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Content of the Lecture 

 Importance of agglomerates 

 Fundamentals  of  the Lattice-Boltzmann Method (LBM) 
 curved wall boundary condition 
 local grid refinement 
 grid dependence, validation 

 Determination of fluid dynamic forces (drag force):  
 nearly spherical agglomerates 
 nearly spherical fractal flocks 
 carrier particle covered with small particles 

 Conclusions and Outlook 
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Importance of Agglomerates 
Agglomerates with complex structures and particle clusters are found in 

numerous technical and industrial applications. 
 
 
 
 
 
 
 
 

 
 A numerical calculation of particle-laden flows with agglomerates and clusters 

cannot be properly done based on the volume equivalent diameter. 
 Therefore DNS based on the Lattice-Boltzmann Method is performed for 

evaluating the fluid dynamic forces on agglomerates and particle clusters. 
 
 
 

 
 
 
 
 
 
 
 
 

200 nm 

Agglomerate from 
spray drying 

Agglomerate from 
flame synthesis 

Formulation for 
medical applications 
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Lattice-Boltzmann-Method (LBM)  1 
 Lattice-Boltzmann method is based on simulating the motion of discrete fluid 

elements in order to predict the macroscopic flow system. 

 LBM is a very robust method for complex geometries. 
 The variable of the Boltzmann statistics is the distribution  function f(x, v, t) 

which declares the number of fluid elements having the velocity v at the 
location x and time t. 

 Macroscopic properties are related to the moments of the probability function: 
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Lattice-Boltzmann-Methode  2 
 Boltzmann equation (rate of change of f(x, v, t) due to transport and collision) 

with single relaxation approach (Bhatnagar Gross Krook (BGK) equation): 
 

 
 

discretization in space, velocity and time: 

– space is represented by a numerical lattice 

– predefined number of discrete velocity directions 

– propagation velocity: 

– Discrete velocities: 
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Lattice-Boltzmann-Methode  3 
 Lattice Boltzmann equation und discretised equilibrium distribution: 
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Lattice-Boltzmann-Methode  4 
 
 
 
 
 
 
 
 

Extended wall boundary condition 
for curved walls Guo et al. (2002)  Standard wall boundary condition 

Forces over the surface of an object (particle) 
are obtained from a momentum balance 
(refection of the fluid elements) 
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Lattice-Boltzmann-Methode  5 
 Lattice-Boltzmann Method (LBM) with local grid refinement in order 

to increase locally spatial resolution:    

Real geometry 

discretisation 

Resolved geometry 

5 Zellen 10 Zellen 30 cells 
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 Definition of aerodynamic coefficients 
 Possible equivalent diameters: 

 Volume equivalent sphere: 

 

 Drag coefficient: 

 

 Lift coefficient: 

 

 Torque coefficient: 

Aerodynamic Coefficients 
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Grid Resolution Study 
In the present studies the agglomerate or particle cluster is centrally fixed in a 

cubic computational domain and exposed to defined flow conditions 
The domain size and the resolution of the primary particles will affect the 

simulated fluid dynamic forces 
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   Validation of LBM Simulations 
 Verification of forces and coefficients by  
      simulating the flow around spheres and  
      cubes (laminar flow regime) 

 Reynolds range: 
 0.3, 3, 30, 60, 90 
      (increase of DP for 

higher Re) 
 refinement levels: 
 5 (∆xc /∆xf = 32/1) 
 cells per diameter: 
 16 … 128 
 Domain size: 
       L/Dp = 50 up 400  
 number of fluid nodes: 
 max. 4.5 to 7.0 million 
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Validation: Particle Sitting on a Wall under Shear Flow 
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Simulation Cases 
 In the following, simulations of the flow about three different 

types of particle clusters will be shown. 

Nearly spherical clusters consisting 
of spherical primary particles 

Nearly spherical  fractal flocks 

R/a=100 

Carrier particle covered with 
micron-sized powder  

Plug, Re=160 
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Agglomerate Generation 

 Agglomerate generation based on random growth plus design specifications 
– creation by definition of: 

• number and size distribution of primary particles 
• optional sintering of contact points 
• morphological type  
   (dendritic, spherical clusters, flocks) 
• target quantity 

– determination of particle characteristics: 
• equivalent diameters (also used for Reynolds numbers and fluid 

dynamic coefficients) 
• porosity (e.g. based on convex hull) as main structural parameter 

– rejection sampling: 
 acceptance or rejection of the created agglomerates based on target 
parameters 

ε≤− target
equiequi dd

no 

rejection 

yes 

acceptance 
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 Characteristic properties of agglomerates: 
 Volume, surface, volume specific surface area 
 Convex hull volume 
 Aggregate density 
 Volume equivalent diameter DVES 

Outer radius Ro 

Gyration radius: 

 
 Porosity: 

 
 Sphericity: 

 
 Fractal dimension: 

 

Description of Agglomerate Properties 
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Conditions for the Simulations 

Simulation of 3D-flow around porous spherical agglomerates: 
– variation of morphology and mean porosity: 

