Lagrangian Agglomeration Models with Applications to Spray Drying

M. Sommerfeld and S. Stübing

Mechanische Verfahrenstechnik Zentrum für Ingenieurwissenschaften Martin-Luther-Universität Halle-Wittenberg D-06099 Halle (Saale), Germany

www-mvt.iw.uni-halle.de

Typical agglomerate from spray drying

Content of the Lecture

Summary of technical relevant agglomeration processes ➡ Introduction otoagglomerate properties Solution Flow model; homogeneous isotropic turbulence Lagrangian particle tracking and turbulence dispersion model Lagrangian stochastic collision model Solution Agglomeration simple and structure model **U** Test case simulations for dry agglomeration Solution Agglomeration of viscous particles with penetration **Preliminary spray dryer calculations Conclusions and outlook**

Introduction

The agglomeration of particles is important for a number of technical and industrial processes in particle technology.

Numerical Calculation of Particle-Laden Systems

For the numerical calculation of gas-solid flow systems the Euler/Lagrange approach is most favourable.

Consideration of particle size distribution Detailed modelling of the elementary processes

- Particle-wall collisions
- Inter-particle collisions
- Agglomeration and breakage

Sequential calculation of fluid flow and particle phase by a coupled hybrid approach until overall convergence is reached:

- Continuum fluid flow: Eulerian, RANS or LES approach with two-way coupling (droplet phase source terms)
- Particle phase simulated by the Lagrangian approach where a large number of representative particles (point-mass) are tracked through the flow field
 Relevant forces on particles
 - Modelling elementary processes
 - ✤ Turbulent dispersion
 - Particle collisions/agglomeration

Flow Conditions

- The performance of the agglomerate structure model is tested for a predefined forced homogeneous isotropic turbulence (HIT) in a box
- Summary of turbulence properties

$$T_{\rm L} = 0.16 \, \frac{k}{\epsilon} \, ; \quad L_{\rm E} = 3.0 \cdot T_{\rm L}$$

Turbulent kinetic energy k	$0.06 \text{ m}^2/\text{s}^2$
Turbulent dissipation rate ε	$10 \text{ m}^2/\text{s}^3$
Dynamic viscosity µ	18.23 10 ⁻⁶ kg/(m s
Turbulent integral time scale T _L	0.96 ms
Lagrangian length scale L _E	0.576 mm

Martin-Luther-Universität Halle-Wittenberg

LBM of HIT

Lagrangian Particle Tracking

➢ The Lagrangian approach requires the tracking of a large number of computational point-particles (parcels) solving the following equations:

Particle position $\frac{d \vec{x}_{p}}{dt} = \vec{u}_{p}$ Particle velocity (drag only) $m_{p} \frac{d \vec{u}_{p}}{dt} = \frac{\rho}{2} A_{p} C_{D} (\vec{u} - \vec{u}_{p}) |\vec{u} - \vec{u}_{p}|$ $C_{D} = \frac{24}{Re_{p}} (1 + 0.15 Re_{p}^{0.687}) \text{ with } Re_{p} = \frac{\rho D_{p} |\vec{u} - \vec{u}_{p}|}{\mu}$

- The drag coefficient and the drag force of agglomerates is calculated for a sphere with **diameter of Gyration**.
- The porosity of the agglomerate is not accounted for in the drag coefficient.
- The instantaneous fluid velocity is generated by a single-step Langevin model.

$$u_{i,n+1}^{f} = R_{P,i}(\Delta t, \Delta r) u_{i,n}^{f} + \sigma_{i}\sqrt{1 - R_{P,i}^{2}(\Delta t, \Delta r)} \xi_{i}$$

- Particle rotation is not accounted for explicitly.
- 10,000 primary particles are initially randomly distributed in the computational domain.

m

Collision and Agglomeration Modelling

In modelling agglomeration processes (collision of primary particles with agglomerates) several physical phenomena have to be accounted for:

• Detection of a possible collision with the stochastic collision model by defining the collision crosssection of an agglomerate

• Consideration of the impact efficiency (the primary particle might move with the relative flow around the agglomerate)

• The primary particle might fly through the dendrite branches of the agglomerate (hit probability)

O Which primary particle in the agglomerate is the collision partner of the new primary particle ???

G Are the two primary particle sticking together considering adhesion forces or penetration ???

