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INTRODUCTION

For spherical particles we can “simply” solve for each particle
Y(t)= (X(t)>
v(t)

dy(t) [ v(t)
dt _<f(t))

But for a non-spherical particle, this does not suffice.

and solve for
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INTRODUCTION

B

Next to the position and velocity we also need to keep track of the
orientation.

Imperial College
London

Berend van Wachem (Imperial College) Quaternions May, 2015 4 / 46



RIGID BODY DYNAMICS

ANGULAR MOMENTUM

EXTERNAL TORQUE
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RIGID BODY DYNAMICS

DERIVATIVE OF ANGULAR MOMENTUM

L=To+Td

v

ANGULAR ACCELERATION

=1
w=1

(f—co><7co)
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RIGID BODY DYNAMICS

Summarizing so-far:

@ Find the moment of inertia, 7 and its change, 1
@ Find the “external” torque, T

o Fluid interactions.
o Particle-particle interactions.

© Determine the angular acceleration, @.
© Determine the angular momentum, L.

© We can then accurately determine the angular velocity, @ and use this
to determine the “orientation’.
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ORIENTATION: THE ROTATION MATRIX

How can we “map” point p?
p(t) = R(t)po+ x(t)
where R is the rotation matrix,

xx  Fyx  Fzx

%

R=1nry ny ry
Ixz ltyz [Izz
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ORIENTATION: THE ROTATION MATRIX

If we just consider the rotation of the x-axis,

1 _ Fex
O] R=|ry|=r
0 Iz
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ORIENTATION: THE ROTATION MATRIX

Then the change of this axis is given by the angular velocity,
r=o(t) x r(t)
and this can be done for the rotation of every axis,
Fyx Fyx Fzx

R=[o)x |ry | o)x|ry | o) x| r
I'xz ryz rzz
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ORIENTATION: THE ROTATION MATRIX

And after some steps we get

iR = (o(t)*ﬁ

— so the change in rotation matrix is directly related to the angular
velocity!
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ORIENTATION: THE ROTATION MATRIX

So we can now define a complete state vector

x(1)
R(t)

L(t)

Y(t) =

and solve for

Imperial College
London

Berend van Wachem (Imperial College) Quaternions May, 2015 12 / 46



THE ROTATION MATRIX: SUMMARY

Hence, we need to determine
@ The mass of the body and the center of mass
© The inertia tensor of the body and its change in time
© The flow induced forces and torques on the body.
@ The collisional torques and forces on the body.

and then solve for Y.
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CENTER OF MASS

MASS OF A BODY
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DETERMINING THE INERTIA TENSOR

INERTIA TENSOR

2 2 A I

N mj (riy + riz) —Mmiri iy, —Miry i,

- I 2 2 I
| = Z —mirr, m (rix o8 rl-z) —mjr,r,

i=1 1o I 2 2
—Mmiri;ry _mirizriy (rix+riy)

The summation over i can be done with, e.g. a Monte-Carlo type
simulation.
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BODY SPACE AND WORLD SPACE

y z
B A B(t)

X

(a) body space (b) world space

— the inertia tensor of a rigid body in body space, 1 , does not change!
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BODY SPACE AND WORLD SPACE

The rotation matrix can be used to transform variables in the world space
(the initial space) to body space,

Vb = ﬁv
for a vector. For a tensor: -
T =RTR
Hence,
= ===T
I =RIR
(but this is not-so-cheap to do)
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SO EVERYTHING IS FINE?

@ When integrating the rotation matrix, very often singularity problems
or Gimbal lock problems arise. This is because a rotation matrix is
over specified.

@ There are 3 constraints for orthogonality and 3 constraints for unit
length. However, a rotation matrix has 9 components.
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QUATERNIONS

In the 19" century, Sir Hamilton proposed a Quaternion, consisting out of
4 numbers:

@ A Quaternion is a mathematical concept to represent
the relationship between two vectors.

@ A Quaternion is an operator that changes the
orientation and the length of a vector.

