

Business from technology

Rheological characterization of complex fluids using Multi Scale Velocity Profile measurements

SIG43 / FP1005 Workshop, 24-25.10.2012, Trondheim

S. Haavisto*, J. Salmela*, A. Koponen* T. Saarinen**, A. Sorvari**

* VTT, Multi Phase Flows Team **Aalto University

Background: Pipe Rheometry

- Characterization of the rheological behavior of cellulose suspensions, e.g. microfibrillated cellulose suspensions
- Recently pipe rheometer has been used to study MFC/NFC suspensions
 - Pressure drop and velocity profile
 - Different flow regimes and size of the plug flow region
 - Viscosity and yield stress

Motivation

- 1. Using previous measurement technique velocity profile in the close proximity of the pipe wall remained unclear
- 2. At which conditions traditional rheometers can be used to study MFC/NFC properties?
 - What is the flow profile and structure inside a rheometer gap?
 - Are the general assumptions valid?

Sources: Karppinen et.al. / Cellulose 2012 and Saarikosko et.al. / Cellulose 2012

Rheology in Pipe Flow: **METHODS**

Local viscosity: UVP-PD method and OCT

 The velocity profile is measured using Pulsed Ultrasound Doppler Velocity Profiling (UVP) and Optical Coherence Tomography (OCT)

Optical Coherence Tomography

- A noninvasive optical imaging technique
- Based on low coherence interferometry
- Structural data and velocity data in an opaque scattering medium
- Micron-level resolution and millimeter scale imaging depth. Lateral imaging area 10x10 mm.

Structure and Doppler image of flow around spacer threads inside a filter geometry showing static vortices.

mm

Optical Coherence Tomography

Volumetric image around optic nerve head Source: Vol. 16, No. 12 / OPTICS EXPRESS

Volumetric vasculature image Source: Vol. 14, No. 17 / OPTICS EXPRESS

Rheology in Pipe Flow: VERIFICATION MEASUREMENTS

Verification of UVP and OCT: laminar Newtonian flow

- tap water (and some tracer particles for UVP)
- pipe diameter 8.0 mm

Verification of OCT: laminar and turbulent Newtonian flow (water)

Wall friction:

$$\tau_{OCT} = \mu_{\text{water}} \left(\frac{dv(r)}{dr} \right)_{r \to R}$$

Pressure loss:

$$\Delta p_{OCT} = \pi D L \tau_{OCT}$$

Verification of OCT: laminar and turbulent Newtonian flow (water)

Rheology in Pipe Flow: FLOW NEAR THE WALL

MFC flow profile results Velocity

MFC flow profile results Viscosity

MFC flow profile results Consistency

3D OCT image of micro fibrillated cellulose in the pipe

FLOW INSIDE A ROTATIONAL RHEOMETER

Flow inside the rheometer

- Cocentric cylinders geometry (bob and cup)
- Transparent outer geometry
- Observations:
 - Extremely complex shear field
 - Rollers near the walls
 - Compression due to roller formation
 - Plug flow
 - Slip

Coarse grade microfibrillated cellulose (c=0.4%)

19

Conclusions

- New OCT measurements extend the velocity profile measurement to the boundary layer of opaque suspensions.
 - Simultaneous measurement of the structure and velocity with high spatial and temporal resolution
 - Possibility to measure both solid phase velocity and fluid velocity
 - Several applications including e.g. fibre and polymer suspensions, blood flow, foam flow

