

Latest developments of CFDEMcoupling

Christoph Goniva^{1*}, Christoph Kloss¹

*christoph.goniva@cfdem.com, www.cfdem.com

¹Christian Doppler Laboratory on Particulate Flow Modelling Johannes Kepler University Linz, Austria

The History The Network The Team

As a consequence of the **need for suitable simulation tools** to capture the **industrial processes** of the partners of the CD-Lab. a scientific Open Source software for **numerical simulations of fluid-particle systems** was developed and a **frame for sustainable growth** was established.

Latest Development of CFDEMcoupling Organization

CFDEM project

Professional Base:

Scientific Base:

Vibrant community has been established: CFDEMproject users comprise world-class companies and dozens of universities and research institutes.

Software used in 2 EU Projects (Pardem, ULCOS) Software used in projects with 6 out of 9 industrial partners of the CDL LIGGGHTS is now an official Ubuntu Science Package

MEC Award for PhD thesis with highest industrial potential to C. Kloss

Latest Development of CFDEMcoupling The Team

Promoted by a team of young and motivated researchers the **CFDEMproject grows** and develops. There is a demand of even more development power, thus expansion will proceed.

Christoph

Goniva

Christoph Kloss

Alice Hager

Michael Friedl

Stefan Amberger

Philippe Seil

Klemens

Patrick Wijerama

Roberto

Josef Kerbl

Aristegui

Daniel Nasato

Mr./Mrs. X.

Richard Berger

2012

Discrete Modelling of Fluid-Particle Systems

Latest Development of CFDEMcoupling Discrete Modelling of Fluid-Particle Systems

How to model particulate flow?

... as the romans said: "divide et impera"

Latest Development of CFDEMcoupling Discrete Modelling of Fluid-Particle Systems

Latest Development of CFDEMcoupling Modelling Fluid-Particle Systems

Latest Development of CFDEMcoupling Resolved CFD-DEM

Resolved CFD-DEM

CD Laboratory on Particulate Flow Modelling, JKU Linz | www.jku.at/pfm

Latest Development of CFDEMcoupling Resolved CFD-DEM

- Dynamic local mesh refinement:
 - The overall mesh is as coarse as the flow problem permits
 - The mesh in the particle-covered area is refined
- Implemented in OpenFOAM®

Local mesh refinement in the area of the particle

Latest Development of CFDEMcoupling Resolved CFD-DEM

→ incorporation of the rotational component Latest Development of CFDEMcoupling Unresolved CFD-DEM

Unresolved CFD-DEM

CD Laboratory on Particulate Flow Modelling, JKU Linz www.jku.at/pfm

Latest Development of CFDEMcoupling Discrete Modelling of Fluid-Particle Systems

Discrete Modeling of fluid particle systems comes in different flavors...

• CFD-DEM^{1,2}

Topic of this talk

• CFD-DDPM⁴

coarse grained CFD-DEM³

• MP-PIC^{5,6}

1) Goniva, C., Kloss, C., Deen, N.G., Kuipers, J.A.M. and Pirker, S. (2012): "Influence of Rolling Friction Modelling on Single Spout Fluidized Bed Simulations", Particuology, DOI 10.1016/j.partic.2012.05.002

2) Z.Y. Zhou, S.B. Kuang, K.W. Chu and A.B. Yu (2010) : "Discrete particle simulation of particle-fluid flow: Model formulations and their applicability", Journal of Fluid Mechanics 661, 482-510.

3) Radl S., Radeke, Ch., Khinast, J., Sundaresan, S. (2011) : "Parcel-Based Approach for the Simulation of Gas-Particle Flows", Proc. CFD 2011 Conference, Trondheim, Norway

4) Fluent® Manual

5) Andrews, M.J., O'Rourke, P.J. (1996): "The multi-phase particle-n-cell (MP-PIC) method for dense particle flow", Int. J. Multiphase Flow, 22, 379-402

6) Benyahia, S., Sundaresan, S. (2012): "Do we need sub-grid corrections for both continuum and discrete gas-particle flow models", Powder Technology, 220, 2-6

Latest Development of CFDEMcoupling Discrete Modelling of Fluid-Particle Systems

Theoretical background – coarse grained CFD-DEM:

Navier-Stokes equations for the fluid in presence of a granular phase

$$\frac{\partial \alpha_{f} \rho_{f}}{\partial t} + \nabla \cdot \left(\alpha_{f} \rho_{f} \mathbf{u}_{f} \right) = 0$$

$$\frac{\partial \left(\alpha_{f} \rho_{f} \mathbf{u}_{f} \right)}{\partial t} + \nabla \cdot \left(\alpha_{f} \rho_{f} \mathbf{u}_{f} \mathbf{u}_{f} \right) = -\alpha_{f} \nabla p + \nabla \cdot \left(\alpha_{f} \tau \right) + \alpha_{f} \rho_{f} \mathbf{g} - \mathbf{K}_{\mathrm{fs}} \left(\mathbf{u}_{f} - \mathbf{u}_{s} \right)$$

