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DNS METHODS FOR PARTICLES
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MOTIVATION FOR DNS

Accurate flow solution

Physical insight

Flow transition
Vortex structures
Accurate forces

Too detailed to be
“practical”

Can be used to derive
engineering models
for large scale
simulations
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“TRUE” DNS METHODS

Berend van Wachem (Imperial College) DNS of particles May, 2015 5 / 57



ROTATING SPHERE

Velocity Field and Streamlines
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ROTATING SPHERE

ReD < 1, Rubinow & Keller (1961)
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EXAMPLE APPLICATION - CHANNEL FLOW WITH

PARTICLES

Channel flow with non-spherical particles (Re = 42′000)

Use DNS to model the forces on particles: FP = f (Re,ϕ)

Solve the problem using LES and point-particle approach
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WAYS TO DO DNS

Strategies:

Body fitting meshes (ALE
formulation)

Particles are meshed
Accurate but expensive
Re-meshing required
Good when little
movement is required.

Alternative methods

Immersed Boundary
Cartesian Grid
Fictitious Domain
Lattice Boltzmann
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ARBITRARY LAGRANGIAN EULERIAN (ALE)

Hu (1996)

The Lagrangian particles are
meshed.

Very accurate.

Very expensive, difficult to
have accurate interpolation.

Remeshing required.

Good for problems where
little movement is required.
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IMMERSED BOUNDARY METHOD

Fluid domain is represented
by an Eulerian grid

A Lagrangian grid represents
the solid-fluid interface

Presented approach:

No-slip velocity boundary
condition on the surface
Zero gradient pressure
boundary condition on the
surface
Force calculated from the
resolved flow field
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DISTRIBUTED IMMERSED BOUNDARY METHOD

“Classic” IBM methods are
distributed.

A force is determined in the
Lagrangian control points, so
the fluid velocity matches
the control point velocity.

This force is distributed
along the Eulerian
neighbours of the control
point.
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MIRRORING PRINCIPLE

x

p

Mark and van Wachem, JCP 207, 2008

Project (x) into the fluid domain to
create p

Internal point velocity is set to
satisfy the no-slip boundary
condition at the surface

ui
IB =

1

2

(

ui
IN +∑βmui

m

)

Internal point pressure is set to
obtain zero pressure gradient at the
surface

(

pi
IN −∑βmpi

m

)

= 0

Coefficients βm from geometric
interpolation function.
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FORCE CALCULATION

Force obtained from the
resolved flow field:

Fi =

∫

IB

(

−pδij − µ

[

∂ui

∂xj

+
∂uj

∂xi

])

njdS

Pressure:
Quadratic
extrapolation from
auxiliary points

Viscous Terms:
Velocity gradients from
least square fit of
Taylor series
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PROBLEMS WITH MOVING BODIES - Mittal, 2011

Spurious pressure oscillation in simulations of moving bodies

∆x/D = 0.1,
∆t/T = 0.01
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SOURCE OF THE PRESSURE OSCILLATIONS - Mittal, 2011

MASS CONSERVATION LAW FOR IB SIMULATIONS

−
∆VIB

∆t
+
∫

σcv

~Uf ·~ndA =
∆V

∆t
(qn+1 −qn)+Sσ

∆V
∆t

(qn+1 −qn) - changes in fluid volume around IB
qn - total number of solid cells at time n

∆V - cell volume
Sσ - "transpiration" error

RHS represents the error in mass conservation

Sudden changes in fluid volume around the body

Experience high discontinuous variation in time

Berend van Wachem (Imperial College) DNS of particles May, 2015 16 / 57



SOURCE OF THE PRESSURE OSCILLATIONS - Mittal, 2011

Cells changing their behaviour:

fresh cells dead cells

Associated issues:

The “old” velocities and pressures in fresh and dead cells are not correct
Mass source error
Mirrored point change
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PROPOSED IMPROVEMENTS

Fresh/dead cell velocity and pressure interpolation

Improving the mirroring interpolation

Continuity equation modifications

Find the accurate cell areas and triangles in cells

Solve the continuity equation for the mirrored cells

Merge the mirrored cells with neighbouring fluid cells
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FRESH/DEAD CELL TREATMENT

