CFD Modelling of the Flow Inside an LC Refiner

Dariusz Asendrych, Grzegorz Kondora Częstochowa Univ. of Technology, Poland

A joint meeting

COST Action FP1005

Fibre suspension flow modelling - a key for innovation & competitiveness in the pulp & paper industry

ERCOFTAC SIG 43

Fibre suspension flows

Outline

Introduction / Motivation

- Numerical model
 - Simplified / full geometry
 - Boundary conditions
 - Governing equations

□ Results

- Simplified geometry Diverging grooves
- Full geometry General flow pattern

□ Summary / Perspectives

LC refiner

plate disc refiner

typical refiner filling

Geometry – assumptions

simplified

- neglected housing ⇒ axisymmetric outlet (instead of point outlet)
- neglected axial part of inlet, radial inlet applied
- periodicity of discs geometry singlesegment (30 degrees of angular extent -1/12)

full

- 12 segments
- housing
- single-pipe outlet

Boundary conditions

- simplified filling
- Inlet VELOCITY INLET
- outlet PRESSURE OUTLET
- •PERIODIC B.C.
- INTERFACE for sliding meshes

- geometry and mesh GAMBIT
- mesh: 6 / 24 mln cells
- FLUENT 6.3 / 13

Governing equations

- pulp suspension treated as a **single-phase continuum** (N-S, continuity)
- flow character assumed to be **laminar** (confirmed by simulation results)
- pulp modelled as either Newtonian or non-Newtonian fluid

$$\frac{\partial U}{\partial t} + U \cdot \nabla U = -\frac{\nabla p}{\rho} + \frac{\mu}{\rho} \nabla^2 U$$
$$\nabla U = 0$$
$$\mu = f(\gamma) \quad \text{or} \quad \mu = \text{const}$$

where γ - rate of deformation tensor

 fibre-fibre and fibre-wall interactions are neglected - main goal was to analyze the LC refining hydraulics

Newtonian fluid - constant apparent viscosity

softwood pulp, $C_m = 4\%$, fibre lenght = 1400 µm, diameter = 26 µm

source:Radoslavova, Silvy, Roux, 1996,,TAPPI Papermakers Conf., Philadelphia

CFD Modelling of the Flow Inside an LC Refiner COST FP1005 / SIG 43 meeting, 24-26.X.2012, Trondheim

General flow pattern

reverse flows in stator disc

↓ enhanced internal circulation

- mass flux exiting stator grows
- power consumption decreases

Full refiner simulation

CFD Modelling of the Flow Inside an LC Refiner COST FP1005 / SIG 43 meeting, 24-26.X.2012, Trondheim

Full refiner geometry model

Velocity magnitude

Pressure distribution

Pressure distribution

LC refiner flow model - Fox et al.

Fox, T.S., Brodkey, R.S. Nissan, A.H., 1979, TAPPI J., 62 (3)

CFD Modelling of the Flow Inside an LC Refiner COST FP1005 / SIG 43 meeting, 24-26.X.2012, Trondheim

Pressure distribution - CFD vs Fox et al.

CFD Modelling of the Flow Inside an LC Refiner COST FP1005 / SIG 43 meeting, 24-26.X.2012, Trondheim [bar]

Mass flux at filling outlet

Mass flux at filling outlet

full refiner

single-segment refiner

Flow reversals in stator

full refiner

CFD Modelling of the Flow Inside an LC Refiner COST FP1005 / SIG 43 meeting, 24-26.X.2012, Trondheim

Summary / Perspectives

Simplified geometry model

- qualitative agreement with experimental observation adequate numerical model
- divergent grooves:
 - modified pressure distribution and enhanced flow reversals
 - no energy penalty improved flow quality

Full geometry model

- circulation / exit regions analogy to Fox et al.
- existence of the backflows in the stator
- mass flow rate distributions stongly non-uniform and rotor position dependent

General

- no fibres included...
- CFD can really help useful tool in process optimisation
- time consuming simulations
- ongoing simulations / data processing for varying conditions

Thank You for Your Attention