Lagrangian Particle Trajectory for Parcels

$$\frac{\partial^2 \mathbf{x}_p}{\partial t^2} = \frac{\mathbf{F}_n}{m_p} + \frac{\mathbf{F}_t}{m_p} + \mathbf{g} + \frac{\beta}{\rho_p \alpha_p} (\mathbf{u}_f - \mathbf{u}_p) - \frac{1}{\rho_p} \nabla p$$

Scaling laws from dimensional analysis

$$\Pi_{1} = l, \Pi_{2} = \frac{k_{n}}{R_{i} \cdot \rho_{p} \cdot v_{0}^{2}}, \Pi_{3} = \frac{c_{n}}{R_{i}^{2} \cdot \rho_{p} \cdot v_{0}}$$

- *l*: size ratio of colliding particles, k_n : stiffness, R: radius, ρ : density, v_0 : reference velocity
- Density, coefficient of friction, coefficient of rolling friction stay same
- k_n/R must stay constant → scale stiffness with radius
- scaling of particle drag
- Equations converge to particle equation for parcel = particle

Validation of CFD-DEM approach applied to spout fluidized beds

Latest Development of CFDEMcoupling single spout fluidized bed

CD Laboratory on Particulate Flow Modelling, JKU Linz www.jku.at/pfm

Latest Development of CFDEMcoupling single spout fluidized bed

CD Laboratory on Particulate Flow Modelling, JKU Linz | www.jku.at/pfm

Latest Development of CFDEMcoupling triple spout fluidized bed

Latest Development of CFDEMcoupling triple spout fluidized bed

Variation: Particle-Particle, Particle-Wall Rolling Friction

CD Laboratory on Particulate Flow Modelling, JKU Linz www.jku.at/pfm

Validation of parcel approach applied to spout and bubbling beds

Latest Development of CFDEMcoupling single spout fluidized bed – coarse grained

CD Laboratory on Particulate Flow Modelling, JKU Linz | www.jku.at/pfm

Latest Development of CFDEMcoupling Bubbling Bed – coarse grained

Usf = 0.6077 m/s, dp=0.5mm, nParticles=1.4e6

coarse graining = 1, nParcels=1.4e6, coarse graining = 1.5, nParcels=427.820 , coarse graining = 2, nParcels=180.490

Latest Development of CFDEMcoupling Bubbling Bed – coarse grained

Comparison of simulations:

Left: bubble diameter for different coarse graining levels and velocities Right: number of bubbles for different coarse graining levels and velocities

Latest Development of CFDEMcoupling Bubbling Bed – coarse grained

Simulations vs Experiment:

Left: bubble diameter for different coarse graining levels and velocities Right: number of bubbles for different coarse graining levels and velocities

Handling Non-Sphericity multisphere method

Latest Development of CFDEMcoupling Non-Sphericity and LIGGGHTS

Obviously...

~

Our Approach: Get closer to real world

Spherical

Non-Spherical

Latest Development of CFDEMcoupling Multisphere validation example

Ergun pressure drop of

(multi) sphere particle bed

nple CFDEM

Dimension **Property** Size -0.0138 : -0.0138 x-dimension of domain [m] -0.0138 : -0.0138y-dimension of domain [m] z-dimension of domain 0:0.0553 [m] (0,0,-9.81)[m/s2] gravity vector 10 Particles per clump [-] [-] 2500 # clumps Particle diameter 0.7061 e-3 [m] Clump diameter [m] 2 e-3 y. x Particle density 1000 [kg/m3][kg/m3]Clump density 440 5 Fluid density [kg/m3]Inlet velocity 0:0.2 [m/s]

inlet

Latest Development of CFDEMcoupling Multisphere validation example

Ergun pressure drop of (multi) sphere particle bed

Latest Development of CFDEMcoupling Multisphere validation example

Ergun pressure drop of (multi) sphere particle bed

Ergun pressure drop vs. simulation

Latest Development of CFDEMcoupling **Particle Injector**

- •best case: particles are smoothely given into gas stream
- •Note:Upward disturbance due to particles!

