurring in nature. It is estimated that over 70 % of chemical processes involve small particles at some point.
Moreover, particles play a large role in natural phenomena, such as avalanches, sediment transport and erosion,
to name just a few. Because of this importance, the field of modelling the behaviour of large number particles is
well established. In 1979, Cundall et al. [10] proposed the distinct element method (DEM), which models the
behaviour of individual particles by solving Newton’s second law in a Lagrangian framework. This method has
proved to be highly useful and is used in hundreds of research papers. Moreover, any numerical simulation of
multi-body dynamics, especially those involving free body rotations, require accurate integration of the rigid
body orientation equations.
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Fig. 1 The relation between body space (a) and world space (b). The fixed axes of body space, xo, yo and zo are indicated in both
figures. The position of a fixed point in body space, po, is transformed to world space, p(t) (a) body space (b) world space

However, most of the simulations with DEM consider purely spherical particles. Although this may be an
acceptable approximation for a number of applications, sometimes this is not the case. Modelling the behaviour
of non-spherical particles can be done by: using a mathematical description of the surface (e.g. [11]), a finite
element approach, describing a mesh of the surface (e.g. [28]) or by building a non-spherical particle from
spheres (e.g. [27,35]). In all of these methods, the dynamic equations of the particles and the subsequent
integration of these equations are significantly more complex than for spherical particles. The present paper
focuses on developing a novel fast, efficient and accurate method to formulate and integrate the equations of
rotation for non-spherical particles.

The translation and rotation of a rigid particle can be determined in two Cartesian coordinate frameworks:
body space and world space. In body space, the origin of the Cartesian coordinates is fixed on the particle mass
centre and the axis of the coordinates rotate along with the particle. This is often referred to as the Lagrangian
framework. In world space, the coordinates are fixed in the origin of the initial Cartesian reference framework.
This is often referred to as the Eulerian framework. These frameworks are depicted in Fig. 1. Although the
translational motion of the particle can easily be converted between the two types of spaces, the rotational
motion of the non-spherical particle is determined by a more complex rotational operator. There are various
ways to formulate this operator. Among the numerous methods describing the rotation operator, the most
commonly used frameworks are Euler angles, rotation matrices and unit Quaternions. All of these methods
have some kind of limitation, which will be discussed in this paper.

In the literature, there are a number of papers describing the rotation of a rigid body in the framework of
Hamilton dynamic systems (e.g [8,7,18,25,29]). Kosenko [25] reports a complex algorithm to represent the
rotation of a free rigid body in the framework of Quaternions. Moreover, the Euler dynamic governing equations
are also determined by Quaternion groups in the Hamiltonian framework. However, this algorithm is limited to
the Euler case (i.e. free body dynamics), referring to a framework without the application of an external torque.
For free body dynamics in Hamiltonian systems, the discrete Moser–Veselov (DMV) algorithm [31] is a very
accurate numerical integrator, exactly conserving the kinetic energy and angular momentum, to update the
rotation matrix, R. Hairer and Vilmart [18] and MacLaurgh and Zanna [29] have further improved the DMV
algorithm by modifying the momentum of inertia at each integration and time transformation, respectively.
Both improved DMV methods avoid singularity problems and increase the accuracy of the algorithms, to
make them suitable for long-time integration. Moreover, Hairer and Vilmart [18] use unit Quaternions to
represent the rotation matrix and transform the DMV method into the framework of Quaternions to simplify
the implementation. However, these improved DMV algorithms are limited to free body dynamics. To account
for the full dynamic rigid body problem, thus including the application of a torque working on the body,
Celledoni et al. [8] propose a Stormer/Verlet splitting method to divide the rotation motion into two parts: the
free rigid body kinetic part and the torque part, both in the Hamilton system. The free rigid body problem
consists of Euler dynamic equations and a differential equation for updating the rotation matrix. The Euler
equations can be determined by an exact method using the Jacobi elliptic function, and the approximate update
of the rotation matrix or corresponding Quaternion is introduced for free body dynamics in [7]. The torque
part is determined by a differential function involving the rotation matrix. This method is very expensive, and
with the current computer power not suitable for simulations with a large number of rigid bodies.

For a fully dynamic system with a large number of rigid bodies under application of an external torque, the
algorithms, which are mentioned above, are not feasible due to their very high computational cost. Moreover,
lower-order algorithms for the fast integration of the rotation matrix are inaccurate, leading to inevitable
singularity problems for long-time simulations. Moreover, Euler angles suffer from the so-called Gimbal lock
problem when representing 3D rotation (e.g. [15]). To avoid these numerical difficulties, unit Quaternions are
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commonly adopted to describe, at least part of, the rotation operator. Unit Quaternions, sometimes referred to
as Euler parameters, are well known to represent rotation without singularity problems in molecular dynamics
modelling and rigid particle modelling (e.g. [1,15,23,35]). The problem of the rotation matrix becoming
singular occurs during the time integration of the rotation matrix. To prevent this, at least the time integration
of the rotation operator is done by representing the rotation by a unit Quaternion. After the time integration,
most approaches found in the literature convert the Quaternion to a rotation matrix (e.g. [1,6,23,30]). This
rotation matrix is then used to transform the vector and tensor variables between the different frameworks,
such as the vector p(t) in Fig. 1.