Stochastic Inter-Particle Collision Model (Sommerfeld 2001)

- In the trajectory calculation of the considered particle (parcel) a fictitious collision partner is generated for each time step.
- The properties of the fictitious particle (representative of local population) are sampled from local, cell-based distribution functions:

In turbulent flows the sampled fictitious particle velocity fluctuation is correlated with that of the real particle:

R

$$u'_{\text{fict,i}} = R(\tau_{\text{P}}, T_{\text{L}}) u'_{\text{real,i}} + \sigma_{\text{i}} \sqrt{1 - R(\tau_{\text{P}}, T_{\text{L}})^2} \xi_{\text{n}}$$

$$(\tau_p, T_L) = \exp\left(-0.55\left(\frac{\tau_p}{T_L}\right)^0\right)$$

 Calculation of collision probability between the considered particle and the fictitious particle:

Resulted from comparison with LES (group of Prof. Simonin)

$$P = \frac{\pi}{4} \left(D_{P1} + D_{P2} \right)^2 \left| \vec{u}_{P1} - \vec{u}_{P2} \right| n_P \Delta t$$

- A collision occurs when a random number in the range [0 1] becomes smaller than the collision probability.
- The collision process is calculated in a co-ordinate system where the fictitious particle is stationary (central oblique collision).
- Generation of impact point on an equivalent sphere of the agglomerate by a random process and determination of the impact parameter L:

$$L = \sqrt{Y^2 + Z^2} \quad \text{with}: \quad L \le 1$$

$$\phi = \arcsin(L)$$

 Consideration of fluid dynamic effects for the interaction of particles with different size (impact efficiency), see Ho and Sommerfeld (2002).

➢ In the case of rebound the new velocities of the considered particle are calculated by solving the momentum equations for an oblique collision in connection with Coulombs law of friction.

- Re-transformation of the new particle velocities in the laboratory frame of reference.
- Particle rotation is not considered in agglomeration studies, due to the complex momentum exchange for structured agglomerates.

Agglomeration Model for Solid Particles 1

The occurrence of agglomeration may be decided on the basis of an energy balance (dry particles — only Van der Waals forces):

Agglomeration Model for Solid Particles 2

Agglomeration Model for Solid Particles 3

Through the comparison of the critical velocity with the normal impact velocity two types of collisions may occur:

Agglomeration:

A new particle is formed with the volume equivalent diameter.

Rebound:

The solution of the impulse equations in connection with Coulombs law gives the rebound velocities of the considered particle.

 $d_{agglo} = \sqrt[3]{d_{real}^3 + d_{fict}^3}$

The number of real particles is updated in order maintain the total mass in the parcel.

The new velocity of the agglomerate follows from a momentum balance.

$$n_{agglo} = n_{real} \frac{d_{real}^3}{d_{real}^3 + d_{fict}^3}$$

$$u_{agglo,i} = u_{real,i} \frac{m_{real}}{m_{real} + m_{fict}}$$
 i = 1, 2

In the subsequent particle tracking forces are calculated based on the volume equivalent sphere (simplification, no other properties available).
 The collision probability is also calculated with the volume equivalent sphere.

Agglomerate Structure Model 1

In order to obtain more detailed information on the agglomerate structure, location vectors for all primary particles in the agglomerate with respect to a reference particle are stored.

The agglomerate is still treated as point-particle !!! Most important agglomerate properties
Porosity of the agglomerate (convex hull)
Effective surface area

Agglomerate structure; Shape indicators

- Assumptions for the stochastic collision model with respect to structure modelling:
 - Agglomerates can only collide with primary particles (number concentration of the resulting agglomerates is very low).
 - The fictitious particle cannot be an agglomerate, hence it is only sampled from the primary particle size distribution.

Extension of the stochastic collision model:

- The collision probability (based on a selected collision sphere of the agglomerate) predicts whether a collision occurs.
- The collision process is calculated in a coordinate system where the agglomerate is stationary.
- The point of impact on the surface of the selected collision sphere of the agglomerate is sampled _____ stochastically.

Agglomerate Structure Model 3

- A collision occurs if the lateral displacement L is smaller than the boundary trajectory Y_C (impact efficiency).
- Random rotation of the agglomerate in all three directions (since rotation is neglected).
- The particle then collides with the primary particle in the agglomerate being closest to the impact point (tracking).
- The critical velocity for the two involved primary particles is calculated.

rebound

Viscous particles: penetration

sticking

Penetration Model for High Viscous Droplets

High viscous droplets penetrates into the low viscous droplet (spherical frame)

tact Area:

$$d_{cont} = 2 \cdot \sqrt{h \cdot d_{Low}} - h^{2}$$
etration depth

$$X_{p} = \frac{d_{High} + d_{Low}}{2} - r$$

$$h = X_{p} \quad \text{for} \quad r > 0$$

$$h = \frac{d_{Low}}{2} - r \quad \text{for} \quad r < 0$$

Calculation of *time-dependent penetration depth:*

1: 2 Tangential:

Radial:

Motion of sphere in viscous liquid

➢ Shear force across contact area

$$m_{\text{High}} \cdot \frac{du_{r}}{dt} = -3 \cdot \pi \cdot \mu_{\text{Low}} \cdot d_{\text{cont}} \cdot u_{r}$$

$$m_{\text{High}} \cdot \frac{du_{9}}{dt} = -\mu_{\text{Low}} \cdot d_{\text{cont}} \cdot u_{9}$$

$$\frac{dr}{dt} = u_{r}$$

$$\frac{d9}{dt} = \frac{u_{9}}{r}$$
Martin-Luther-Universität
Halle-Wittenberg

Dry Particle Agglomeration

Dry particle agglomeration (i.e. without penetration) is simulated for mono-sized particles and a size distribution with the following properties:

Primary particle diameter	5 µm	12 µm	2 – 20 µm
Particle density	1,000 kg/m ³	1,000 kg/m ³	1,000 kg/m ³
Particle relaxation time τ_p	0.076·10 ⁻³ s	0.432·10 ⁻³ s	$(0.013 - 1.2) \cdot 10^{-3} s$
Stokes-number St = τ_p / T_L	0.08	0.45	0.013 – 1.3
Volume fraction	1.0.10-3	1.0.10-3	1.0 · 10 -3

Hamaker Constant A	5.0 · 10 ⁻¹⁹ J
Restitution Ratio k _{pl}	0.6
Friction Coefficient µ	0.4
Limiting Pressure P _{pl}	5.0 · 10 ⁹ Pa
Minimum Contact Distance	40 nm

Dry Agglomeration, Mono 12 μm

Halle-Wittenberg

Dry Agglomeration, Mono 12 μm

Dry Agglomeration, Mono 12 μm

 ${}^{\textcircled{S}}$ Number of collision types comparing without and with impact efficiency (mono-sized 12 $\mu m)$

Dry Agglomeration, Distribution 2 – 20 μ m

> Temporal evolution of agglomerates for initial size distribution $2 - 20 \mu m$.

Dry Agglomeration, Distribution $2 - 20 \ \mu m$

Dry Agglomeration, Distribution $2 - 20 \ \mu m$

Dry Agglomeration, Distribution 2 – 20 μ m

Properties in dependence of the number of primary particles in the agglomerate for initial size distribution 2 – 20 μm.

Dry Agglomeration, Distribution 2 – 20 μ m

^C Temporal evolution of mean agglomerate properties, mono-sized 12 μm,

Comparison Initial Size

Comparison dry agglomeration all sizes after 5 seconds

Comparison Initial Size

Comparison dry agglomeration all sizes after 5 seconds

Viscous Particle Agglomeration

Properties of agglomerates with different viscosity mono-sized primary particles with 12 μm

Viscous Particle Agglomeration

Properties of agglomerates with different viscosity, mono-sized primary particles with 12 μm

Geometry of the Spray Dryer 1

Geometry and operational conditions of spray dryer (NIRO Copenhagen):

Dryer geometry: H = 4096 mm $H_{cyl} = 1960 \text{ mm}$ D = 2700 mm $H_{out} = 3303 \text{ mm}$ $D_{out} = 210 \text{ mm}$ Annular Air Inlet $R_o = 527 \text{ mm}$ $R_i = 447 \text{ mm}$

Air flow with swirl: $\dot{m}_{air} = 1900 \text{ kg/h}$ $\phi_{air} = 1.1 \text{ mass-\%}$

 $T_{air} = 452.5 \text{ K}$ $U_{ax} = 9.8 \text{ m/s}$ $U_{tan} = 2.4 \text{ m/s}$

m

Fines return: Annular inlet around the nozzle $D_o = 72 \text{ mm}$ $D_i = 63 \text{ mm}$ $U_{\text{fine}} = 37 \text{ m/s}$ $\rho_{\text{fine}} = 440 \text{ kg/m}^3$

Pressure nozzle: Hollow cone nozzle $p_{nozzle} = 85$ bar Spray angle $\beta = 52^{\circ}$ $D_{nozzle} = 2 \text{ mm}$ $H_{nozzle} = 270 \text{ mm}$ Maltodextrine DE-18 Solution: 29 mass-% solids $\rho_{drop} = 1090 \text{ kg/m}^3$ $\dot{m}_{solution} = 92 \text{ kg/h}$ $T_{\text{solution}} = 293 \text{ K}$ $U_{av} = 127 \text{ m/s}$