Best Case

Towards Environmental Flow river erosion behind a weir

Latest Development of CFDEMcoupling Scour development

CD Laboratory on Particulate Flow Modelling, JKU Linz | www.jku.at/pfm

Latest Development of CFDEMcoupling Scour development

Measurement: 0.6 0.06 0.5 0.05 0.4 0.04 y [m] 0.03 0.3 0.02 0.2 0.01 0.1 -0.01 0.2 0.05 0.15 0.25 0.3 x [m] Simulation: 06 0.06 0.5 0.05 0.4 0.04 y [m] 0.03 0.3 0.02 0.2 0.01 0.1 -0.01 0.2 0.25 0.3 0.05 0.15 15 Experiment 30sec Simulation (Zanke) 10 Simulation (Chepil) Simulation (no turb, lift) 5 y [mm] 0 -5 -10└ 60 80 100 120 140 160 180 200 220 240

x [mm]

Velocity profile

- recirculation mass flow is under predicted
- > generally good results

Erosion profile [m/s]

- turbulent lift force
- best performance with a model based on Zanke

Towards Multi-Physics flotation modelling joint work with Aalto University

Latest Development of CFDEMcoupling Spray Particle Interaction

Three Phase Interaction Model (fluid+gas+particle):

See PhD thesis of Dr. Wierink at www.cfdem.com

Towards Turbulence Interaction Particles in von Karman Vortex street

Latest Development of CFDEMcoupling Particles in von Karman Vortex street

Von Kármán vortex street off the Chilean coast near the Juan Fernandez Islands. (Wikipedia)

Reynolds-Zahl-Bereich	Strömungsbereich	Strömungsform	Strömungs- charakteristik	Strouhal-Zahl Sr	Widerstands- beiwert c _W
$\text{Re} \rightarrow 0$	schleichende Strömung		stationär. kein Nachlauf	-	siehe Bild 1.12
3 - 4 < Re < 30 - 40	Wirbelpaar im Nachlauf		stationär. Ablösung symmetrisch	-	$\begin{array}{l} 1,59 < c_{\rm W} < 4,52 \\ ({\rm Re}=30) ({\rm Re}=4) \end{array}$
$_{40}^{30}$ < Re < $_{90}^{80}$	Einsetzen der Kármánschen Wirbelstraße		laminar, Nachlauf instabil	-	$\begin{array}{l} 1, 17 < c_{\rm W} < 1.59 \\ ({\rm Re} = 100) ({\rm Re} = 30) \end{array}$
$\frac{80}{90}$ < Re < $\frac{150}{300}$	reine Kármánsche Wirbelstraße	-056	Karmansche Wirbelstraße	0,14 < Sr < 0,21	
$\frac{150}{300}$ < Re < $\frac{10^5}{1.3 \cdot 10^5}$	unterkritischer Bereich	One water	laminarer Nah-Nachlauf mit Wirbelstraßen- Instabilität	Sr = 0, 21	$c_{W} \approx 1, 2$

Kármán vortex street

from Schlichting

CD Laboratory on Particulate Flow Modelling, JKU Linz | www.jku.at/pfm

Latest Development of CFDEMcoupling

Particles in von Karman Vortex street

Towards Multi-Physics spray particle interaction

Latest Development of CFDEMcoupling Spray Particle Interaction

Spray-Particle Liquid transfer Model:

Particle-Particle Liquid transfer Model:

Ch. GONIVA, G. WIERINK, K. HEISKANEN, S. PIRKER & Ch. KLOSS (2012): "MODELLING THREE-PHASE FLOW IN METALLURGICAL PROCESSES", Proc. Int. Conf. on. Computational Fluid Dynamics in the Minerals and Process Industries, Melbourne

Latest Development of CFDEMcoupling Spray Particle Interaction

0

5e-6

CFDEM project

Planned topic for the diploma thesis of Josef Kerbl.

Dust Emission & Propagation

Latest Development of CFDEMcoupling Dust Emission & Propagation

Ch. Goniva, Ch. Kloss, X. Chen, T.J. Donohue, A. Katterfeld (2012): "Prediction of Dust Emissions in Transfer Chutes by Multiphase CFD and Coupled DEM-CFD Simulations", Proc. Bulk Solids Handling Conference, Berlin

Latest Development of CFDEMcoupling Dust Emission & Propagation

Validation against measurements:

- 2: ChuteF CFDEMcoupling,
- 3: ChuteA measured *,
- 4: ChuteF measured *

relative dust flux at outlet

Validation against EuEu Simulations (Newcastle AUS *):

*) Chen, X.L., Wheeler, C.A., Donohue, T.J., McLean, R., Roberts, A.W.: Evaluation of dust emissions from conveyor transfer chutes using experimental and CFD simulation. International Journal of Mineral Processing 110–111 (2012) pp. 101–108

CD Laboratory on Particulate Flow Modelling, JKU Linz | www.jku.at/pfm

Latest Development of CFDEMcoupling Dust Emission & Propagation

CD Laboratory on Particulate Flow Modelling, JKU Linz www.jku.at/pfm

Thank you for your attention! Questions?

www.cfdem.com