In the present work, unit Quaternions are applied not only to represent the time integration of the rotation
operator, but also to replace rotation matrices completely and transform vector and tensor variables between
different coordinate systems directly. Hence, there is no requirement for a rotation matrix in this new method.
This saves both computational memory and effort. Accordingly, a novel method is derived to describe the
transformation of vectors and tensors between frameworks based solely on Quaternions. The outline of the
paper is as follows: section two briefly reviews rotation operators in general properties of Quaternions, and a
novel model is derived to transform tensors between different coordinate frameworks. In addition, the equations
relating the rotation matrix to the unit Quaternion are introduced. In section three, several algorithms which
have been put forward in the literature to integrate unit Quaternions are scrutinised and discussed and a novel
integration method is put forward. In Sect. 4, the algorithms are compared to each other by applying them to
four different test cases, and the outcomes of this are discussed. Conclusions are drawn in the final section.

2 Rotation and Quaternions

2.1 Rotation dynamic equations

The equations of motion describing non-spherical rigid particles consist of translational and rotational com-
ponents. The position of a particle can be represented equally simple in world space and in body space, but
for the orientation of a particle, the rotational equations are significantly more complex in world space than
body space. Therefore, the most common and convenient way is to compute rotational properties of parti-
cles in body space and, if required, transform them into world space. The governing equations of rotational
motion compose of angular momentum equations and the differential equation of rotation operators. Firstly,
the angular momentum Lb is defined by

Lb = Ibωb, (1)

where the second-order tensor Ib is the constant moment of inertia in body space, and ωb represents the angular
velocity of a particle. The superscript b means the variables are in the body space framework. For a particle
undergoing the effect of an external torque, the torque, τ b, is determined by

τ b = L̇
b + ωb × Lb, (2)

where the time derivative of angular momentum is given as

L̇
b = İbωb + Ibω̇b. (3)

Because the moment of inertia tensor does not change in body space for a rigid particle, Ib is a constant and
the first term on the right-hand side of the above equation is equal to zero. The angular acceleration can then
be expressed as

ω̇b = Ib
−1
(τ b − ωb × Ibωb). (4)

On the other hand, the differential equation of a rotation operator Q is defined by:

Q̇ = f (Q)Q, (5)

where f (Q) is a function involving the operator Q.
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2.2 Rotation operators

There are three commonly used frameworks to describe rotation: Euler angles, rotation matrices and unit
Quaternions, all of which have advantages and drawbacks (e.g. [14,16]). In addition, they can be translated
from one framework to another. The details about the performance and issues of these rotation frameworks
are also discussed in [12,14].

2.2.1 Euler angles

With the orientation of a solid particle fixed in body space, Euler angles (φ, θ, ψ) represent three composed
axis rotations mapping the particle in body space to the world space. These angles involve a combination of sine
and cosine functions, which are nonlinear. In addition, there are twelve ways to represent Euler angles [12].
Although only three independent quantities denote this operator, there are several drawbacks of Euler angles,
such as the Gimbal lock problem, which gives rise to the loss of one degree of freedom when two of three axes
are rotating into parallel configuration. This operator can only work well in applications involving one or two
dimensional rotation only. For a general 3D rotation framework, the Gimbal lock problem will occur and the
method is mostly not suitable.

2.2.2 Rotation matrix

In dynamics, a rotation matrix is a 3 × 3 orthogonal matrix performing a rotational motion in three dimensions
with a determinant of 1. A vector v transforms from one coordinate system to another by application of the
rotation matrix R as:

v′ = Rv, (6)

where the vector v′ represents the rotated counterpart of the vector v. A second-order tensor k is transformed
by the rotation matrix as

k′ = R k RT . (7)

A rotation matrix is by definition an orthogonal matrix, the columns of which are of unit length. During the
integration or differentiation of the rotation matrix, six constraints are required, as the three degrees of freedom
associated with the rotation are described by nine components. There are three constraints for maintaining
the unit length of the rotation matrix columns and a further three constraints for keeping them orthogonal to
each other. When these six constraints are not met implicitly by the numerical integration or differentiation,
singularity problems may arise, making the required inversion difficult or impossible. In order to avoid these
problems, unit Quaternions can be applied instead.

2.2.3 Unit Quaternions

Due to the absence of singularity and Gimbal lock problems, unit Quaternions are increasingly popular to
represent rotation. General Quaternions do not only change the orientation of a vector, but also scale the length
of a vector. Therefore, the equation for representing rotation cannot be a simple Quaternion multiplication,
as the length of the vector will, generally, change. To represent rotations by Quaternions, the length of the
Quaternions must be exactly unity. Rotation without scaling is performed by unit Quaternions, see e.g. [13,20],

2.3 Quaternions

Quaternions were first introduced by Sir Hamilton [17,19] in the nineteenth century and have been widely
used to represent rotation for modelling dynamic systems in the past decades. They are expressed in a complex
number system, consisting of a scalar part and a vector part. Hence, there are a total of 4 unknowns. In
dynamics, the physical meaning of a Quaternion is to scale the length and change the orientation of a vector [22].
A Quaternion is defined by:

q = q0 + q1 i + q2 j + q3k, (8)
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where q0, q1, q2 and q3 are real numbers, and i, j and k are unit vectors directed along to the x, y and z axis,
respectively. Quaternions can also be written as a real number and a vector:

q = [q0, q]. (9)

Three useful operations of a Quaternion itself can be defined: conjugation, norm and inverse. The conjugate
of a Quaternion is defined as

q∗ = q0 − q1 i − q2 j − q3k, (10)

the norm of a Quaternion is determined by

‖q‖ =
√

‖q‖2 = √
qq∗ =

√
q2

0 + q2
1 + q2

2 + q2
3 , (11)

and the inverse of a Quaternion is given as

q−1 = q∗

‖q‖ . (12)

A unit Quaternion is a Quaternion of norm 1; then, the inverse Quaternion is equal to the conjugate Quaternion:

‖q‖ =
√

‖q‖2 = 1 → q∗ = q−1. (13)