1 Interpolate velocity to fresh cells
from surrounding fluid cells

2 Interpolate pressure to fresh cells
from surrounding fluid cells

3 Use the flow velocity and mirroring
principle to estimate the velocity
and pressure of mirrored points

4 Re-calculate the explicit mass flux in
the vicinity of the body
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MIRRORING INTERPOLATION COEFFICIENTS

Use multiple surface points
for setting the boundary
condition

Calculate weighted average
of the coefficients

Cells close to the surface are
more important (large φk )

IMPROVED MIRRORING PRINCIPLE

∑φkui
IB = ∑

1

2
φk

(

ui
IN +∑βm,kui

m

)
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CONTINUITY EQUATION MODIFICATIONS

Cut the fluid cells with the
IB to get accurate flow areas
and cell volumes

Possible strategies:

Merge the mirrored cells
with flow cells
Solve the continuity
equation for mirrored cells

GRADIENT INTERPOLATION IN CUT CELLS

δφ

δx i
= ∑

(

φf a
∗i
f +φ i

IBa∗iIB
)
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SOLVE CONTINUITY IN MIRRORED CELLS

Solve the continuity equation
in mirrored cells

Reduces mass error

Flow between mirror cells
needs special treatment

Small cells may be
inaccurate

CONTINUITY EQUATION

∑ui
f a

∗i
f +∑ui

IBa∗iIB = ∑

〈

ūi
f + d̂ui

f

(

˜[ δp

δx i

]

f

−

[

δp

δx i

]

f

)〉

+∑ui
IBa∗iIB = 0
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CELL MERGING

Merge to fluid cell with
largest flow area

Find the interpolation
coefficients for the continuity
in mirrored cell

Add the contribution of the
body motion

Input the coefficients to the
continuity equation for
merged cell

x

x

CONTINUITY EQUATION FOR MERGED CELL

(∑ui
f a

∗i
f +∑ui

IBa∗iIB)fluid +(∑ui
f a

∗i
f +∑ui

IBa∗iIB)mirrored = 0
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OSCILLATING SPHERE ORIGINAL APPROACH
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OSCILLATING SPHERE WITH FRESH/DEAD CELL

TREATMENT
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CELL MERGING
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CONTINUITY IN MIRRORED CELLS
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SPHERE SETTLING UNDER GRAVITY IN A TANK

Experimental setup:
Ten Cate, 2002

D/∆x = 8

4 cases considered
(adjustment of fluid density
and viscosity):

Case ut ReT

1 0.038 1.5
2 0.060 4.1
3 0.091 11.6
4 0.128 31.9

g
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FRESH/DEAD CELL TREATMENT
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CONTINUITY IN MIRRORED CELLS
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CELL MERGING
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IMPROVEMENTS TO STANDARD IBM METHODS

Decreasing the oscillations:

Interpolation of flow between mirrored cells

Fresh/dead cell treatment

Mirroring technique

Functionality of the method:

Force calculation improvement

Multiple particles

Particle-wall, particle-particle collisions
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MULTIPLE PARTICLES

When 2 particles come close there
are complications:

1 The fluid between the
particles cannot be resolved.

2 The force from the fluid on
the particles cannot be
resolved.

3 The particles may collide.

how to treat the fluid cells?
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PARTICLE COLLISIONS

Difficulty to describe collisions of particles with arbitrary shape:

No canonical centre or contact direction.

May have multiple contact areas.

May be that a single contact point does not describe the contact, for
example can have no net force, but a torque.

During contact, the particle no longer has a closed surface with the
fluid.
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PARTICLE COLLISIONS

(a) No obvious contact position and
direction

(b) Mutiple contact patches cannot
be seen as one

FIGURE : Two dimensional representions of contacts that have not got a simple
parameterisation
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PROPOSED DISCRETISATION SCHEME

Breakdown overlap of particles into simple pieces

Each piece bounded by only two triangles (one from each body)

Each piece easily parameterised

Total volume
Centre of volume
Contact area
Contact direction
Effective curvature

Easy to recombine to produce complex contact behaviour

Closed surface for pressure re-obtained by using an additional internal
pressure, calculated by smoothing the external pressure.
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DISCRETISATION SCHEME CONTINUED

Average surface normal

Centre of volumeOverlapping volume

Individual surface normalArbitrary body `centre'

