

Mathias Kvick

Effect of fibres on curvature and rotational induced hydrodynamic stability

WWSC is a joint research center at KTH and Chalmers

Outline

- Experiments, setup and results
- Linear stability, method and results
- Comparison

Curved rotating channel

Curvature and rotation induced forces

$$-\frac{V^2}{r} = -\frac{1}{\rho} \frac{\partial p}{\partial r}$$

Curvature and rotation induced forces

Curvature and rotation induced forces

Visualisation of flow structures

WALLENBERG WOOD SCIENCE CENTER

Stability map of water flow

Visual inspection categorises the flow states well.

Fibre suspension - NFC

NFC is stabilising when considering Re based on viscosity of water.

WALLENBERG WOOD

Governing equations

• The flow is governed by Navier-Stokes eqns. in cylindrical coordinates.

$$\begin{split} \rho \bigg(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \bigg) &= -\nabla p + \nabla \cdot \sigma^{tot} \\ \sigma^{tot} &= \sigma^{Newtonian} + \sigma^{fibrils} & \mu & - \text{Fluid viscosity} \\ \sigma^{fibrils} &= \mu A \Phi \big(\varepsilon : a_4 \big) & A = \frac{r_p^2}{3 \ln \big(\sqrt{2\pi}/\Phi \big)} & - \text{Rheological parameter}^1 \\ \Phi & - \text{Volume concentration} \\ \varepsilon & - \text{Strain rate} \\ a_4 &= < pppp > & - \text{Orientation tensor} \end{split}$$

¹ Batchelor, G. K., JFM **46**(04) 813-829, 1971

Orientation closure

SCIENCE CENTER

Normal mode analysis

$$\overline{U} = \left(u'_r, V(r) + u'_\theta, u'_z\right)$$

$$u'_r = R(r)e^{i(\beta z + \alpha \theta - \omega t)}$$

$$u'_{z} = Z(r)e^{i(\beta z + \alpha \theta - \omega t)}$$

$$u_{\theta}' = \Theta(r)e^{i(\beta z + \alpha \theta - \omega t)}$$

$$p' = P(r)e^{i(\beta z + \alpha \theta - \omega t)}$$

- Into Navier-Stokes
- Linearise equation
- Subtract mean eqns.
- Discretize eqns.

Stationary orientation distribution

Neutral stability curves

Addition of fibres has a consistent effect in the linear stability analysis.

Experiments and calculations show similarities.

Experiments

- Viscometer $\mu_{NFC} \approx 1.8 \mu_{H_2O}$
- Stability $\operatorname{Re}_{CR}^{NFC} \approx 1.4 \operatorname{Re}_{CR}^{H_2O}$

 $\frac{\mu_{NFC}}{\frac{\mu_{H_2O}}{\text{Re}_{CR}^{NFC}}} = 1.3$ $\mu_{NFC/}$

Effects on bulk viscosity larger than on stability

Effects on bulk viscosity larger than on stability

Stability can not be understood based only on shear viscosity

Conclusions

- Primary instability is stabilised by addition of NFC.
- Effects on bulk viscosity is larger compared to effect on Re_{CR}
 ✓ Both in experiments and linear stability theory.
- Theory underpredicts effects on viscosity as well as Re_{CR} .

Thank you

Equations

$$\begin{bmatrix} 4\Pi D^{2} + 2\xi\Pi D - \beta^{2}\Pi^{2} - \alpha^{2} - i\alpha \operatorname{Re} V\Pi \end{bmatrix} R + \begin{bmatrix} 2\xi\operatorname{Re} V\Pi + 2\operatorname{Re} Ro\Pi^{2} - 2i\xi\alpha \end{bmatrix} \Theta - 2\operatorname{Re} \Pi^{2} DP + A\Phi \left(\begin{bmatrix} 4a_{rrrr}\Pi^{2}D^{2} + 2\xi a_{rrrr}\Pi D + 4i\alpha a_{rrr\theta}\Pi D \end{bmatrix} R + \left[4a_{rrr\theta}\Pi^{2}D^{2} + 4i\alpha a_{rr\theta\theta}\Pi D - i\xi\alpha a_{r\theta\theta} - \alpha^{2}a_{r\theta\theta\theta} - 2\xi a_{r\theta\theta\theta}\Pi D - i\xi\alpha a_{\theta\theta\theta\theta} \end{bmatrix} \Theta \right) = -i\omega \operatorname{Re} \Pi^{2}R$$

Predicted suspension rheology

WALLENBERG WOOD

Normal mode analysis

$$u'_{r} = R(\eta)e^{i(\beta z + \alpha \theta - \omega t)} \qquad u'_{z} = Z(\eta)e^{i(\beta z + \alpha \theta - \omega t)}$$
$$u'_{\theta} = \Theta(\eta)e^{i(\beta z + \alpha \theta - \omega t)} \qquad p' = P(\eta)e^{i(\beta z + \alpha \theta - \omega t)}$$
$$a'_{4} = A_{4}(\eta)e^{i(\beta z + \alpha \theta - \omega t)}$$
Stationary orientation distribution

$$\begin{split} &\left[4\Pi D^{2} + 2\xi\Pi D - \beta^{2}\Pi^{2} - \alpha^{2} - i\alpha\operatorname{Re}V\Pi\right]R + \left[2\xi\operatorname{Re}V\Pi + 2\operatorname{Re}Ro\Pi^{2} - 2i\xi\alpha\right]\Theta - 2\operatorname{Re}\Pi^{2}DP + \\ &+ A\Phi\left(\left[4a_{rrrr}\Pi^{2}D^{2} + 2\xi a_{rrrr}\Pi D + 4i\alpha a_{rrr\theta}\Pi D\right]R + \\ &+ \left[4a_{rrr\theta}\Pi^{2}D^{2} + 4i\alpha a_{rr\theta\theta}\Pi D - i\xi\alpha a_{rr\theta\theta} - \alpha^{2}a_{r\theta\theta\theta} - 2\xi a_{r\theta\theta\theta}\Pi D - i\xi\alpha a_{\theta\theta\theta\theta}\right]\Theta\right) = \\ &= -i\omega\operatorname{Re}\Pi^{2}R \end{split}$$