2.3.1 Multiplication of Quaternions

The multiplication between two Quaternions represents the subsequent application of each Quaternion. This
product is often referred to as the Grassman product [3,23]. In vector representation, the product of Quaternions
p and q is given as Quaternion t :

t = pq = [p0q0 − pq, p0q + q0 p + p × q] (14)

The equation consists of vector dot and cross products. Due to the anti-commutative property of the cross prod-
uct, the multiplication of Quaternions is not commutative. Quaternion multiplication can also be represented
by matrix multiplication:

t = Q(p)q =

⎛
⎜⎜⎜⎜⎝

p0 −p1 −p2 −p3

p1 p0 p3 −p2

p2 −p3 p0 p1

p3 p2 −p1 p0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

q0

q1

q2

q3

⎞
⎟⎟⎟⎟⎠
. (15)

More detail about Quaternion algebra is introduced in [2,22,26].

2.4 Rotation by unit Quaternion

A vector s rotated by a pair of unit Quaternions is defined by:

s′ = qsq−1, (16)

where q is a unit Quaternion, q−1 represents the conjugation of q , and the vector s is interpreted as a Quaternion
as s = [0, s] with the scalar part equal to zero. The unit Quaternion q can be directly expressed in a form
containing the vector around which the rotation takes place and the angle of the rotation [5,23]:

q = cos
α

2
+ sin

α

2
q̂, (17)
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where q̂ is the normalised vector around which the rotation takes place and the angle α indicates the rotational
angle. In the unit Quaternion q , the coefficients q0, q1, q2 and q3 are sometimes referred to as Euler parameters
(e.g. [5]), which are not independent of each other, as they must always satisfy

‖q‖ =
√

q2
0 + q2

1 + q2
2 + q2

3 = 1. (18)

Many integration algorithms do not inherently respect this constraint and explicitly re-normalise the Quaternion
after the algorithms are applied, by defining the corrected Quaternion as

q̂ = q√
q2

0 + q2
1 + q2

2 + q2
3

. (19)

This is, however, not the same as inherently embedding the unit length of the Quaternion, as expressed by
Eq. (18), into the algorithm itself. Applying Eq. (19) modifies the relation between the four parameters of the
Quaternion, therefore modifying the rotation it represents.

In most research papers dealing with the numerical integration of non-spherical particles with Quaternions,
the time integration of the rotation operator is addressed by employing unit Quaternions. After the time
integration itself, the corresponding rotation matrices are determined from the Quaternion and used to determine
the orientation of the particles and transform vector and tensor properties between body space and world space
by Eqs. (6) and (7). This requires an inverse relationship between rotation matrices and unit Quaternions. The
rotation matrix corresponding to the unit Quaternion is given by the Quaternion components as

R =

⎛
⎜⎜⎝

1 − 2(q2
2 + q2

3 ) 2q1q2 − 2q0q3 2q0q2 + 2q1q3

2q1q2 + 2q0q3 1 − 2(q2
1 + q2

3 ) 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q0q1 + 2q2q3 1 − 2(q2
1 + q2

2 )

⎞
⎟⎟⎠ . (20)

Equation (6), expressing the transformation of a vector by a rotation matrix, is equivalent to Eq. (16),

v′ = qvq−1 = Rv. (21)

Some second-order tensor variables are also required to transform between the two different coordinate systems,
such as the inertia tensor and resistance tensors [30]. These tensors can be transformed by applying Eq. (7).
However, there exists no equivalent equation using unit Quaternions to perform the same transformation in
the literature. All methods presented so far determine the rotation matrix from the Quaternion and apply the
rotation matrix subsequently, as expressed in Eq. (7) to compute the tensors in the rotated framework.

In this paper, a new model is derived for determining a tensor in the rotated framework directly by unit
Quaternions without the necessity of determining the corresponding rotation matrix. To determine a second-
order tensor in the rotated framework, using Eq. (7),

I′ = R I RT ,

where the tensors I′ and I can be considered as three sequential column vectors I1, I2 and I3 as:

I =
⎛
⎜⎝

⎛
⎜⎝

I11

I21

I31

⎞
⎟⎠

⎛
⎜⎝

I12

I22

I32

⎞
⎟⎠

⎛
⎜⎝

I13

I23

I33

⎞
⎟⎠

⎞
⎟⎠ = (

I1 I2 I3
)
.

A tensor I′′ can be expressed as

I′′ = R I, (22)

where I′′ can be considered as transforming the three sequential column vectors (I1 I2 I3) by a rotation matrix,
so a corresponding unit Quaternion can replace the rotation matrix,

I ′′
1 = q I1q−1,

I ′′
2 = q I2q−1,

I ′′
3 = q I3q−1.

(23)
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Combining these three equations, a new expression is determined as

I′′ = qIq−1, (24)

which is equivalent to Eq. (22). Equation (7) can be interpreted as the tensor I′′, as defined in Eq. (22):

I′ = R I RT = I′′ RT . (25)

The transpose of the tensor I′ is represented by

I′T = R I′′T , (26)

in which a unit Quaternion q can replace the rotation matrix by applying Eq. (24),

I′T = qI′′T q−1, (27)

and given I′′T = (qIq−1)T ,

I′T = q(qIq−1)T q−1. (28)

Finally, the transformation of second-order tensors by unit Quaternions is expressed as

I′ = (q(qIq−1)T q−1)T . (29)

Following the above analysis, unit Quaternions can be used to transform vector properties during rotation,
but also to transform tensor properties directly. Accordingly, rotation matrices can be completely replaced by
corresponding unit Quaternions only, and the rotation matrix is no longer required. This will save a significant
amount of computer memory (4 instead of 9 floating point numbers per particle), and increase the accuracy
introduced by round-off errors, as fewer operations are required.