@ A Quaternion contains a real and 3 imaginary parts:

Q=qo+qi1i+qj+ g3k =[qo,4q]

Hamilton, W. R. (1844). On quaternions; or on a new system of imaginaries in Algebra.
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QUATERNIONS

The subsequent application of two Quaternions is given by the Grassman
product:

AB = (A,B,—A-B)+A,B+B.,A+AxB
The conjugate of a Quaternion is defined by
Q" =qo— qi — g2 — g3k

and the norm of a Quaternion is defined by

10l = VR = /@3 + a2 + % + 3

and the inverse of a Quaternion is defined by

ot
QI
Unit Quaternion: ||Q|| =1 rotation only! Il o
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QUATERNIONS

Rotation of a vector with a unit Quaternion is then defined by
Sb — QSQfl
where the vector s is interpreted as a Quaternion as

S=]0,s]
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QUATERNIONS VS ROTATION MATRIX

Obviously, a unit Quaternion and a rotation matrix are related,

_ [1-2(g5+93)  2q192—2q093 29092+ 24193
R=|2qq2+2q0g3 1-2(¢i+q3) 2G2g3—2Gon
29143 —2qo92  2qoq1 +292q3 1-2(q? +q3)

and most codes use a combination of Quaternions and Rotation matrices.
Time integration is usually done in the framework of the Quaternion.
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DIFFERENTIATING A QUATERNION

The change in time of a Quaternion is given by the “simple” relationship,
: 1
=-w
Q 5 Q

which can be proved in several ways.
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QUATERNIONS: INTERGRATION

@ It is important that the length of a Quaternion remains unity
@ This should be implicitly respected by the integration algorithm

@ Commonly “adding” 2 unit Quaternions is ill defined: the result will
not be a unit Quaternion.

@ Hence, writing the following might be appealing:
Qn—',—l = Qn+ QnAt+

but it is not correct.

Zhao, F., and van Wachem, B. G. M. (2013). A novel Quaternion integration approach for describing the behaviour

of non-spherical particles. Acta Mechanica, 224
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QUATERNIONS: INTEGRATION

Instead, the Grassman product should be used,
Qn+1 = Q Qn

where Q represents the effect of rotation during the current time-step.
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STATE VECTOR WITH QUATERNIONS

So we can now define a complete state vector

x(t)
Q(t)

mv

L(t)

Y(t)=

and solve for
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ALGORITHM SUMMARY

For each body in the simulation,
@ Determine the mass and mass middle point.
@ Determine the inertia tensor in “body-space”.
© Define a unit Quaternion.
For each time-step for each body,
@ Determine the effect of collisions and fluid (force + torque).
@ Determine the effect of rotation, Q.
© Integrate the state-vector and move the body accordingly.

Zhao, F., and van Wachem, B. G. M. (2013). A novel Quaternion integration approach for describing the behaviour

of non-spherical particles. Acta Mechanica, 224
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MODELLING PARTICLE-PARTICLE INTERACTIONS

@ Hard-sphere collisions (event driven).
@ Soft-sphere collisions (determine deformation).
@ Stochastic collisions.

@ Empirical models.
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HARD-SPHERE APPROACH

@ Determine the time before collision for every pair of 2 particles

© Update all the particles to the smallest collision time
© Perform collision
© Go to step 1.
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The collision time between two particles is given by

—ri2:Ci2 — \/(r12‘C12) C122 [flz ( di+5 dz) ]
teol = 2
G2

Update particle locations

1
ra(t-+At) =ra(t) +va(t)At+ EaA(t)Atz
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Step 3

Diameter ¢ d,
Mass n mo
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The velocities before and after collision are related by

ml(C& —Cl) = —mg(c’2 —C2) =J
and 21 21
d—ll(a)’1 —m)= —d—22(a)’2 —@)=-nxJ

Moment of inertia: | = md?/10
The relative velocity at the point of contact

d d
q= (C1—C2)— <?10)1+?2(1)2> Xn
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COEFFICIENT OF RESTITUTION

