

Modelling concentrated fiber suspension flow using different low Reynolds k- ε turbulence models

M.G. Rasteiro*, D. Asendrych, F. Garcia, P. Ferreira, P. Faia, C. Cotas

COST ACTION FP1005 (6th ERCOFTAC SIG43 Workshop)

23-25 October 2013, Udine, Italy

- 1. Objectives
- 2. Experimental data
- 3. Geometry
- 4. Low-Reynolds k- ε model
- 5. Numerical Results
- 6. Conclusions
- 7. Future Work

(% W/W)		
1.50	0.2798	0.532
1.80	0.5123	0.518
2.50	10.721	0.247

Figure 1 – Rheogram and apparent viscosity for pulp suspension of eucalyptus fibers (c=1.50% w/w).

(s⁻¹)

COST ACTION FP1005 (6th ERCOFTAC SIG43 Workshop) – 23-25 October 2013, Udine, Italy

2. Experimental data

Universidade de Coimbra

Experimental Data

Table 2- Experimental information.

c (% w/w)	1.50		1.80		2.50	
U _{in} (m·s ⁻¹)	4.19	6.21	4.46	6.23	4.90	5.55
ΔΡ/L _{exp.} (Pa·m ⁻¹)	829.1	1288.7	842.6	1203.2	2299.3	2814.3
N Crowding Factor	1947		2336		3245	

Faia, P.; Silva, R.; Rasteiro, M.; Garcia, F.; Ferreira, A.; Santos, M.; Santos, J.; Coimbra, P. (2012) – "*Imaging Particulate Two-Phase Flow in Liquid Suspensions with Electric Impedance Tomography"* – Particulate Science and Technology, 30(4): 329-342 Rasteiro, M. (2011) – "*Modelling Fiber suspensions Flows Using Rheological Data"*. COST Action FP1005 meeting, Nancy, 13-14 October Ventura, C.; Garcia, F.; Ferreira, P.; Rasteiro, M. (2008) – "*Flow Dynamics of Pulp Fiber suspensions"* – TAPPI Journal, 7(8): 20-26

3. Geometry $Left Side \\ Kg:s^{-1} \\ Kg:s^{-1} \\ Kg:s^{-1} \\ Figure 4 - Geometry and boundaries.$ C • UNIVERSIDADE DE COIMBRA

Table 3- Boundary conditions.

Location	Boundary Condition	
Left Side	Deriodic Poundary	
Right Side		
Тор	Axis	
Bottom	Wall	

The pulp flow is assumed as:

- -Steady state (fully developed flow)
- Isothermal
- Without mass transfer;
- Incompressible
- 2D flow with axial symmetry
- Viscosity was considered dependent on shear rate

It was considered a water annulus at the wall with thickness equal to fiber length

Complete set of differential equations

Standard k-ε turbulence model

 $\begin{aligned} \mathbf{General\ transport\ equation} \\ \frac{\partial}{\partial x_i} (\rho u_i \phi) &= \frac{\partial}{\partial x_i} \left(\Gamma_{\phi} \frac{\partial \phi}{\partial x_i} \right) + S_{\phi} \end{aligned}$

Cartesian Coordinates Steady state 2D geometry **Table 4**– Expressions for the dependent variable, diffusibility term Γ_{ϕ} and source-term S_{ϕ} (Costa et al. 1999).

	Transported property	ø	$arGamma_{\phi}$	S_{ϕ}				
	Mass	1	0	0				
	Momentum in <i>i</i> -direction	u _i	$\mu_{\rm sf}=\mu+\mu_{\rm s}$	$-\frac{\partial p_{d'}}{\partial x_{i}} - g_{i}\beta\rho(T - T_{d'}) + \frac{\partial}{\partial x_{j}}\left(\rho\mu_{d'}\frac{\partial\mu_{j}}{\partial x_{i}}\right)$				
	Turbulent kinetic energy	k	$\mu_{\rm ef} = \mu + \frac{\mu_t}{\sigma_k}$	$P_{k} + G_{k} - \rho \varepsilon + D_{k}$				
	Dissipation rate of k	ŝ	$\mu_{\rm ef} = \mu + \frac{\mu_t}{\sigma_{\rm e}}$	$\rho \frac{\varepsilon}{k} (f_1 C_{\varepsilon_1} P_k - f_2 C_{\varepsilon_2} \varepsilon + C_{\varepsilon_1} C_{\varepsilon_3} G_k) + E_{\varepsilon}$				
			$\mu_t = \rho C$	$\frac{k^2}{\varepsilon}$				
	$P_{k} = \rho \mu_{t} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) \frac{\partial u_{i}}{\partial x_{j}}, \ G_{k} = \rho g_{j} \beta \frac{\mu_{t}}{\Pr_{t}} \frac{\partial T}{\partial x_{j}}$							
	$C_{\mu} = 0.09, F$	$r_t = 0$	$0.9, \sigma_{\varepsilon} = 1.3, \sigma_k = 1.0, C_{\varepsilon l} = 1.44, C_{\varepsilon}$	$C_{\epsilon 2} = 1.92, C_{\epsilon 3} = 1.0, f_1 = 1, f_2 = 1, E_{\epsilon} = 0, D_k = 0$				
se	everal versions fo	or the	e k-ε tvpe turbulence modellina	of internal mixed convection flows" –				