Geometry of the Spray Dryer 2

> Numerical discretisation and boundary conditions of the spray dryer:

heat transfer coefficient \Rightarrow measurements h = 10.5 W/(K·m²),

Outlet pipe: gradient free

Calculated flow structure and temperature field in the dryer:Velocity fieldTemperature field

[©] Particle phase properties throughout the spray dryer

Particle trajectories

Particle concentration [kg/kg]

cm 0.025 0.024 0.023 0.022 0.021 0.02 0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.012 0.011 0.01

0.009

0.007

0.006

0.005

0.004

0.003

0.002

0.001

dp 0.0001 9.5E-05 9E-05 8.5E-05 8E-05 7.5E-05 7E-05 6.5E-05

6E-05 5.5E-05

5E-05

4E-05

3E-05

2E-05

1E-05

5E-06

4.5E-05

3.5E-05

2.5E-05

1.5E-05

[©] Particle-phase properties throughout the spray dryer

Solids content in the particles

Local particle mean diameter

Simulated agglomerates compared with agglomerates collected from the spray dryer

Conclusions / Outlook

- Agglomeration of fine particles is an important elementary process in many industrial processes, among them is spray drying.
- The Euler/Lagrange approach allows for an effective coupling of fluid dynamics and particle transport, collision and agglomeration
- A Lagrangian agglomeration structure model was developed, which provides porosity, sphericity, surface area and fractal dimension of agglomerates
- The model calculations provided consequential results for dry particles and mono-viscous particles with penetration in HIT.

- First calculations of a spray dryer showed reasonable agreement with very limited measurements (NIRO Copenhagen).
- A further validation of the model will be based on experiments in a model dryer with two interacting fan sprays.

Publications

- Blei, S. and Sommerfeld, M.: CFD in Drying Technology-Spray Drying Simulation. Modern Drying Technology: Volume 1 Computational Tools at Different Scales (Eds. E. Tsotsas and A. S. Majumdar), WILEY-VCH, Weinheim, 155 – 208 (2007).
- Ho, C.A. and Sommerfeld, M.: Modelling of micro-particle agglomeration in turbulent flow. Chem. Eng. Sci., Vol. 57, 3073 3084 (2002).
- Lipowsky, J. and Sommerfeld, M.: Influence of particle agglomeration and agglomerate porosity on the simulation of a gas cyclone. Proceedings 6th Int. Conf. on CFD in Oil & Gas, Metallurgical and Process Industries. Trondheim Norway, Paper No. CFD08-043, June 2008.
- Sommerfeld, M.: Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence". Int. J. of Multiphase Flows, Vol. 27, 1828-1858 (2001).
- Sommerfeld, M. and Ho, C.A.: Numerical calculation of particle transport in turbulent wall bounded flows. Powder Technology, Vol. 131, 1-6 (2003)
- Sommerfeld, M., van Wachem, B. & Oliemans, R.: Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. ERCOFTAC, ISBN 978-91-633-3564-8 (2008).
- Sommerfeld, M.: Modelling particle collisions and agglomeration in gas-particle flows. CD-ROM Proceedings 7th Int. Conf. on Multiphase Flow, Tampa, FL USA, May 30. June 4. (2010)
- Sommerfeld, M. and Stübing, S.: Lagrangian modeling of agglomeration for applications to spray drying. 9th International ERCOFTAC Symposium on Engineering Turbulence Modeling and Measurements, Thessaloniki, Greece, 6. – 8. June 2012
- Stübing, S., Dietzel, M. and Sommerfeld, M.: Modelling agglomeration and the fluid dynamic behaviour of agglomerates. Proceedings of ASME-JSME-KSME Joint Fluid Engineering Conference 2011 (AJK2011-FED) July 2011, Hamamatsu, Shizuoka, Japan, Paper No. AJK2011-12025.

Workshop 2015

ANNOUNCEMENT

14th Workshop on Two-Phase Flow Predictions

07. – 10. September 2015

Zentrum für Ingenieurwissenschaften Martin-Luther-Universität Halle-Wittenberg D-06099 Halle (Saale), Germany www-mvt.iw.uni-halle.de

Lattice-Boltzmann Simulations: Flow about a particle coated with 882 drug particles at Re = 200, study related to drug particle detachment in an inhaler.