3 Numerical integration of unit Quaternions

The time derivative of a unit Quaternion q has a very simple form. It is determined by the angular velocity
vector ω and the Quaternion itself, see for instance [4,9,34]:

q̇ = 1

2
ωq =

⎛
⎜⎜⎜⎜⎜⎝

0 −ωx
2

−ωy
2

ωz
2

ωx
2 0 ωz

2
−ωy

2
ωy
2

−ωz
2 0 ωx

2
ωz
2

ωy
2

−ωx
2 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

q0

q1

q2

q3

⎞
⎟⎟⎟⎟⎠
, (30)

where the angular velocity ω is considered as a Quaternion, [0,ω]. In the past decades, several algorithms
have been put forward to integrate unit Quaternions to represent rotation. Some algorithms are based on Taylor
expansion of the unit Quaternion (e.g. [1,15]). In these algorithms, addition and subtraction operators are
required to add or subtract the derivatives of the Quaternion. However, if the sum of additions and subtractions
is not exactly of zero length, an increase in the length of the integrated Quaternion is obtained. Therefore,
to preserve the constraint of a unit Quaternion when applying such a method, the new Quaternion requires
re-normalisation after each integration time step. The re-normalisation procedure does not only enforce the
constraint concerning unit length, but it also affects the relationship between the four Euler parameters. In order
to integrate a unit Quaternion without the application of addition or subtraction operators between Quaternion
derivatives, a patent was filed by [36]. This patent describes an algorithm to update a unit Quaternion. A similar
methodology is also derived by, e.g., [5,23,34], and is described further below.

3.1 Previously proposed methods based on Taylor polynomial expansion

In many other research papers, such as [1,4,15,24,30,33,35], the integration of a unit Quaternion is solved
based on Taylor series expansion, and Eq. (30), or an equivalent form, is adopted. The Euler method is the
most simple algorithm, whereas higher-order methods based on the Taylor series expansion have also been put
forward and are discussed below.
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3.1.1 Euler method

The Euler method is the most simple method for integrating unit Quaternions. The Quaternion at the new time
step, qn+1, is approximated by

qn+1 = qn + 1

2
ωnqnδt + O(δt2). (31)

Here, qn+1 is determined by a first-order Taylor expansion. Due to the increment 1
2ωnqnδt added to the unit

Quaternion qn , the length of qn+1 will be different from unity. In order to preserve the unity constraint, the
Quaternion qn+1 requires re-normalisation at each time step:

q̂n+1 = qn+1

‖qn+1‖ . (32)

However, the re-normalisation procedure gives rise to numerical errors, adding to the relatively large truncation
errors of the first-order Euler method. To decrease the errors in the Euler method, several algorithms which are
also based on Taylor series expansion are discussed below, such as the leap-frog method [1,35], the second-
order Taylor series expansion, the second-order Adams–Bashforth method [30], the Runge–Kutta method [32]
and the scalar factor method introduced in [24].

3.1.2 Leap-frog method

The leap-frog, or mid-point, method for the time integration of unit Quaternions is outlined by Walton and
Braun [35]; unit Quaternions and angular velocities at the mid-point between two adjacent time steps are
evaluated in this algorithm. It is expressed as

qn+1 = qn + 1

2
ωn+ 1

2
qn+ 1

2
δt, (33)

where the angular velocity ω, expressed above as Quaternion ω, at time level n + 1
2 is explicitly determined

by the leap-frog method. On the other hand, qn+ 1
2

is simply expressed by:

qn+ 1
2

= qn + qn+1

2
. (34)

Due to the appearance of qn+1 on both sides in Eq. (33), this leap-frog algorithm is significantly more complex
and requires more variables and operations than the Euler method. However, because of the application of
Quaternion addition operators, the algorithm still causes the length of the integrated Quaternion, qn+1, to
exceed unity. Therefore, the Quaternions need to be re-normalised at each time step.

In this paper, this algorithm for Quaternion integration is reformulated and written it in terms of Quaternion
multiplication only. This novel formulation prevents the application of addition or subtraction to the Quaternion.
To illustrate the algorithm, two new Quaternions (β and q̃) are defined as

q̃ = fββ, β = [1, βx , βy, βz], (35)

where the components of β are given by

βx = δt

4
ω

n+ 1
2

x ,

βy = δt

4
ω

n+ 1
2

y , (36)

βz = δt

4
ω

n+ 1
2

z .

The scale factor f is defined as

f = ‖β‖2

A
, (37)
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where A is determined by the components of β,

A = 1 + 2β2
x + 2β2

y + 2β2
z . (38)

The unit Quaternion at the next time level is determined by

qn+1 = q̃qn . (39)

The unit Quaternion qn+1 at the new time level also requires re-normalisation at each time step. The above
algorithm is the Quaternion counterpart of Eq. (33), and the results are very similar. Furthermore, the relation
between the unit Quaternions qn and qn+1 is not linear. Therefore, Eq. (34), approximating qn+ 1

2
in a linear

fashion, is not appropriate and inaccurate. Some higher-order methods based on the same idea are proposed by
other researchers, where multiple evaluations of the Quaternion between time levels n and n + 1 are required,
such as Runge–Kutta or Adams–Bashforth methods [30]. However, there is in principle no direct physical
meaning to the addition or subtraction of Quaternions. Moreover, the higher-order methods based on this
principle cannot prevent the length of the Quaternion deviating from unity; the more addition or subtraction
operators in higher-order methods can even influence the relationship between qn and qn+1. Hence, all these
algorithms require re-normalisation at each time step, giving rise to numerical errors.