Costa, J.J.; Oliiveira, L.A.; Blay, D. (1999) – "Test of several versions for the k-ε type turbulence modelling of internal mixed convection flows" – International Journal of Heat and Mass Transfer, 42(23):4391-4409

Complete set of differential equations

> Low-Reynolds turbulence k-ε model

Cartesian Coordinates Steady state 2D geometry **Table 5** – Expressions for the dependent variables, diffusibility term Γ_{ϕ} and source-term S_{ϕ} (Wang and Mujumdar 2005).

Transported property	ø	Γ_{ϕ}	S_{ϕ}				
Mass	1	0	0				
Momentum in <i>i</i> -direction	u _i	$\mu_{ef} = \mu + (\mu_t) = \mu + (f_{\mu}C_{\mu}\frac{k^2}{\tilde{\varepsilon}} \left -\frac{1}{\rho}\frac{\partial p_{ef}}{\partial x_i} - g_i\beta(T - T_{ref}) + \frac{\partial}{\partial x_j}\left(\mu_{ef}\frac{\partial p_{ef}}{\partial x_i}\right) \right $					
Turbulent kinetic energy	k	$\mu_{ef} = \mu + \underbrace{\mu_t}{\sigma_k} \qquad \qquad (P_k) + G_k - \tilde{\varepsilon} + \underbrace{D_k}$					
Dissipation rate of k	s	$\mu_{ef} = \mu + \left(\frac{\mu_t}{\sigma_e}\right) \qquad \qquad \frac{\varepsilon}{k} \left(f_1 C_e \right) P_k - \left(f_2 C_{e2} \widetilde{\varepsilon} + C_{e1} C_{e3} G_k\right) + \mu_{ef} C_{e1} C_{e3} C_{$					
	$\mu_t = \rho f_\mu \nabla_\mu \frac{k^2}{\varepsilon}$						
$P_{k} = \rho \mu_{i} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) \frac{\partial u_{i}}{\partial x_{j}}, \ G_{k} = \rho g_{j} \beta \frac{\mu_{i}}{\Pr_{i}} \frac{\partial T}{\partial x_{j}}$							
		$Pr_t = 0.9, C_{\epsilon \delta}$	g = 1.0				

Wang, S.J.; Mujumdar, A.S. (2005) – "A comparative study of five low Reynolds number k-ε models for impingement heat transfer" – Applied Thermal Engineering, 25(1):31-44

Model constants and damping functions

Model	$\mathbf{D}_{\mathbf{k}}$	Eε	$\varepsilon_w - \mathbf{B.C.}$	С _µ	Cei	C_{ϵ_2}	σ_k	σε	
AB	0	0	$ u \left(\frac{\partial^2 k}{\partial y^2} \right) $	0.09	1.45	1.83	1.0	1.4	
LB	0	0	$\left(\frac{\partial \varepsilon}{\partial y}\right)_{w} = 0$	0.09	1.44	1.92	1.0	1.3	
LS	$2\nu \left(\frac{\partial\sqrt{k}}{\partial y}\right)^2$	$2\mu v_t \left(\frac{\partial^2 U}{\partial y^2}\right)^2$	0	0.09	1.44	1.92	1.0	1.3	
YS ^(a)	0	$\mu v_t \left(\frac{\partial^2 U}{\partial y^2}\right)^2$	$2\nu \left(\frac{\partial\sqrt{k}}{\partial y}\right)^2$	0.09	1.44	1.92	1.0	1.3	
AKN	0	0	$ u \left(\frac{\partial^2 k}{\partial y^2} \right) $	0.09	1.5	1.9	1.4	1.4	
CHC	0	0	$ u \left(\frac{\partial^2 k}{\partial y^2} \right) $	0.09	1.44	1.92	1.0	1.3	
(a) $\mu_t = \rho_t$	(a) $\mu_t = \rho f_{\mu} k T_t$; $T_t = \frac{k}{\varepsilon} + T_k$; $T_k = c_k \left(\frac{\nu}{\varepsilon}\right)^{1/2}$; $c_k = 1.0$								

 Table 6- Model constants and functions.

UNIVERSIDADE DE COIMBRA

Model constants and damping functions

 Table 7 – Damping functions.

