

## LIGGGHTS OPEN SOURCE DEM: **COUPLING TO DNS OF TURBULENT CHANNEL FLOW**

## 6th ERCOFTAC SIG43 Workshop, Udine, October 2013

Daniel Queteschiner<sup>1</sup>, Christoph Kloss<sup>1</sup>, Stefan Pirker<sup>1</sup> Cristian Marchioli<sup>2</sup>, Alfredo Soldati<sup>2</sup>

<sup>1</sup> Department of Particulate Flow Modelling, JKU Linz, Austria <sup>2</sup> Dept. of Electrical, Managerial and Mechanical Engineering, University of Udine, Italy



## I. The LIGGGHTS Code An Introduction

## "nature" of such a material (...) is thus

photo from: Whiddon, P.: http://www.flickr.com/photos/pwhiddon/

\* Woodcock, C. R., Mason, J. S. (1987): Bulk Solids Handling: An Introduction To The Practice And Technology, Technology & Engineering.

## A definition of bulk solids\*:

**Motivation and Background** 

A bulk solid (granular material) consists of many particles (granules) of different sizes (and possibly different chemical compositions, densities, shapes) randomly grouped together to form a bulk. The dependent on many factors (...)."





## Motivation and Background The Importance of Bulk Solids

## The Importance of Bulk Solid Handling:

- More than 50% of all products sold are either granular in form or involve granular materials in their production.\*
- About 40% of the value added in chemical industry is linked to particle technology.\*\*
- Despite this importance, the mechanics of granular materials is not well understood at present.\*\*\*

photo from: Whiddon, P.: http://www.flickr.com/photos/pwhiddon/

- \* Bates, L. (2006): The need for industrial education in bulk technology", Bulk Solids Handl., 26, 464-473.
- \*\* Ennis, B. J., Green, J., Davies, R.(1994): Particle technology. The legacy of neglect in the US", Chem. Eng. Prog, 90, 32-43.
- \*\*\* Campbell, C. S. (2006): Granular Material Flows An Overview", Powder Technology, 162, 208-229.







Geomechanics, Construction: Sand, gravel, stone, asphalt

Mining and Mineral Processing, Metals: Coal, Ores of all kinds

Agricultural Machinery: Crops of all kinds, sugar, flour, fruits, wood pellets

Pharmacy: Tablets (pills), powders

**Chemical industry:** Chemical powders and bulk materials, plastic pellets

Consumer goods: "PEZ", bonbons, cosmetic powder, detergent, cornflakes,...

## Motivation and Background Discrete Element Method



- DEM manages information about **each individual particle** (mass, velocity, ...) and the forces acting on it.
- Each particle is tracked in Lagrangian Frame, the force balance

 $m_p \vec{x}_p = \sum_i \vec{F}_i$ 

is integrated using an appropriate integration scheme.

• DEM can take into account the particle's shape

Examples of forces  $\vec{F}_i$  that can be included:

- Contact forces (particle-particle, particle-wall)
- Gravity
- Fluid drag force

## Motivation and Background Discrete Element Method



Soft sphere approach (Classical DEM, constant time-stepping)

$$m_{p} \overrightarrow{x_{p}} = \overrightarrow{F_{n}} + \overrightarrow{F_{t}} + \overrightarrow{mg}$$

A small overlap  $\delta$  between particles is allowed The normal force tending to repulse the particles is

A simple soft-sphere contact model: Linear spring-dashpot

$$\vec{\mathbf{F}}_{n} = -\mathbf{k}_{n}\vec{\delta} + \mathbf{C}_{n}\vec{\Delta \mathbf{v}_{n}}$$

 $\delta$ : spatial overlap,  $\Delta v_n$ : normal relative velocity at the contact point. The **tangential force**  $F_t$  (representing elastic tangential deformation) can be written as

$$\vec{F}_{t} = K_{t} \underbrace{\left| \int_{t_{c,0}}^{t} \Delta V_{t}(\tau) d\tau \right|}_{"\Delta t"} \vec{t} + C_{t} \overrightarrow{\Delta V_{t}}, \quad \max\left( \left| \vec{F}_{t} \right| \right) = \left| \mu \vec{F}_{n} \right|$$

 $\Delta v_t$ : relative tangential velocity, t: contact point tangential vector t<sub>c,0</sub>: time when the contact between the particles started

## The LIGGGHTS Code Overview



- LIGGGHTS = An Open Source, C++, MPI parallel DEM code
- LAMMPS MPROVED FOR GENERAL GRANULAR AND GRANULAR
- HEAT TRANSFER SIMULATIONS
- WWW.LIGGGHTS.COM | WWW.CFDEM.COM
- Based on the popular MD code LAMMPS (Sandia National Labs, USA)
- LAMMPS = Large-Scale Atomic/Molecular Massively Parallel Simulator A massively parallel, widely used, C++, Open Source MD code More generally, it is a parallel particle simulator
- CFDEM: Coupling to CFD code OpenFOAM®

## The LIGGGHTS Code The LAMMPS Code



### • LAMMPS = Large-Scale Atomic and Molecular Massively Parallel Simulator

- OpenSource MD code under GPL, provided by Sandia National Laboratories since the mid 90's (<u>http://lammps.sandia.gov/</u>). Widely used (over 500 journal publications 2000-2009 using LAMMPS, <u>http://lammps.sandia.gov/papers.html</u>)
- LAMMPS has potentials for soft materials (biomolecules, polymers), solid-state materials (metals, semiconductors) and **coarse-grained systems**. It can be used to model atoms or, more generically, as a **parallel particle simulator** at the atomic, meso, or continuum scale.
- LAMMPS is a C++ code, it runs on single processors or in parallel using message-passing techniques and a spatial-decomposition of the simulation domain.
- It is **fast and efficient** and also used on huge clusters (e.g. on Sandia Red Storm with 16k Quadcore nodes, simulations with billions of particles performed)
- GPU / CUDA acceleration packages for NVIDIA hardware