3.1.3 Scalar factor method

Kleppmann [24] concludes that the Euler method and other higher-order methods as outlined above do not
properly integrate unit Quaternions and that the required re-normalisation procedure introduces significant
errors. In [24], a scalar factor is introduced in the derivative equation directly,

q̇n = f ωnqn, (40)

where f is defined as

f (δt, ‖ω‖) = 1

‖ω‖δt tan

(‖ω‖δt
2

)
. (41)

The unit Quaternion qn+1 at the next time step is then determined by the Euler method as

qn+1 = qn + q̇nδt, (42)

where δt represents the size of the time step. Writing out q̇nδt in the above equation gives

q̇nδt = f ωqδt = tan(‖δq‖) δq‖δq‖ , (43)

where δq is

δq = δt

2
ωq. (44)

Finally, after the re-normalisation procedure, qn+1 is expressed as

qn+1 =
[

qn + tan(‖δq‖) δq‖δq‖
]

cos (‖δq‖) . (45)

As there are discontinuities in the tan function, there is a possibility that numerical instabilities occur when
‖δq‖ is equal to π

2 during a single time step.
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3.2 Direct multiplication method

In order to derive a better integration method of unit Quaternions for representing rotation, a patent was
developed by Whitemore [36], and an analogous derivation is presented in [5,23,34]. In these methods, the
Quaternion multiplication replaces the addition operator in the integral equation altogether. The derivative of
unit Quaternion q is introduced by Eq. (30),

q̇ = 1

2
ωq,

and an exponential map is introduced, given by

T (ω, δt) = exp(
δt), (46)

where


 =

⎛
⎜⎜⎜⎜⎜⎝

0 −ωx
2

−ωy
2

ωz
2

ωx
2 0 ωz

2
−ωy

2
ωy
2

−ωz
2 0 ωx

2
ωz
2

ωy
2

−ωx
2 0

⎞
⎟⎟⎟⎟⎟⎠
.

The Quaternion at the next time level, qn+1, is represented as

qn+1 = T (
, δt)qn. (47)

The exponential term in the above equation is expanded in a Maclaurin series and a simplified form is obtained,

T (ω, δt) =
(

cos
‖ω‖

2
I + 2

‖ω‖ sin
‖ω‖

2
Ω

)
δt, (48)

where I is the fourth-order identity matrix, and the vector ω is the angular velocity. The matrix T in the above
equation can be also represented as a unit Quaternion,

q̃ =
[

cos
‖ω‖δt

2
, sin

‖ω‖δt
2

ω

‖ω‖
]
. (49)

Finally, the unit Quaternion at time level n + 1 is expressed as

qn+1 = q̃nqn . (50)

In this method, there is no necessity for an addition or subtraction operator. An exponential map is employed
to approximate the increment of a unit Quaternion. Theoretically, the multiplication between unit Quaternions
can preserve their unit length.

A similar method as outlined above can also be put forward, by starting from the sequential rotation as
given by Eq. (16),

s1 = q̃0s0q̃−1
0 ,

s2 = q̃1s1q̃−1
1 ,

s3 = q̃2s2q̃−1
2 ,

. . . . . .

sn+1 = q̃n snq̃−1
n ,

where the unit Quaternion q̃i (i = 1, 2, 3 . . . n) represents rotation within a time step and is defined analogously
to Eq. (49),

q̃n =
[

cos
‖ωn‖δt

2
, sin

‖ωn‖δt
2

ωn

‖ωn‖
]
,
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where the rotation angle α in a time step is determined by the length of the angular velocity at that time step
and the time step as ‖ωn‖δt , and the direction of rotation is the same as the direction of the angular velocity
ωn . The unit Quaternion qn , which represents a vector rotated from original position at t = 0 to time level n,
is defined by

qn =
n∏

i=1

q̃n−i . (51)

Finally, the unit Quaternion for the next time level qn+1 is described by

qn+1 = q̃nqn, (52)

which is the same as defined in Eq. (50).

3.3 Newly proposed predictor-corrector direct multiplication method

The novel method put forward in this paper approximates the angular velocity with a basic Lie–Euler method,
or called predictor-corrector method, which is outlined in Allen and Tildesley [1]. However, the Quaternion
integration method in [1] is directly based on Taylor series, so that

qn+ 1
2

= qn + 1

2
q̇nδt, (53)

qn+1 = qn + q̇n+ 1
2
δt. (54)

As mentioned previously in this section, the addition and subtraction operators appearing in Quaternion inte-
gration equations are physically meaningless and can give rise to numerical errors. In this paper, we propose
a new algorithm, the predictor-corrector direct multiplication (PCDM) method, which is not based on Taylor
series, but applies the direct multiplication algorithm. Firstly, the variables that describe the rational motion of
a particle are transformed into body space from world space at current time level n:

ωb
n = q−1

n ωnqn, (55)

τ b
n = q−1

n τ nqn . (56)

The angular velocity expressed in body space at the mid-point of the next time level, ωb
n+ 1

2
, and at a quarter

of the next time level, ωb
n+ 1

4
, are determined by

ωb
n+ 1

4
= ωb

n + 1

4
ω̇b

nδt,

ωb
n+ 1

2
= ωb

n + 1

2
ω̇b

nδt,
(57)

where the angular acceleration ω̇b
n is determined by Eq. (4). In Eq. (49), the application of ω represents the

spatial angular velocity of a particle within a time step in world space. In most algorithms, the angular velocity
is defined at the mid-point in world space, ωn+ 1

2
, which is transformed to world space by application of the unit

Quaternion qn , as the value of qn+ 1
2

is unknown at that time level. Hence, the time level of the Quaternion is
not respected in these algorithms. To decrease the error caused by the mixing of time levels, this paper uses the
predictor-corrector method to approximate the angular velocity at the mid-point. Firstly, the predicted angular
velocity at a quarter at next time level in world space, ωn+ 1

4
, is approximated based on the unit Quaternion qn:

ωn+ 1
4

= qnω
b
n+ 1

4
q−1

n . (58)

Then, a prediction of the unit Quaternion at the half time interval, q ′
n+ 1

2
, is determined by the velocity ωn+ 1

4
.