Convergence criterion = 1×10^{-5} Water annulus and non-Newtonian

UNIVERSIDADE DE COIMBRA

Case	с (% w/w)	U _{in} (m·s ⁻¹)	Turbulence Model	y+ _{fir} st node	ΔΡ/L _{exp.} (Pa·m ⁻¹)	ΔΡ/L _{num.} (Pa·m ⁻¹)	δ (%)
A1			AB	2.1		1801.9	117.4
A2		4.49	AKN	2.0	829.05	1756.2	111.8
A3	1.50		CHC	0.9		365.2	56.0
A4			AB	3.0		3686.7	186.1
A5		6.21	AKN	2.9	1288.70	3531.7	174.1
A6			CHC	2.8		3219.4	149.8
A7			AB	2.3		2202.9	39.5
A8		4.90	AKN	2.3	1578.94	2195.5	39.1
A9	2 50		CHC	2.2		2134.5	35.2
A10	- 2.50		AB	2.4		2394.1	36.5
A11		5.55	AKN	2.4	1753.79	2386.4	36.1
A12			CHC	2.3		2330.6	32.9

Table 8 - Nume	erical pressure drop	different low-Reynolds	turbulence $k - \varepsilon$ model – Mesh 1.
----------------	----------------------	------------------------	--

_	
_	

Mesh 1

Non-uniform mesh 20×54 (*x* and *r*) interval length ratio R1.10

er 2013, Udine, Italy op)

• U

C

C

UNIVERSIDADE DE COIMBRA

Mesh independence study

Convergence criterion = 1×10^{-5} Water annulus and non-Newtonian

Case	с (% w/w)	U _{in} (m·s⁻¹)	Turbulence Model	Y ⁺ fir st node	ΔΡ/L _{exp.} (Pa·m ⁻¹)	ΔΡ/L _{num.} (Pa·m ⁻¹)	δ (%)	
B1			AB	0.7		1827.8	120.5	
B2		4.49	AKN	0.7	829.05	1756.9	111.9	
B3	1.50		CHC	0.3		361.1	56.4	
B4			AB	1.0		3608.2	180.0	
B5		6.21	AKN	1.0	1288.70	3476.2	169.7	
B6			CHC	1.0		3285.1	154.9	
B7			AB	0.8		2192.5	38.9	
B8		4.90	AKN	0.8	1578.94	2193.4	38.9	
В9	2 50		CHC	0.8		2108.3	33.5	
B10	- 2.50		AB	0.8		2386.7	36.1	
B11		5.55	AKN	0.8	1753.79	2383.6	35.9	
B12			CHC	0.8		2310.6	31.8	
COST ACTION FP1005 (6th ERCOFTAC SIG43 Workshop) – 23-25 October								

Mesh 2

Non-uniform mesh 20×65 (*x* and *r*) interval length ratio R1.10

2013, Udine, Italy

Convergence criterion = 1×10^{-5} Water annulus and non-Newtonian

UNIVERSIDADE DE COIMBRA

Case	c (% w/w)	U _{in} (m·s ⁻¹)	Turbulence Model	Y ⁺ fir st node	ΔΡ/L _{wate} (Pa·m ⁻¹)	ΔΡ/L _{exp.} (Pa·m ⁻¹)	ΔΡ/L _{num.} (Pa·m ⁻¹)	δ (%)
C1	1.50	4.49	AB	0.5	1885.16	829.05	1810.5	118.4
C2			AKN	0.5			1737.8	109.6
С3			СНС	0.3			359.1	56.7
C4		6.21	AB	0.8	3419.65	1288.70	3119.5	142.1
C5			AKN	0.8			3130.0	142.9
C6			CHC	0.7			3272.1	153.9
C7	2.50	4.90	AB	0.6	2212.55	1578.94	2084.6	32.0
C8			AKN	0.6			2117.0	34.1
С9			CHC	0.6			2014.2	27.6
C10		5.55	AB	0.6	2781.05	1753.79	2405.8	37.2
C11			AKN	0.6			2415.2	37.7
C12			CHC	0.6			2337.3	33.7
COST ACTION FP1005 (6th ERCOFTAC SIG43 Workshop) – 23-25 October 2013, Udin								

Mesh 3

Non-uniform mesh 20×118 (x and r)

interval length ratio R1.05

e, Italy

• U

С

5. Numerical results

ε profiles

Table 13 – Dissipation rate of turbulent kinetic energy profiles – Mesh 3.

• U

C

COST ACTION FP1005 (6th ERCOFTAC SIG43 Workshop) – 23-25 October 2013, Udine, Italy

UNIVERSIDADE DE COIMBRA

5. Numerical results UNIVERSIDADE DE COIMBRA • U C *k* profiles **Table 14** – Turbulent kinetic energy profiles – Mesh 3. c = 1.50% (w/w) $U_{in} = 4.49 \text{ m} \cdot \text{s}^{-1}$ $U_{in} = 6.21 \text{ m} \cdot \text{s}^{-1}$ 0.16 0.3 - AB model ---- AB model 0.14 0.25 0.12 ---- AKN model --- AKN model 0.2

5. Numerical results

• U C

Universidade de Coimbra

μ profiles

 Table 15 – Dynamic viscosity profiles – Mesh 3.

• Study the influence of constant values on the damping functions f_{μ} , f_1 and f_2 .

Modelling concentrated fiber suspension flow using different low Reynolds k- ε turbulence models

COST ACTION FP1005 (6th ERCOFTAC SIG43 Workshop)

23-25 October 2013, Udine, Italy