## The LIGGGHTS Code Relation to LAMMPS





CFDEMproject: Department of Particulate Flow Modelling, JKU Linz and DCS Computing, Linz www.cfdem.com



## II. LIGGGHTS Features and Models An Overview



#### Features added to LAMMPS

Hertz / Hooke pair styles w/ shear history incl. closure contact law to material params

Particle insertion improved

Mesh import from CAD (for walls)

**Moving mesh** 

**Multisphere method** 

Macroscopic cohesion model

Heat transfer model

Particle bonds with torques

Wall stress analysis

6 dof solver

**Dynamic Load Balancing** 



#### Features added to LAMMPS

Hertz / Hooke pair styles w/ shear history incl. closure contact law to material params

#### **Particle insertion improved**

Mesh import from CAD (for walls)

**Moving mesh** 

**Multisphere method** 

Macroscopic cohesion model

Heat transfer model

Particle bonds with torques

Wall stress analysis

6 dof solver

**Dynamic Load Balancing** 



## Packing by particle growth



#### Features added to LAMMPS

Hertz / Hooke pair styles w/ shear history incl. closure contact law to material params

#### **Particle insertion improved**

Mesh import from CAD (for walls)

**Moving mesh** 

**Multisphere method** 

Macroscopic cohesion model

Heat transfer model

Particle bonds with torques

Wall stress analysis

6 dof solver

**Dynamic Load Balancing** 



### Packing in tetrahedral mesh



#### Features added to LAMMPS

Hertz / Hooke pair styles w/ shear history incl. closure contact law to material params

#### Particle insertion improved

Mesh import from CAD (for walls)

**Moving mesh** 

**Multisphere method** 

Macroscopic cohesion model

Heat transfer model

Particle bonds with torques

Wall stress analysis

6 dof solver

**Dynamic Load Balancing** 



## Simulation of a rotary dryer ~1.000.000 particles



#### Features added to LAMMPS

Hertz / Hooke pair styles w/ shear history incl. closure contact law to material params

Particle insertion improved

Mesh import from CAD (for walls)

Moving mesh

**Multisphere method** 

Macroscopic cohesion model

Heat transfer model

Particle bonds with torques

Wall stress analysis

6 dof solver

**Dynamic Load Balancing** 



Each body is described by center of mass, mass and inertia tensor.



#### Features added to LAMMPS

Hertz / Hooke pair styles w/ shear history incl. closure contact law to material params

Particle insertion improved

Mesh import from CAD (for walls)

**Moving mesh** 

**Multisphere method** 

Macroscopic cohesion model

Heat transfer model

Particle bonds with torques

Wall stress analysis

6 dof solver

**Dynamic Load Balancing** 



### Wear prediction (Finnie model)



#### Features added to LAMMPS

Hertz / Hooke pair styles w/ shear history incl. closure contact law to material params

Particle insertion improved

Mesh import from CAD (for walls)

**Moving mesh** 

**Multisphere method** 

Macroscopic cohesion model

Heat transfer model

Particle bonds with torques

Wall stress analysis

6 dof solver

**Dynamic Load Balancing** 

# How to distribute load between processors?

#### Without dynamic load balancing:



#### With dynamic load balancing:



### advancing simulation time



## III. DNS + LIGGGHTS One-Way Coupling

## Establish A One-Way Coupling Coupling to LIGGGHTS



**LIGGGHTS** already designed to allow it to be coupled to other codes.

At least 3 ways to handle coupling

- LIGGGHTS is the driver code (other code is called during time-stepping)
- LIGGGHTS and the other code are on a more equal footing (other code is called every few time steps)
- Use LIGGGHTS as a library called by another code.

## **Establish A One-Way Coupling** Tasks (Spherical Particles)



### **Direct Numerical Simulation gives**

• fluid velocity field in spectral space (in terms of Fourier/Chebyshev coefficients)

### LIGGGHTS

- read data from DNS
- transform data into velocity field in physical space
- interpolate data at particle position using Lagrange polynomials
- apply Schiller-Naumann drag force to spherical particles\*

$$\frac{F}{\rho_f U^2 A} = \frac{12}{\text{Re}} \left( 1 + 0.15 \text{Re}^{0.687} \right).$$

\* L. Schiller and A. Naumann, Fundamental calculations in gravitational processing. Zeitschrift des Vereines Deutscher Ingenieure, 77(12), 318-320 (1933).

CFDEMproject: Department of Particulate Flow Modelling, JKU Linz and DCS Computing, Linz | www.cfdem.com

## **Establish A One-Way Coupling** Tasks (Ellipsoidal Particles)



- modify force to take into account particle shape
- apply torque according to Euler equations

## **Results** Spherical Particles





CFDEMproject: Department of Particulate Flow Modelling, JKU Linz and DCS Computing, Linz | www.cfdem.com

## **Results** Ellipsoidal Particles





## **Results** Ellipsoidal Particles





CFDEMproject: Department of Particulate Flow Modelling, JKU Linz and DCS Computing, Linz | www.cfdem.com



## Thank you for your attention! Questions?

www.cfdem.com www.particulate-flow.at

daniel.queteschiner@jku.at