The prime on the variable emphasises that it concerns the initial prediction of the variable, not its final value:

q ′
n+ 1

2
=

[
cos

‖ωn+ 1
4
‖δt

4
, sin

‖ωn+ 1
4
‖δt

4

ωn+ 1
4

‖ωn+ 1
4
‖

]
qn. (59)
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Using this predicted unit Quaternion q ′
n+ 1

2
, the angular acceleration ω̇b

n+ 1
2

is determined by application of Eq.

(4), and the angular velocity ωn+ 1
2

at mid-point of next time level in world space is determined by

ωn+ 1
2

= q ′
n+ 1

2
ωb

n+ 1
2
q ′−1

n+ 1
2
. (60)

Then, the corrected unit Quaternion qn+1 at the new time level is

qn+1 =
[

cos
‖ωn+ 1

2
‖δt

2
, sin

‖ωn+ 1
2
‖δt

2

ωn+ 1
2

‖ωn+ 1
2
‖

]
qn . (61)

Finally, the angular velocity in body space at the new time level can be determined and transformed to the
angular velocity in world space,

ωb
n+1 = ωb

n + ω̇b
n+ 1

2
δt, (62)

ωn+1 = qn+1ω
b
n+1q−1

n+1. (63)

The method as outlined above presents a consistent and accurate predictor-corrector direct multiplication
(PCDM) method to determine the unit Quaternion representing the orientation of a non-spherical particle
and its angular velocity. Moreover, this method does not use a rotation matrix and does not mix time levels
inconsistently in its final correction. In the next section, the different methods as discussed and derived above
will be compared to each other in a number of realistic conditions.

4 Comparison of methods and discussion

The various methods that have been discussed in this paper in Sect. 3.1 are compared with the novel PCDM
method as outlined in Sect. 3.3, Eqs. (55) to (63). The comparison is done considering two criteria: energy
conservation and the rate of convergence. Each of these criteria is used to analyse four different test cases,
each representing a realistic problem involving the behaviour of non-spherical particles.

In the modelling of non-spherical particles, both translation and rotation need to be considered. The
translation of the particles is determined by a velocity Verlet scheme [1] for all methods and test cases.

4.1 Energy conservation

One of the most important features of a numerical framework for solving the equations governing the behaviour
of particles is that it conserves total energy. If the behaviour of non-spherical particles is determined in a gravity
field without any source of dissipation, the total mechanical energy (Etot) of the particles in this system is
represented by

Etot =
N∑

i=1

(mi gδhi + 1

2
miv

2
i + 1

2
ω · Iiωi ) = constant, (64)

where N is the total number of particles, and δhi represents the height of the mass centre of the i th particle.
All the collisions are determined with zero coefficient of friction, meaning there are no kinetic energy

losses caused by friction. Moreover, the value of the coefficient of restitution is unity, meaning there is no
translational kinetic energy loss during a collision between particles themselves or particles and boundary
walls. Therefore, a collision does not change the total kinetic energy. The error in energy conservation can
then be expressed as

Eerror =
∣∣∣∣

En
tot − E0

tot

E0
tot

∣∣∣∣ × 100 %, (65)

where En
tot represents the total energy of the particles after the nth integration time step. E0

tot represents the
initial total energy of the particles.
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Table 1 The properties of cylindrical fibres and the boundary wall of the box

Fibre D [m] E [Pa] ν [−] μ [−] e [−]

0.01 5.0 × 107 0.35 0.0 1.0
Walls Dimension [m3] E [Pa] ν μ e

1 × 1 × 1 5.0 × 107 0.23 0.0 1.0
The diameter (D), Young’s modulus (E), Poisson’s ratio (ν), coefficient of friction (μ) and coefficient of restitution (e)

Fig. 2 The error in energy resulting from the four different rotational integration algorithms for test case 1: a single falling fibre

4.1.1 Comparison with three test cases

The first two test cases used to compare the integration methods consider a cylindrical fibre with an aspect
ratio, defined as r = b

D , of 3, and a density and a volume of 1.1×103 kg/m3and 1.961×10−6m3, respectively.
The simulations of the first two test cases are carried out in a computational domain of a unit cube (1 × 1 × 1).
The boundaries of this box are considered as frictionless, rigid walls. The properties of the fibre and the
computational domain are presented in Table 1. In the domain, forces and torques acting on each particle are
caused by gravity (body force) and by collisions between particles themselves or by the particle and boundary
walls. A Hertzian collision model is applied to approximate the forces and torques acting on the particle during
a collision.

First test case: single falling fibre. In the first test, a single elongated fibre, initially placed exactly in the
middle of the box with a 30 degree angle between the principle axis of the fibre and the plane of the bottom
wall, falls down under the effect of gravity. Due to its initial angle, a torque acts on the particle during the first
collision with the bottom wall and the particle starts to rotate.

The results of the four different numerical methods as previously discussed in this paper are compared to
each other in Fig. 2, showing the total energy error as a function of time for the various integration methods.
These methods are the Euler method, the leap-frog method, the scalar factor method and the newly proposed
PCDM method.