• group G1, G2:     spherical clusters with porosity between 30 and 80 % 
                                 G1: 5 – 10 cells per PP; 2 million cells, 4 FR 
                                 G2: 6 cells per PP; 2 million cells, 4 FR 
• group G3:   fractal flocks with porosity larger than 90 % 
                                1 – 2 cells per PP; 5 – 6 million cells; 2 – 3 FR 

– variation of particle Reynolds number and reference parameters 
– reference simulation for rigid sphere for wall effect correction 

Local grid refinement in the immediate 
vicinity of the agglomerate 

Schematic plot of numerical domain 
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Flow About Spherical Clusters  1 

Flow field around particles at Re=0.3 

particle size distribution (± 0.4 Dmean), 
sintering at contacts (0.15 to 0.50 Dmean) 

variation of mean porosity:  30 … 80 % 

G1: variation of mean primary particle 
size; constant particle number:  500 

G2: constant mean primary particle size 
   particle number:  350 … 1400 
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Dependence of drag on agglomerate structure (G1 & G2; Re = 0.3): 
– With the volume equivalent sphere the drag on the agglomerates 

cannot be described properly 
– The drag of the agglomerates is lower than the area equivalent sphere 
– Slight decrease of drag with increasing porosity (drop of 4 – 9 %) 
– The decrease of drag for low porosity of G1 is related to structural 

differences (Rg, Df) 

Flow About Spherical Clusters  2 

0.3 0.4 0.5 0.6 0.7 0.8
70

80

90

100

110

120

130

 

 

Dr
ag

 C
oe

ffi
cie

nt
 [ 

- ]

Porosity Convex Hull [ - ]

    ReP = 0.3
 G1: DAES

 G2: DAES

 G1: DVES

0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
 

 

Eq
ui

va
le

nt
 D

ia
m

et
er

 [ 
- ]

Porosity Convex Hull [ - ]

  G1     G2
   DAES /DAES,m

   DVES /DAES,m

   Dg /DAES,m



Martin-Luther-Universität 
      Halle-Wittenberg 

Flow About Spherical Clusters  3 
 

 Structural effects on radius 
     of gyration and fractal dimension  
     Particle (G1) 
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 Investigation of fractal agglomerates (flocks of G3) with different 
morphology: 

Spherical Flocks  1 

 basis: publication of Vanni (2000): 
 “Creeping flow over spherical permeable aggregates” [Chemical Engineering       
        Science 55, 2000, 685-698] 

• aggregates with fractal structure: radially varying solids volume fraction 
and permeability (spherical symmetry) 

• assumptions: continuous porosity function, no local heterogeneities 
• Stokes equation for external flow and Brinkman equation for internal flow 

Variation of diameter ratio R/a and fractal dimension Df 

Diameter ratio Particle number Solid fraction

R / a Df Df* Npp 1 - φ φ φ*

50 1,5 1,5 145 0,001 0,999 0,999
50 1,8 1,8 611 0,005 0,995 0,995
50 2,1 2,2 2434 0,019 0,981 0,981
50 2,4 2,6 9356 0,075 0,925 0,930
10 1,8 1,8 34 0,034 0,966 0,971
100 1,8 1,8 2127 0,002 0,998 0,998

Fractal dimension Porosity

* Simulated agglomerates 
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 Clusters of group G3 with constant Df ≈ 1.8 
 

Spherical Flocks  2 

Mono-disperse, point contacts, constant primary particle size 
 variation of  R/a:  10, 50, 100 (agglomerate outer radius/primary 

particle radius) 
 variation of particle number:  34 … 2127 
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Drag by bounding sphere for Df ≈ 1.8 
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S/N (Re = 0.1) S/N (Re = 1.0)

 Drag of G3 with constant  Df ≈ 1.8 at Re = 0.1 
 Influence of size ratio R/a (comparison with Vanni 2000): 

– Re and drag coefficient are referred to the enwrapping sphere 
– As a result of the inhomogeneous porosity distribution within the 

agglomerate the simulated drag is lower than predicted by Vanni 

Spherical Flocks  3 
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Structural parameters for R/a = 50 
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 Clusters of group G3 with constant R/a = 50 
 

Spherical Flocks  4 

Mono-disperse, point contacts, constant 
primary particle size 
 variation of Df:  1.5, 1.8, 2.2, 2.6 
 variation of particle number:  145 … 9356 
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Particle properties for R/a = 50 
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Drag by bounding sphere for R/a = 50 
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Cd_G3_Df2.6 S/N (Re = 0.1) S/N (Re = 1.0)

 Drag of G3 with constant  R/a = 50 at  Re = 0.1 
 Influence of fractal dimension Df: 

– Re and drag coefficient are referred to bounding sphere 
– Drag coefficient decreases with reducing fractal dimension; differences 

with the theory of Vanni (2000) due to inhomogeneity in porosity  

Spherical Flocks  5 
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Simulation Conditions Particle Cluster  1 
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 For the inhalation of fine drug powders 
below 5 µm, carrier particles (100 µm) are 
coated with the drug particles. 