Cﬁ/\ﬂm

\Y
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COEFFICIENT OF RESTITUTION

The normal coefficient of restitution, e, characterizes the incomplete
restitution of the normal component of q:

n-qg=-en-q

The tangential coefficient of restitution, &, characterizes the incomplete
restitution of the tangential component when particles “stick’:

nxq =-Enxq
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HARD SPHERE MODEL

The hardsphere model assumes:
@ Collisions between two particles are binary.
© Collisions between two particles are instantaneous.

Both of these assumptions cannot generally be met for bodies.
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SOFT-SPHERE APPROACH

@ Determine fixed time-step

@ Update particle locations with fixed timestep
© Determine overlap and drag forces
Q Go To?2
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SOFT-SPHERE APPROACH
The time-step must be chosen small to prevent too large deformation.

Ea(E+ A) = ra(t) + va(E) AL+ —an(t)Ar2

2
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SOFT-SPHERE APPROACH: OVERLAP

STEP 3

Determine if there is any overlap. If so, calculate the normal and tangential
forces between the overlapping particles.

Normal forces Q

Q Sp;ing |

\ \ Dash-—pof

Spring

Ic 31—
Slider
@ Dash-pot
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SOFT-SPHERE APPROACH: OVERLAP

@ The overlap represents the local deformation of the particle.

@ The force can be represented by the overlap, or deformation, by Hertz'
theory.

@ There is a “maximum” overlap for Hertz' theory.
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SOFT-SPHERE APPROACH: FORCE MODEL

Frn=(—kn 52 NMpg-n)-n

@ k is the stiffness coefficient.
@ 1 is the damping coefficient.

@ f is the friction coefficient.

yes — sliding  F; = —f|F \
IFe| > f|F,| ' "al
no — sticking  F: = (—k:8: — n:q:)
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RELATING SOFT-SPHERE TO PHYSICS

@ Calculate the stiffness coefficient from the Young's modulus, Poisson’s
ratio,and the shear modulus with the Hertzian contact theory for
elastic deformation.

o Plastic deformation can also be accounted for.

@ The damping coefficient is related to the coefficient of restitution or to
the critical damping condition (for numerical property of the system).

o Realistic stifness coefficients are very high (1.0 x 10'1), but in
practice many papers use orders of magnitude less.

In a spring-mass system, the natural oscillation period is given by 27\/m/k
which restricts the time-step. Often a low value for k is applied.
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PHERE MODEL

Normal forces

3
Fn= (_kn6nE —Nnq 'n) ‘n

@ k is the material stiffness

@ 1 is the damping coefficient.
Spring

A @ f is the friction coefficient.

Slider
Dash-pot q

yes —» sliding  F, = —f|F,|—
IF| > f|F,| ‘ "lal
no — sticking  Fy = (—k:8: — 1N:Q¢

“fixed” time-step
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COLLISION DYNAMICS FOR NON-SPHERICAL

contacts can be found through
“spheres’

Hertzian contact model:

Fo(t) = Kn(£)53 (£)n(t)
F(t) = min(uF,(t), Ki(t)0:(t))

— In doing this, we assume the deformation plane is circular!
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ROUGH WALL MODELLING

hard-sphere model soft-sphere model

Including the “shadow-effect™: particles do not see walls with v,-ny, > 0.
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ROUGH WALL MODELLING

Rough walls have a different effect for spherical and non-spherical particles
@ For spherical particles, the translational velocity is affected.

@ For non-spherical particles, em the rotational velocity is affected.
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SUMMARY

@ Some basic rigid body dynamics has been presented.

@ Difference between “world-space” and “body-space”.

@ Quaternions are preferred over the rotation matrix approach, for many
particles.

@ Hard-sphere and soft-sphere models: soft-sphere suitable for
non-spherical bodies.

@ Modelling of rough walls is feasible.
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