In Fig. 2, the errors of the different methods are shown for this test case over two seconds of simulation
with a fixed time step of 
t = 1.0−7s.

The Euler method predicts the minimum error in kinetic energy, very close to zero and non-increasing,
whereas the errors in energy produced by all the other integration algorithms are small, typically less than
0.2 %, but are larger and increasing. Also, the errors produced by the other 3 integration algorithms almost
overlap each other. Although the errors from other algorithms are somewhat bigger than those from the Euler
method, all the algorithms can be considered acceptable for this case.

Second test case: nine falling fibres. A second test case comprises of 9 fibres in the same box, falling under
gravity. In order to increase the number of collisions within the total period of two seconds, all the nine particles
are given an initial velocity of (1.0, −1.0, 0.0). Their initial positions are distributed evenly on a vertical plane
halfway through the box. The angle between the principle axis of the fibre and the plane of the bottom wall is
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Fig. 3 The error in total energy resulting from the four different rotational integration algorithms in the case of 9 falling fibres

Fig. 4 The error in total energy resulting from the scalar factor method and the novel PCDM method in the case of 9 falling fibres

75 degrees. Compared to the previous test case, which only involves particle–wall collisions, also numerous
particle–particle collisions occur.

Figure 3 shows the errors of energy conservation for this case, comparing the four integration algorithms
as outlined previously. The errors for only the scalar factor method and the newly proposed PCDM method
are shown in Fig. 4. For this second test case, the Euler and leap-frog methods become unstable and the
absolute errors rapidly exceed 1.5 and 2 %, respectively. On the other hand, the errors produced by the scalar
factor algorithm and the novel PCDM method are steady and very close to each other. The difference in
the plot between the two algorithms indicates that the particles have different trajectories and orientations.
Figure 5 shows the snapshot of one particle trajectory and the locations of the fibres for: (a) the novel PCDM
method and (b) the scalar factor method. This figure shows the trajectories predicted by both methods as
well as the dynamics of the trajectories are significantly different. As very small errors produced in each
time step will dramatically change the trajectory and orientation of each particle, different algorithms cannot
produce exactly the same trajectories over time. This phenomenon is referred to as the Lyapunov insta-
bility [21]. From this second test case, it is not possible to distinguish between the scalar factor method
and the PCDM method. Although the trajectories and final positions differ significantly, the energy conser-
vation error is comparable for both methods, and the case is too complex to compare with an analytical
solution.

Third test case: prescribed one-dimensional torque on a particle The third test case considers the rotation
of a particle by prescribing its torque. The particle considered is a sphere with a diameter and density of
2 m and 1,100 kg/m3, respectively. To precisely follow the rotation of this particle, a unit vector, initially
x = (1.0, 0.0, 0.0), is projected onto the sphere. The function prescribing the torque is given by τ =
(0.0, A exp(Ct), 0.0), in which A and C are 1 × 105 and 1, respectively, and t represents time. This test
case has only been performed with the scalar factor method and the PCDM method, as all other methods
do not achieve convergence. This test case can be evaluated analytically, by integrating the torque function
with respect to time. A direct comparison between the different algorithms can thus be made. The results of
these two methods are presented in Table 2, which shows the orientation of the unit vector after one second
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(a)

(b)

Fig. 5 Different particle trajectories as predicted by: a the novel PCDM method, and b the scalar factor method for the case of 9
falling fibres a one particle trajectory and nine particle positions at the end of 2 second simulation by the novel PCDM method.
b one particle trajectory and nine particle positions at the end of 2 second simulation by scalar factor method

Table 2 The orientation of a unit vector x = (1.0, 0.0, 0.0) after a second simulation with a nonlinear torque by scalar factor
method and the novel PCDM method

Position at time t = 1.0 Position error

Theoretical result
(
2.934253 × 10−1, 0.0, − 9.55982 × 10−1

)
0.0

Scalar factor method
(
2.871152 × 10−1, 0.0, − 9.578961 × 10−1

)
2.15 %

PCDM method
(
2.915775 × 10−1, 0.0, − 9.565472 × 10−1

)
0.63 %

of physical time with a constant time step �t = 1 × 10−4s, whereas the error in angle with time is shown in
Fig. 6. The results from the newly proposed PCDM method are significantly closer to the analytical result than
the results obtained from the scalar factor method. Figure 6 shows the error in the angle of the unit vector as
a function of time, comparing the analytical result with the PCDM method and the scalar factor method. This
figure clearly shows the effect of the re-normalisation which is required by the scalar factor method; when
re-normalisation is applied, the error in angle increases rapidly.

4.2 Rate of convergence

A very important aspect of a numerical integration method is the rate of convergence. For many types of
engineering problems, millions of particles will be studied and a favourable integration algorithm should
quickly converge as the time step decreases. In this section, the rate of convergence of the most common
methods is analysed.

A numerical integration algorithm for unit Quaternions will never diverge, as unit Quaternions are by
definition of unit length. In other words, the error of the rotational angles cannot diverge, and the range of
angle errors is from 0 to π rad. Hence, this makes the analysis somewhat more complicated.
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Fig. 6 The error in the prediction of the unit vector as a function of time for the scalar factor method and the PCDM method

Fig. 7 The angle error of the unit vector as a function of the inverse of time step 1
�t (log–log plot)

4.2.1 Comparison with a test case

Fourth test case: prescribed three-dimensional torque on a particle To compare the rate of convergence, the
test case of a fibre, with an initial orientation of B = (1.0, 0.0, 0.0), is placed in a torque field. A small
nonlinear torque, τ = (A sin (200π t), C exp(3.0 + 24t), C 552t ), in which A and C are 5.0 × 10−4 and
1.0 × 10−5, respectively, is applied on the fibre to force it to rotate.