 Within the inhaler the drug powder needs 
to be detached from the carrier through 
fluid stresses and wall impacts. 

 The flow conditions considered for the 
LBM mimic the conditions experienced by 
a carrier particle in an inhaler. 

The relevant forces 
for particle 
detachment are the 
normal force acting 
against the van der 
Waals adhesion force 
and the tangential 
force acting against 
friction force. 

 

Drug Particle 

Carrier Particle 

Position Angle 
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Ftotal 

Friction Angle 

Fvdw 
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Simulation Conditions Particle Cluster  2 

 Validation of drug particle resolution: 
Local grid refinement 

6 Cells per 
Agent Particle 
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Simulation Conditions Particle Cluster  3 

  Stream-wise direction Lateral directions 

Re < 100 
7.8⋅Dcarrier 
60⋅∆xcoarse 

6.5⋅Dcarrier 
50⋅∆xcoarse 

Re > 100 
10.4⋅Dcarrier 
160⋅∆xcoarse 

9.1⋅Dcarrier 
140⋅∆xcoarse 
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 Validation of domain size in stream-wise and lateral directions: 



Martin-Luther-Universität 
      Halle-Wittenberg 

Plug flow 

Re = 17.9 

Re = 37.7 

Re = 104 

Re = 202 

Re = 16 

Re = 32 

Re = 100 

Re = 200 

Present simulation Measurement of S. Taneda 
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Evaluation of Results 
For obtaining reasonable averages of the forces on the drug particle four 

simulation runs with different random distribution of the fine drug particles. 
Through all data points a polynomial fit is constructed. 

↑ 

 Different drug particle 
distribution 

Plug flow, degree of coverage 50%, Ddrug/Dcarrier = 5/100 

 Data points
      Polynomial fit Re = 100
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 Influence of Reynolds number on normal force distribution 

Effect of Reynolds number 

Plug flow, degree of coverage 50%, Ddrug/Dcarrier = 5/100 

Re = 100 

Fitting curve:
 Re = 70
 Re = 140
 Re = 200

0 20 40 60 80 100 120 140 160 180
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FvdW ≈ 35 nN 
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Maximum normal force, plug flow, coverage degree 50 %, 
Ddrug/Dcarrier = 5 /100 
 

Magnitude and Location of Maximum Normal Force  
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Influence of Coverage Degree 
 Influence of the degree of coverage by drug particles on the 

normal force distribution, plug flow, Ddrug/Dcarrier = 5 /100 
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Flow between agent particles 
 For high Reynolds numbers, different coverage degree may have some effect 

on agent particles. Since there is flow separation in the gap between agent 
particles. The influence of flow separation will be studied later. 
 

Flow separation 

Re = 200 
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Drag Coefficient for Particle Clusters 
 Comparison of the drag coefficient resulting from present simulation results 

for a particle cluster with the correlation of Schiller and Naumann (1933) for a 
sphere (particle diameters Dcluster = Dsphere = 110 µm, coverage degree 10% and 
50%, Dfine/Dcarrier = 5/100) 
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Detachment Probability by Rolling 
 Detachment of drug particles happens through lift-off, sliding and rolling 

 
 
 

 Fraction of fine particles to role as a function of Reynolds number for 
different coverage degree (Dfine/Dcarrier = 5/100, static friction coefficient     
µ = 0.1, van der Waals force  FvdW = 35 nN) 
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Turbulence Intensity  1 
 Force in x-direction on a single fine particle as a function of time for different 

turbulence intensity (Re = 70, coverage degree 50 %, Dfine/Dcarrier = 5/100) 
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Inflow generation 
technique based on 
digital filter, inducing 
correlation in space 
and time on the 
randomly generated 
data (Klein & Janicka 
2003)  
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Turbulence Intensity  2 
  Magnification of force in stream-wise direction acting on the drug particle for 

different turbulence intensity 
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Turbulence Intensity  3 
 Standard deviation of the normal force on the fine particles in dependence of 

position angle for different turbulence intensity (Re = 70, coverage degree 50 
%, Dfine/Dcarrier = 5/100) 
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Summary / Conclusions 
 Agglomeration of fine particles and agglomerate transport is an important 

elementary process in many industrial processes 
 A numerical calculation of such processes, for example, by the 

Euler/Lagrange approach requires  knowledge about the fluid dynamic 
behaviour of structured agglomerates 

 For deriving the resistance coefficients of agglomerates direct numerical 
simulations were performed by the Lattice-Boltzmann Method 

 The LBM is a very effective method for calculating the flow about complex 
bodies and structures, such as agglomerates 

 For spherical agglomerates it was found that the drag coefficient only 
slightly decreases with increasing porosity, about 10 % 

 The results for the spherical flocks are consistent with the data of Vanni, 
however, some quantitative differences are found which are caused by the 
real structures (no spherical symmetry) generated for the LBM 

 Spherical particles covered with small particles were simulated in order to 
obtain a detachment criterion depending on the flow situation 
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