Parallel to centres

FIGURE : Decomposing of contact overlap into sections bounded by only two
triangles
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CURVATURE ESTIMATION

The curvature for each triangle is calculated in a Lagrangian framework:

Triangle/Surface plane

Projected height

Triangle centre

FIGURE : Decomposing of neighbouring triangle cell centres in in and out of plane
components, in order to estimate curvature.
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CURVATURE ESTIMATION CONTINUED

Curvature is fitted by comparing the in-triangle plane and out-of-plane
components of the relative position of adjacent triangles. The in-triangle
plane can be considered as is or fitted to account for skewness in the
surrounding triangles.
And overall ‘effective’ curvature (Ceffective) for the contact volume is
considered by combining the curvatures of the two triangles that make it
(CA and CB). This is done in the usual way.

Ceffective =
1

1
CA

+ 1
CB

(1)
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FLOW THROUGH PARTICLE ARRAY

FIGURE : Flow past an array of 5 spheres
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FLOW THROUGH PARTICLE ARRAY

FIGURE : Flow past an array of 5 spheres
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LUBRICATION FORCE SETUP

(a) Setup (b) Flow around particles

FIGURE : Setup and flow field used to determine the lubrication force between
two particles
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LUBRICATION FORCE RESULT
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FIGURE : A plot of the non-dimensionalised lubrication force along with the
proposed law, assuming low Reynolds number
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LUBRICATION FORCE RESULT

Non-dimensional lubrication force prediction.

F

µ · v · r
=

π

2
×
(r

l

)1.25

F =
π ·µ · v · r

2
×
(r

l

)1.25
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COLLIDING PARTICLE

(a) Interstitial pressure (b) Streamlines of the fluid phase

FIGURE : Flow field around two obliquely colliding spheres
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COLLIDING PARTICLE CONTINUED
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FIGURE : A plot of the components of collision forces between the particles
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SOME EXAMPLES

Disc falling in a fluid

Disc falling in a fluid

Disc falling in a fluid

Collision of two particles

Interacting particles

Comparison of shape on settling

Collision of two particles

Interaction of bubble with particle

Interaction of disc with free surface
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PARTICLE SHAPES

shape sphericity proportions size
sphere 1 d = 200µm

ellipsoid 0.88 a

b
= 5

2
a = 368µm b = 147µm

fiber 0.70 a

b
= 5 a = 510µm b = 102µm

disc 0.88 a

b
= 5 a = 350µm b = 70µm
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FORCES AND TORQUES ON A PARTICLE

DRAG FORCE

Fd = CD (. . .)
1

2
ρg

π

4
d2
p (ṽ f −vp)

2

LIFT FORCE

Fl = CL (. . .)
1

2
ρg

π

4
d2
p (ṽ f −vp)

2

AERODYNAMIC TORQUE

Taero = CT (. . .)
1

2
ρg

π

8
d3
p (ṽ f −vp)

2

ROTATIONAL TORQUE

T rot = CR (. . .)
ρ

2

(

dp

2

)5

|ωp|ωp

Berend van Wachem (Imperial College) DNS of particles May, 2015 49 / 57



RESULTS: DNS SIMULATIONS

CD(ϕ) = CD,ϕ=0o +(CD,ϕ=90o −CD,ϕ=0o )sina0ϕ

CD,ϕ=0o =
a1

Rea2
+

a3

Rea4

CD,ϕ=90o =
a5

Rea6
+

a7

Rea8

CL =

(

b1

Reb2
+

b3

Reb4

)

sin(ϕ)b5+b6Reb7
cos(ϕ)b8+b9Reb10

CT =
( c1

Rec2
+

c3

Rec4

)

sin(ϕ)c5+c6Rec7
cos(ϕ)c8+c9Rec10

Zastawny et al. (2012) Int. J. Multiphase Flows 39, pp 227
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RESULTS FROM DNS
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RESULTS FROM DNS
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RESULTS FROM DNS
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RESULTS FROM DNS
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RESULTS FROM DNS
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Example Zhao and van Wachem, Acta Mechanica 224, 2013
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CONCLUSIONS

Discussion of Immersed Boundary Methods

Shortcomings/treatments in IBM

Particle-Particle interactions in IBM

Deriving force/torque model from IBM
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