The various Quaternion integration methods are used to evaluate the evolution of the rotation of the fibre
around its axis up to T = 0.1 s. The error of the orientation at time step n of the fibre is determined by evaluating

αerror
n = ‖ arccos (bn · B)− arccos (Bn · B)‖, (66)

where bn in world space is the unit vector projection of Bn as determined by the numerical methods described
in Sect. 3, and Bn considered as the analytical result of the unit vector in world space at time step n. The total
rotational angle error is then summed as

α = �t

T

nfinal∑

n=1

αerror
n , (67)

where nfinal represents the total number of time steps required to achieve time T . The time step, �t , is varied
between 1.0 × 10−5 and 1.0 × 10−7, as the Euler method does not converge for a larger time step. The effect
of the time step on the total error is shown on a log-log scale in Fig. 7.

In this figure, also the slopes of first- and second-order rate of convergence are indicated. The error in the
prediction of the orientation of the PCDM method is always significantly less compared to the other methods.
Because the Euler, leap-frog and scalar function methods are derived from the Taylor expansion, they have a
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very similar rate of convergence, which is of first order for small time steps. This is because they all inhibit
the error of the re-normalisation of the Quaternion, irrespective of the order of the Taylor series considered.
With a time step larger than �t = 1.0 × 10−6, the rate of convergence is less than 1.

The rate of convergence of the PCDM method is significantly larger than that of the other methods, even
for large time steps and approaching second-order rate of convergence as the time step decreases.

4.3 Discussion

For the simplest test case considered, a single falling fibre, all four methods show acceptable results. For all
other test cases, the Euler method and leap-frog method show a rapid increase in mass conservation error in
time. Although the scalar factor method always shows a stable solution, the error in prediction for the two test
cases involving a prescribed torque on a particle are larger than with the newly proposed predictor-corrector
method. Moreover, the study of the rate of convergence in the fourth test case shows that the scalar factor
method shows a significantly slower rate of convergence than the predictor-corrector method. Moreover, there
are no significant differences in computational cost for the methods. The novel PCDM method is more accurate
and stable than the other methods for any time step considered in the four test cases.

5 Conclusions

The modelling of the dynamics of non-spherical particles is significantly more complex than the modelling of
spherical particles. The difference arises from the requirement of determining the orientation and rotation of a
non-spherical particle. For spherical particles, this is done by the application of a vector only. For non-spherical
particles, several frameworks are available to describe the orientation: Euler angles, rotation matrices and unit
Quaternions. The application of both Euler angles and rotation matrices suffers from serious drawbacks,
concerning lack of stability and uniqueness and the occurrence of singularities. Therefore, unit Quaternions
seem to be the most attractive framework and are used widely within the modelling of the dynamics of non-
spherical particles.

However, there are a number of potential drawbacks when using unit Quaternions to represent the orientation
and rotation of non-spherical particles. The first drawback is that almost all research papers so far employ both
unit Quaternions and rotation matrices to determine the rotational behaviour of a non-spherical particle. This
results in an increased requirement of computer memory and possible inaccuracies which are introduced by
the frequent conversion from the unit Quaternion to a rotation matrix and back.

The second drawback concerns the conservation of length of a unit Quaternion. As a Quaternion describes
both orientation and scaling, a unit Quaternion describing solely rotation must remain of constant, unit, length
throughout all of the operations. Most methods put forward in the literature are based on a Taylor series
expansion of the unit Quaternion and require addition, subtraction or scaling. This inherently leads to a change
in length of the Quaternion during integration, and, consequently, re-normalisation is required. Although the
re-normalisation restores the correct length of the Quaternion, it changes the relationship between the four
parameters of which the Quaternion exists, thereby introducing a significant error. Applying higher-order
methods, such as based on Runge–Kutta, does not prevent these errors from arising, and worsen rather than
improve the overall accuracy of the method.

Both the drawbacks are addressed in this paper. The present work derives a new framework to transform
vectors and tensors by unit Quaternions directly, and the necessity of rotation matrices is removed altogether.
This means that the algorithm derived in this paper can describe the rotation of non-spherical particles using
four parameters only, making it favourable for large-scale computations involving many particles.

To address the second drawback, a novel framework to integrate unit Quaternions is put forward in this
paper, the predictor-corrector direct multiplication method. This novel algorithm avoids the use of subtraction
or addition of Quaternions and uses multiplication of Quaternions only, so that re-normalisation is not required.
The algorithm is based on a predictor-corrector method, so that the various time levels are not mixed.

In this paper, various numerical integration methods for Quaternions put forward in the literature are
scrutinised and compared by applying each of them to four test cases: a single falling fibre, nine falling fibres,
the 2D rotation of a vector projected on a sphere with a prescribed torque function and a 3D prescribed torque
on a non-spherical fibre. In the first two test cases, the error in total energy is compared between the different
methods, and in the third test case, the predicted orientation of the vector as a function of time is compared
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to the analytical solution. In the last test case, in which the rate of convergence is studied, it is shown that
the novel predictor-corrector direct multiplication method has a higher-order rate of convergence than other
methods from the literature. The other methods never exceed a rate of convergence of 1, caused by the addition
or subtraction of Quaternions and the subsequent necessity of re-normalisation. The novel predictor-corrector
direct multiplication method put forward in this paper approaches a rate of convergence of 2. All the test cases
presented in this paper show a significant improvement in accuracy of the algorithm put forward in this paper
compared to other algorithms found in the literature.
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